1 Singular Value Decomposition — SVD

The singular value decomposition is the appropriate tool for analyzing a mapping from one vector space into another vector space, possibly with a different dimension. Most systems of simultaneous linear equations fall into this second category.

Any $m \times n$ matrix A can be factored into:

$$A = USV^T$$

(1)

where U is orthogonal $m \times m$ matrix and the columns of the U are the eigenvectors of AA^T. Likewise, V is orthogonal $n \times n$ matrix and the columns of the V are the eigenvectors of A^TA. The matrix S is diagonal and it is the same size as A. Its diagonal entries, also called sigma, $\sigma_1, \ldots, \sigma_r$, are the square roots of the nonzero eigenvalues of both AA^T and A^TA. They are the singular values of matrix A and they fill the first r places on the main diagonal of S. r is the rank of A.

The connections with AA^T and A^TA must hold if the equation 1 is correct. It can be seen:

$$AA^T = (USV^T)(VS^T U^T) = U S S^T U^T$$

(2)

and similarly

$$A^TA = V S^T S V^T$$

(3)

From eq. 2 U must be the eigenvector matrix for AA^T. The eigenvalue matrix in the middle is SS^T — which is $m \times m$ with the eigenvalues $\lambda_1 = \sigma_1^2, \ldots, \lambda_r = \sigma_r^2$ on the diagonal. From eq. 3 V must be the eigenvector matrix for A^TA. The diagonal matrix $S^T S$ has the same $\lambda_1 = \sigma_1^2, \ldots, \lambda_r = \sigma_r^2$, but it is $n \times n$.

1 An orthogonal matrix is a square matrix with columns built out of the orthonormal vectors. The vectors are orthonormal when their lengths are all 1 and their dot products are zero. If the matrix Q is orthogonal then $Q^T Q = I$ and $Q^T = Q^{-1}$, the transpose is the inverse.

2 If the matrix Q is not square and $Q^T Q = I$ then Q is called orthonormal matrix.

If the columns of the Q are orthogonal vectors, (heir dot products are zero, but their lengths are not all 1) then $Q^T Q$ is a diagonal matrix, not the identity matrix.

2 The number λ is an eigenvalue of matrix M if and only if: $\det(M - \lambda I) = 0$. This is the characteristic equation, and each solution λ has a corresponding eigenvector x: $(M - \lambda I)x = 0$ or $Mx = \lambda x$.

Example 1: Find the singular value decomposition of \(A = \begin{bmatrix} 2 & 2 \\ -1 & 1 \end{bmatrix} \).

Solution: Compute \(AA^T \), find its eigenvalues (it is generally preferred to put them into decreasing order) and then find corresponding unit eigenvectors:

\[
AA^T = \begin{bmatrix} 8 & 0 \\ 0 & 2 \end{bmatrix} \Rightarrow \det (AA^T - \lambda I) = \det \begin{bmatrix} 8 - \lambda & 0 \\ 0 & 1 - \lambda \end{bmatrix} = 0
\]

\((8 - \lambda)(2 - \lambda) = 0 \Rightarrow \lambda_1 = 8, \lambda_2 = 2\)

Their corresponding unit eigenvectors are:

\[
AA^T u_1 = \lambda_1 u_1 \Rightarrow \begin{bmatrix} 8 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} = 8 \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} \Rightarrow 8u_{11} = 8u_{11} \Rightarrow u_{11} = 1 \Rightarrow u_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
\]

\[
AA^T u_2 = \lambda_2 u_2 \Rightarrow \begin{bmatrix} 8 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} u_{21} \\ u_{22} \end{bmatrix} = 2 \begin{bmatrix} u_{21} \\ u_{22} \end{bmatrix} \Rightarrow 8u_{21} = 2u_{21} \Rightarrow u_{21} = 0 \Rightarrow u_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
\]

The matrix \(U \) is then:

\[
U = [u_1 \quad u_2] = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.
\]

