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Abstract— Several routing schemes in ad hoc networks first
establish a virtual backbone and then route messages via back-
bone nodes. One common way of constructing such a backbone is
based on the construction of a minimum connected dominating
set (CDS). In this paper we present a very simple distributed
algorithm for computing a small CDS. Our algorithm has an
approximation factor of at most 6.91, improving upon the
previous best known approximation factor of 8 due to Wan et al.
[INFOCOM’02]. The improvement relies on a refined analysis
of the relationship between the size of a maximal independent
set and a minimum CDS in a unit disk graph. This subresult
also implies improved approximation factors for many existing
algorithm.

I. INTRODUCTION

Wireless ad hoc networks appear in a wide variety of appli-
cations, including military battle-field, disaster relief, sensing
and monitoring. Unlike wired networks, no physical backbone
infrastructure is installed in wireless ad hoc networks. Instead,
the nodes communicate either directly or via intermediate
nodes. In this paper we assume that all nodes are located in
a Euclidean plane and have an equal transmission range of 2.
The topology of such a network can be modeled as a unit-disk
graph G = (V,E). Two nodes are adjacent if the unit disks
centered at them intersect, i.e., their inter-distance is at most
two. (Note: We use this definition instead of the commonly
used one based on a transmission range of 1 or equivalently
intersecting disks of radius 0.5 to simplify calculations in the
proofs. It should be obvious that by scaling our results also
hold for any other definition of the unit-disk graph, be the
’unit’ 1,2, or any other constant.)

Although a wireless ad-hoc network has no physical back-
bone infrastructure, a virtual backbone can be formed by nodes
in a connected dominating set (CDS) of G. A CDS of G is
a subset S ⊆ V such that each node in V \ S is adjacent to
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some node in S and the communication graph induced by S
is connected. We denote by OPT a minimum CDS in G.

The problem of finding a minimum CDS in a unit disk graph
has been shown to be NP-hard [4]. The work in [7] proposes a
10-approximation centralized algorithm for this problem. The
work in [3] presents a polynomial-time approximation scheme
that guarantees an approximation factor of (1 + 1/s) with
running time of nO((s log s)2). However, centralized algorithms
cannot be applied to real networks. Recently, the distributed
construction of a small CDS has attracted a great deal of
attention. The currently best known distributed algorithm due
to [8] has an approximation factor of 8 and running time
O(n). However, the analysis of [8] ignores delays incurred
by interference. An algorithm recently presented in [6] with
high probability computes a 192-approximation in O(n log n)
time and explicitly handles interference. The algorithm of [6]
is based on a distance-2-coloring (D2-coloring), where no two
nodes at 2-hop distance can have the same color.

In this paper we present a very simple 6.91-approximation
algorithm for computing a minimum CDS in unit disk graphs.
That improves upon the previous best known approximation
factor of 8 due to [8]. Ignoring interference, our algorithm
matches the O(n) running time of the algorithm in [8],
but we provide a more detailed analysis also taking care
of interference by using the D2-coloring of [6]. The main
contribution of this paper is an improved analysis of the
relationship between the size of a maximal independent set
and a minimum CDS in a unit disk graph, which yields better
bounds for many previous algorithms [1], [2], [6], [7], [8].
Note that a maximal independent set is also a dominating set,
which only needs to be connected to obtain a CDS.

The rest of the paper is organized as follows. The distributed
CDS algorithm is presented in Section II. In Section III we
bound the size of any independent set in terms of the minimum
CDS size. Section IV contains some concluding remarks.

II. A SIMPLE DISTRIBUTED ALGORITHM FOR CDS
In this section we present a very simple distributed algo-

rithm computing a CDS of G. We assume that there exists an
assignment of time slots to the nodes such that no interference
occurs, i.e. no two nodes transmit in the same time slot.



Such an assignment can be determined using the D2-coloring
algorithm from [6]. Let us denote by q ≤ n be the number of
different time slots in this assignment.