The eigenvalues of the \(A^TA \) are the same as the eigenvalues of the \(AA^T \). The eigenvectors of the \(A^TA = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix} \) are:

\[
A^TA v_1 = \lambda_1 v_1 \Rightarrow \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} v_{11} \\ v_{12} \end{bmatrix} = 8 \begin{bmatrix} v_{11} \\ v_{12} \end{bmatrix} \Rightarrow 5v_{11} + 3v_{12} = 8v_{11} \Rightarrow v_{11} = v_{12} \\
3v_{11} + 5v_{12} = 8v_{12} \Rightarrow v_{12} = v_{11}
\]

Choice of \(v_{11} \) will define \(v_{12} \) and vice versa. In general \(v_{11} \) and \(v_{12} \) can be any numbers, but since vector \(v_1 \) should have length of 1, the \(v_{11} \) and \(v_{12} \) are chosen as follows:

\[
\|v_1\| = 1 \Rightarrow \sqrt{v_{11}^2 + v_{12}^2} = 1 \Rightarrow v_{11} = v_{12} = \frac{1}{\sqrt{2}} \Rightarrow v_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}.
\]

Unit eigenvector \(v_2 \) is:

\[
A^TA v_2 = \lambda_2 v_2 \Rightarrow \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} v_{21} \\ v_{22} \end{bmatrix} = 2 \begin{bmatrix} v_{21} \\ v_{22} \end{bmatrix} \Rightarrow 5v_{21} + 3v_{22} = 2v_{21} \Rightarrow v_{21} = 0 \\
3v_{21} + 5v_{22} = 2v_{22} \Rightarrow v_{22} = 1
\]

\(v_{21} = -v_{22} \Rightarrow v_2 = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \).

The matrix \(V \) is then:

\[
V = [v_1 \quad v_2] = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \quad \text{and} \quad V^T = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}.
\]

The matrix \(S \) is:

\[
S = \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix} = \begin{bmatrix} \sqrt{\lambda_1} & 0 \\ 0 & \sqrt{\lambda_2} \end{bmatrix} = \begin{bmatrix} 2\sqrt{2} & 0 \\ 0 & \sqrt{2} \end{bmatrix}.
\]
Finally the SVD of the A is:

$$A = USV^T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2\sqrt{2} & 0 \\ 0 & \sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}^T$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2\sqrt{2} & 0 \\ 0 & \sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}.$$

Example 2: Find the singular value decomposition of $A = \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}$.

Solution: The rank $r = 1$!

$$AA^T = \begin{bmatrix} 8 & 4 \\ 4 & 2 \end{bmatrix} \Rightarrow \lambda_1 = 10, \lambda_2 = 0 \Rightarrow u_1 = \begin{bmatrix} \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{bmatrix}.$$

For the second eigenvalue $\lambda_1 = 0$, equation $AA^T u_2 = \lambda_2 u_2$ is no use. Since the matrix U is usually square, another column (vector u_2 in this case) is needed. Eigenvectors u_1 and u_2 must be orthogonal, their dot product is zero (eq. 4), and their length must be 1 (eq. 5).

$$u_{11}u_{12} + u_{21}u_{22} = 0 \quad (4)$$

$$\|u_2\| = 1 \Rightarrow \sqrt{u_{12}^2 + u_{22}^2} = 1 \quad (5)$$

The eigenvector u_1 is:

$$\frac{1}{\sqrt{5}}u_{11} + \frac{2}{\sqrt{5}}u_{22} = 0 \Rightarrow u_{22} = -2u_{12} \Rightarrow \sqrt{u_{12}^2 + u_{22}^2} = 1 \Rightarrow u_{12} = \frac{1}{\sqrt{5}} \Rightarrow u_2 = \begin{bmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{bmatrix}$$

and matrix U is:

$$U = \begin{bmatrix} u_1 & u_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix}.$$

$$A^TA = \begin{bmatrix} 5 & 5 \\ 5 & 5 \end{bmatrix} \Rightarrow A^TAu_1 = \lambda_1 u_1 \Rightarrow \begin{bmatrix} 5 & 5 \\ 5 & 5 \end{bmatrix} \begin{bmatrix} v_{11} \\ v_{12} \end{bmatrix} = 10 \begin{bmatrix} v_{11} \\ v_{12} \end{bmatrix} \Rightarrow v_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}.$$