In the course of our algorithm, we construct a connected
set S and an independent set I ⊆ S. In a nutshell, we color a
node (without connection to D2-coloring) with the following
colors: black – the node is a part of I; blue – it is not in S
but adjacent to a node in I; grey – it is in S but not in I ,
red – it is neither black, grey, nor blue, but a neighbor to a
grey or blue node; and white – it is neither black nor grey nor
blue, nor a neighbor to a grey or blue node. Initially, one node
is colored red (this node can be chosen by running a leader
election algorithm) and all other nodes are colored white. Each
red node u (except the first one) keeps its parent grey node.

The execution of our algorithm is divided into rounds. Each
round consists of three phases and in each phase we use a
conflict-free time slots assignment so that each node is able
to transmit once. Basically, in a round each red node with
minimum ID among its red neighbors joins I and its blue
parent joins S. Then the colors of the relevant nodes are
updated accordingly. The algorithm is presented on Figure 1.

A. Analysis
The algorithm terminates when there remain no white or

red nodes. Next we state the main theorem.
Theorem 2.1: Our algorithm computes a connected dom-

inating set S in G with |S| ≤ 6.91 · |OPT| + 16.58 and
has running time O(|OPT | · q) and message complexity
O(|OPT | · n).

Proof: The fact that the final set S (black and grey nodes)
is indeed a CDS, can be easily established by verifying the
following invariants maintained throughout the execution of
our algorithm:

1) The set of black nodes I form an independent set in G
and dominate the set of grey and blue nodes;

2) The subgraph induced by black and grey nodes is
connected;

3) If the set of black nodes does not form a dominating set
of G, there is at least one red node;

4) In each round at least one red node turns black.
Note that |S| ≤ 2|I|. That is due to the fact that each grey

node u can be associated with a unique black node v s.t. u
was parent of v. As we show in Section III, |I| ≤ 3.453 ·
|OPT| + 8.291, which implies the bound on |S|.

The running time of our algorithm is O(|OPT| · q), since
each phase lasts q time steps (according to the number of time-
slots obtained from the D2-coloring) and we have O(|OPT |)
rounds (with three phases each) as in each round at least one
node gets colored red. The message complexity is O(|OPT| ·
n) because during each phase at most n messages are sent
(the message size is O(log n) bits).
This bound includes delays due to interference between nearby
nodes, as this is treated explicitely by the D2-coloring. Note
that q = O(n) and |OPT | = O(n). Ignoring interference as
in the model of [8], we get the following corollary:

Corollary 2.2: Ignoring interference our algorithm com-
putes a connected dominating set S in G with |S| ≤ 6.91 ·
|OPT| + 16.58 and has running time O(n) and message
complexity O(n2).
Furthermore, if the density of the nodes is high (i.e. large value
of q), typically |OPT | is rather small, and vice versa, if the
optimal |OPT | is large, the node density is typically small. So
even including the explicit treatment of interference we expect
the running time of our algorithm to be very competetive.

III. BOUNDING THE SIZE OF AN INDEPENDENT SET

In this section we bound the size of any independent set in
G with respect to the size of OPT. For that we first bound
the area covered by the union of unit disks in G.

Theorem 3.1: The area covered by the union of unit disks
in G is at most |OPT| · 11.774 + 9π.

Proof: Consider the set L of disks with radius 3 around
the centers of unit disks from OPT. Clearly, all unit disks
corresponding to the nodes of G must be contained in the
union of the disks in L and this union is connected. To bound
the area covered by L, we mimic the growth of a spanning
tree of OPT. In iteration i, we add a new disk li whose center
has distance at most 2 to a center of the already added disks
l1, . . . , li−1. We consider the area ’newly covered’ by li, i.e.,
the area not covered by the union of disks l1, . . . , li.

Note that the center of li is at distance at most 2 from the
center of a lj s.t. j < i. The newly covered area is thus at
most the hatched area on Figure 2, where |cjm| = |cim| = 1.
Let α = ∠i1cjm be the angle spanned by i1 and m at cj .
We have cosα = 1/3 and |mi1 = |mi2| =

√
8 = 2

√
2. The

hatched area can then be computed by considering a 2π − 2α
sector of Di, subtracting a 2α sector of Dj and adding the
area of the diamond i1cji2ci. Hence, we get:

Ah =
2π − 2α

2π
9π − 2α

2π
9π + 4 · 1

2
· 1 · 2

√
2

= (π − 2 arccos(1/3)) · 9 + 4 ·
√

2

≤ 11.774

Therefore, the total area covered by L is at most |OPT| ·
11.774 + 9π.
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Fig. 2. Arguing about the covered area.



I. APPLY PHASE: Each red node sends an APPLY-MSG with its ID.
II. CONFIRM PHASE: Each red node that during the first phase received only APPLY-MSG’s of nodes with
larger ID if any, colors itself black and sends a CONFIRM-MSG(black) with its ID and its parent’s ID. Each
blue node that receives a CONFIRM-MSG(black) with parent ID equal to its own ID, colors itself grey.
III. UPDATE PHASE: Each red or white node that during the second phase received one or more CONFIRM-
MSG(black), colors itself blue and sends an UPDATE-MSG(blue) with its ID. Each white node that receives an
UPDATE-MSG(blue) from node v colors itself red and sets its parent to be v.

Fig. 1. The distributed CDS algorithm.
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Fig. 4. How much of a Voronoi cell remains inside

We note that this bound immediately implies that the size
of any independent set is bounded by 3.748 · |OPT|+9 since
it consists of disjoint disks, which are contained in the area
covered by L. Next we will derive an even better bound by
making use of the fact that any placement of a unit-disk
necessarily ’wastes’ some area besides the area π covered
by the unit-disk. Let us consider the Voronoi diagram of the
centers ci of the disks in L. How small can the Voronoi cell
of a point ci be ? It is not hard to see that since all ci’s
have pairwise distance of at least 2, the smallest possible
Voronoi cell is a regular hexagon of width w = 2. This follows
immediately from the well-known result by Fejes Tóth [5]
which proves that the densest packing of unit-disks in the
plane is attained by a hexagonal lattice. See Figure 3, left.
The area of one hexagon is

√

3
2 w2 = 2

√
3.

Theorem 3.2: The size of any independent set in a unit disk

graph G is at most 3.453 · |OPT| + 8.291.
Proof: First observe that any point in the Voronoi Cell of

ci is either covered by the unit-disk around ci or not covered
at all (if it was not covered by the unit disk centered at ci but
by another unit disk, it would not be in the Voronoi cell of ci).
So basically each placed unit-disk ’uses’ up an area of at least
2
√

3 (and not only π) from the area of the region covered by
L with the only exception of disks near the boundary. If the
center ci of such a disk is close to the boundary, part of its
Voronoi cell might lie outside the region covered by L. So we
need to give a lower bound on the area z of the intersection
of the Voronoi cell of ci with the region covered by L. For
that, let us allow other points cj to be to be placed arbitrarily,
in particular also outside the region covered by L (this will
give only a smaller lower bound). The area z is then again
minimized when there are 6 centers cj placed regularly at
distance 2 around ci. How much of ci’s Voronoi cell can then
lie outside the region covered by L ? As it is illustrated on
Figure 4, at most (2

√
3−π)/6, that is one ’ear’ of the regular

hexagon (remember that the unit disk around ci is contained in
a union of disks of radius 3). Hence, we can uniquely assign
each ci an area of

2
√

3 − (2
√

3 − π)/6 ≥ 3.410

from the area covered by L. Therefore, the number of disjoint
unit disks that can be placed in the region covered by L is at
most

|OPT| · 11.774 + 9π

3.410
≤ 3.453 · |OPT| + 8.291.

We note that the same technique can be used to improve
the number of non-adjacent D2/D3-Neighbors to 22 and 44
respectively improving upon the previously best bounds of
23 and 47. This has a direct impact on the size of several
CDS constructions, which also have bounded geometric and
topological dilation, like in [2], [6].

IV. CONCLUDING REMARKS

In this work we have proposed an improved distributed 6.91-
approximation algorithm for computing a connected dominat-
ing set in unit disk graphs. The algorithm is very simple and
can be easily implemented in wireless ad hoc networks. As
main contribution of this paper, we have shown an improved
analysis of the relationship between the size of a maximal
independent set and a minimum CDS in a unit disk graph,
which yields better bounds for many other algorithms.
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