The vector v_2 can be found using eq. 4 and eq. 5:

$$v_2 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}, \text{ the matrix } V = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \text{ and } V^T = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}.$$

Matrix S is:

$$S = \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix} = \begin{bmatrix} \sqrt{\lambda_1} & 0 \\ 0 & \sqrt{\lambda_2} \end{bmatrix} = \begin{bmatrix} \sqrt{10} & 0 \\ 0 & 0 \end{bmatrix}$$

and SVD of A can be written as:

$$A = USV^T = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \sqrt{10} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}. $$
The Matlab function \(\text{svd()} \) can be used to find the singular value decomposition. If the matrix \(A \) has many more rows than columns, the resulting \(U \) can be quite large, but most of its columns are multiplied by zeros in \(A \). In this situation, the *economy* sized decomposition saves both time and storage by producing an \(m \) by \(n \) \(U \), an \(n \) by \(n \) \(S \) and the same \(V \).

Example 3: For the matrix \(A \)

\[
A = \begin{bmatrix}
2 & 0 \\
0 & -3 \\
0 & 0
\end{bmatrix}
\]

the full singular value decomposition is

\[
[U, S, V] = \text{svd}(A)
\]

\[
U = \begin{bmatrix}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\[
S = \begin{bmatrix}
3 & 0 \\
0 & 2 \\
0 & 0
\end{bmatrix}
\]

\[
V = \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\]

For this small problem, the economy size decomposition is only slightly smaller:

\[
[U, S, V] = \text{svd}(A, 0)
\]

\[
U = \begin{bmatrix}
0 & 1 \\
-1 & 0 \\
0 & 0
\end{bmatrix}
\]

\[
S = \begin{bmatrix}
3 & 0 \\
0 & 2
\end{bmatrix}
\]

\[
V = \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\]
2 Application of the SVD

2.1 The effective rank

Rank of the matrix is the number of independent rows or equivalently the number of independent columns. In computations this can be hard to decide. Counting the pivots \[2\] is correct in exact arithmetic, but in real arithmetic the roundoff error makes life more complicated. More stable measure of the rank is to compute \(A^T A \) or \(AA^T \), which are symmetric but share the same rank as \(A \). Based on the accuracy of the data, we can set the tolerance, \(10^{-6} \) for example, and count the singular values of \(A^T A \) or \(AA^T \) above it. The number of singular values above the specified tolerance is the effective rank.

2.2 Least Squares and the Pseudoinverse

Vector \(\vec{x} \) is called a least squares solution of linear system

\[A\vec{x} = b \] (6)

when it minimizes

\[\| A\vec{x} - b \|. \] (7)

For any linear system \(A\vec{x} = b \), the associate normal system

\[A^T A\vec{x} = A^T b \] (8)

is consistent, and all solutions of the normal system are least squares solutions of \(A\vec{x} = b \). If \(A \) has linearly independent columns and if \(A^T A \) is invertible then the system \(A\vec{x} = b \) has a unique least squares solution:

\[\vec{x} = (A^T A)^{-1} A^T b \] (9)

If \(A \) does not have full rank, the least squares problem still has a solution, but it is no longer unique. There are many vectors \(\vec{x} \) that minimize \(\| A\vec{x} - b \| \). The optimal solution of the \(A\vec{x} = b \) is the vector \(\vec{x} \), that has the minimum length\[3\]. This optimal solution is called \(\vec{x}^+ \) and the matrix which produces \(\vec{x}^+ \) from \(b \) is called the pseudoinverse of \(A \). Pseudoinverse of \(A \) is denoted by \(A^+ \), so we have:

\[\vec{x}^+ = A^+ b \] (10)

If the singular value decomposition of \(A \) is \(A = USV^T \) (eq.1), the pseudoinverse of \(A \) is then:

\[A^+ = VS^+ U^T \] (11)

The singular values \(\sigma_1, \ldots, \sigma_r \) are on the diagonal of \(m \) by \(n \) matrix \(S \), and the reciprocals of the singular values \(\frac{1}{\sigma_1}, \ldots, \frac{1}{\sigma_r} \) are on the diagonal of \(n \) by \(m \) matrix \(S^+ \). The minimum length solution to \(A\vec{x} = b \) is \(\vec{x}^+ = A^+ b = VS^+ U^T b \). The pseudoinverse of \(A^+ \) is \(A^{++} = A \). If \(A^{-1} \) exists, then \(A^+ = A^{-1} \) and the system \(6 \) has a unique least squares solution \(9 \).

Example 4: Find the pseudoinverse of \(A = \begin{bmatrix} -1 & 2 & 2 \end{bmatrix} \).

Solution: The SVD of \(A \) is:

\[A = \begin{bmatrix} -1 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \end{bmatrix} \]

\[3\] Also known as the Minimal Norm Least Squares solution.
The pseudoinverse of A is:

$$
A^+ = \begin{bmatrix} -1 & 2 & 2 \\
2 & 4 & 4 \\
3 & 6 & 0 \\
4 & 8 & 0.0001 \\
\end{bmatrix}^+ = \begin{bmatrix}
-\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \\
2 & 2 & -\frac{1}{3} \\
\frac{2}{3} & 2 & -\frac{1}{3} \\
\frac{1}{3} & 0 & 0 \\
\end{bmatrix} \begin{bmatrix} 1 \\
0 \\
0 \\
\end{bmatrix} = \begin{bmatrix}
-\frac{1}{9} & 2 \\
\frac{2}{9} & 2 \\
\frac{2}{9} & 2 \\
\frac{2}{9} & 0 \\
\end{bmatrix}
$$

The Matlab function `pinv()` can be used to find the pseudoinverse:

$A = \text{pinv}([-1 2 2])$

$A = \begin{bmatrix}
-0.1111 & 0.2222 \\
0.2222 & 0.2222 \\
\end{bmatrix}$

2.3 Ill–conditioned Least Squares Problem

The Least Squares procedure will fail, when A is rank deficient. The best we can do is to find x^+. When A is nearly rank deficient, small changes in the vector b will produce wildly different solution vectors. x. In this case the pseudoinverse gives more stable solution.

Example 5: Consider system given in eq. (6), where

$$
A = \begin{bmatrix}
1 & 2 & 1 \\
2 & 4 & 2 \\
3 & 6 & 3 \\
4 & 8 & 4 \\
\end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 2 \\
4 \\
6 \\
8 \\
\end{bmatrix}, \quad (12)
$$

The second column of A is almost first column multiplied by 2, A is close to being singular. The Least Squares solution is:

$$
x = (A^T A)^{-1} A^T b = \begin{bmatrix} 2 \\
0 \\
\end{bmatrix} \quad (13)
$$

If the third element in vector b changes from 6 to 5.9999 and 6.0001, Least Squares gives the following solutions:

$$
x = \begin{bmatrix} 0.2857 \\
0.8571 \\
\end{bmatrix} \text{ for } b(3) = 5.9999 \quad \text{and} \quad x = \begin{bmatrix} 3.7143 \\
-0.8571 \\
\end{bmatrix} \text{ for } b(3) = 6.0001.
$$

It can be seen that solution vector changes from $x = \begin{bmatrix} 0.2857 \\
0.8571 \\
\end{bmatrix}$ to $x = \begin{bmatrix} 3.7143 \\
-0.8571 \\
\end{bmatrix}$ given this very small change in the vector b. The pseudoinverse provides the following solution of the system given in eq. (12):

$$
x^+ = A^+ b = \begin{bmatrix}
0.4000 \\
0.8000 \\
\end{bmatrix} \quad (14)
$$

Changes in the b would no longer change the result significantly:

$$
x = \begin{bmatrix} 0.4000 \\
0.8000 \\
\end{bmatrix} \text{ for } b(3) = 5.9999 \quad \text{and} \quad x = \begin{bmatrix} 0.4000 \\
0.8000 \\
\end{bmatrix} \text{ for } b(3) = 6.0001
$$

This example illustrates that the use of a pseudoinverse can enhance the stability of our calculations.

4 Vector b is the data vector and it is usually corrupted by the noise.

5 Matlab command `pinv(A)*[2 4 6 8]' will not give the same result as (14). See section 2.3.1.
2.3.1 Truncation, Precision and Tolerance

To examine the problem of precision and tolerance it is necessary to look at more than four digits after the decimal point.

The SVD of A in example 5 is:

$$ A = USV^T $$

where:

$$ A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 6 \\ 4 & 8.0001 \end{bmatrix} $$

$$ U = \begin{bmatrix} 0.18257321210769 & -0.19518092543763 & -0.48445018521904 & -0.83299426565087 \\ 0.36514642421537 & -0.39036185084826 & -0.64472592855133 & 0.54645602873302 \\ 0.54771963632306 & -0.58554277626589 & 0.59130068078336 & -0.08663926392867 \\ 0.73030015136897 & 0.68312640770977 & -0.0000000000709 & -0.0000000000729 \end{bmatrix} $$

$$ S = \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 12.24751403383832 & 0 \\ 0 & 0.00003055034170 \end{bmatrix} $$

and

$$ V = \begin{bmatrix} 0.44721121036078 & -0.89442838356553 \\ 0.89442838356553 & 0.44721121036078 \end{bmatrix}. $$

In practice, the singular values in S which are close to zero are usually set to zero. The singular value $\sigma_2 = 0.00003055034170$ is pretty close to zero. There are two possible decisions:

I) If σ_2 is not set to zero, the following truncation of the matrices U, S and V can be made and the Minimal Norm Least Squares solution of the system can be found:

$$ x^+ = A^+b = VS^+U^Tb = \begin{bmatrix} 2.00000000006548 \\ -0.00000000002910 \end{bmatrix} $$

where:

$$ V = \begin{bmatrix} 0.44721121036078 & -0.89442838356553 \\ 0.89442838356553 & 0.44721121036078 \end{bmatrix} $$

$$ S^+ = \begin{bmatrix} 0.08164922262895 & 0 \\ 0 & 3.273285810744304e+004 \end{bmatrix} $$

$$ U^T = \begin{bmatrix} 0.18257321210769 & -0.19518092543763 \\ 0.36514642421537 & -0.39036185084826 \\ 0.54771963632306 & -0.58554277626589 \\ 0.73030015136897 & 0.68312640770977 \end{bmatrix}^T $$

and

$$ b = \begin{bmatrix} 2 \\ 4 \\ 6 \\ 8 \end{bmatrix}. $$
This is the same solution as would be obtained from the Matlab function `pinv()`, which uses the SVD and sets all singular values that are within machine precision to zero. As can be seen, this solution is close to The Least Squares solution13. It was shown in example 5, that solution vector \mathbf{x} found this way, is very sensitive to the noise in the vector \mathbf{b}.

II.) If σ_2 is set to zero, the Minimal Norm Least Squares solution8 of the system12 is:

$$
\mathbf{\hat{x}} = \mathbf{A}^+ \mathbf{b} = \mathbf{V} \mathbf{S}^+ \mathbf{U}^T \mathbf{b} = \begin{bmatrix} 0.3999957334471 \\ 0.7999967999076 \end{bmatrix}
$$

where:

$$
\mathbf{V} = \begin{bmatrix} 0.44721121036078 \\ 0.89442838356553 \end{bmatrix},
$$

$$
\mathbf{S}^+ = [0.08164922262895] \quad \text{T}
$$

$$
\mathbf{U}^T = \begin{bmatrix} 0.18257321210769 & 0.36514642421537 & 0.54771963632306 & 0.73030015136897 \\ 0.44721121036078 & 0.89442838356553 & 0.36514642421537 & 0.54771963632306 \end{bmatrix}^T
$$

and

$$
\mathbf{b} = \begin{bmatrix} 2 \\ 4 \\ 6 \\ 8 \end{bmatrix}.
$$

Tolerance in the `pinv()` can be specified manually9. If the tolerance is loose enough10, the `pinv()` will give the same result as15:

\begin{verbatim}
x=pinv(A,0.0001)*b
\end{verbatim}

\begin{verbatim}
x =
0.39999573334471
0.7999967999076
\end{verbatim}

It was shown in example 5, that this solution is less sensitive to the noise in the vector \mathbf{b}.

8The Matlab function `svds(A,k)` can be used here. k is the number of k largest singular values of A. See `help svds`.

9See `help pinv`

10Same problem as remark 6
References

