Fusion Tree
Random access machine (RAM)

- Memory divided into cells, each containing w bits.
- $w \geq \log n$.
- Given an index of a cell, the content of the cell can be obtained in constant time.
- Standard operations in constant time: $+, -, *, /, \ll, \gg, \text{AND}, \text{OR}, \text{XOR}$...
A static ordered dictionary stores a set S whose items are from an ordered universe U, and supports the following queries:

Successor(S, q) Find the smallest $s \in S$ s.t. $s \geq q$.

Predecessor(S, q) Find the largest $s \in S$ s.t. $s \leq q$.

Example

$S = \{1, 4, 8, 10\}$.
Successor(S, 5) = 8
Predecessor(S, 5) = 4

A sorted array gives $\Theta(\log n)$ time per operation.
A **static ordered dictionary** stores a set S whose items are from an ordered universe U, and supports the following queries:

Successor(S, q) Find the smallest $s \in S$ s.t. $s \geq q$.

Predecessor(S, q) Find the largest $s \in S$ s.t. $s \leq q$.

Example

$S = \{1, 4, 8, 10\}$.

Successor$(S, 5) = 8$

Predecessor$(S, 5) = 4$

Suppose that U is the set of numbers with w bits. Are there static ordered dictionaries with linear space and $o(\log n)$ time per operation?
A static ordered dictionary stores a set S whose items are from an ordered universe U, and supports the following queries:

Successor(S, q) Find the smallest $s \in S$ s.t. $s \geq q$.

Predecessor(S, q) Find the largest $s \in S$ s.t. $s \leq q$.

Example

$S = \{1, 4, 8, 10\}$.

Successor($S, 5$) = 8

Predecessor($S, 5$) = 4

y-fast trie implements a (dynamic) ordered dictionary with $\Theta(\log \log u)$ time per operation.

Taking $u = 2^w$ gives $\Theta(\log w)$ time.
A (k+1)-ary search tree is a data structure where:

- An internal node contains k items, and has $k + 1$ children.
- The height of a balanced tree is $\Theta(\log_k n)$.
- To perform Predecessor(S, q), find the pred. of q in the items of the current node v. If the pred. is the i-th item, continue to the $i + 1$-th child of v, and if there is no pred., continue the 1-st child. At the end, return the last predecessor found in a node.
- Time complexity (balanced tree):

$$\Theta(\log_k n \cdot \log_k n) = \Theta(\log n).$$
$(k+1)$-ary search tree.

An internal node contains k items, and has $k+1$ children.

The height of a balanced tree is $\Theta(\log_k n)$.

To perform $\text{Predecessor}(S, q)$, find the pred. of q in the items of the current node v. If the pred. is the i-th item, continue to the $i+1$-th child of v, and if there is no pred., continue the 1-st child. At the end, return the last predecessor found in a node.

Time complexity (balanced tree): $\Theta(\log n \cdot \log k) = \Theta(\log n)$.

Fusion Tree
An internal node contains k items, and has $k+1$ children.

The height of a balanced tree is $\Theta(\log_k n)$.

To perform $\text{Predecessor}(S, q)$, find the pred. of q in the items of the current node v. If the pred. is the i-th item, continue to the $i+1$-th child of v, and if there is no pred., continue the 1-st child.

At the end, return the last predecessor found in a node.

Time complexity (balanced tree): $\Theta(\log_k n)$.
An internal node contains k items, and has $k+1$ children.
The height of a balanced tree is $\Theta(\log_k n)$.
To perform $\text{Predecessor}(S, q)$, find the pred. of q in the items of the current node v. If the pred. is the i-th item, continue to the $i+1$-th child of v, and if there is no pred., continue the 1-st child.
At the end, return the last predecessor found in a node.

Time complexity (balanced tree): $\Theta(\log_k n)$.
A $(k+1)$-ary search tree.

- An internal node contains k items, and has $k+1$ children.
- The height of a balanced tree is $\Theta(\log_k n)$.
- To perform $\text{Predecessor}(S, q)$, find the pred. of q in the items of the current node v. If the pred. is the i-th item, continue to the $i+1$-th child of v, and if there is no pred., continue the 1-st child.
At the end, return the last predecessor found in a node.
- Time complexity (balanced tree):
 $\Theta(\log_k n \cdot \log k) = \Theta(\log n)$.

Predecessor(S, 70)
A Fusion tree is a balanced \((k + 1)\)-ary search tree with \(k = \lfloor \frac{1}{2} \cdot w^{1/5} \rfloor\). The items in a node are stored in a way that allows finding the pred. of query \(q\) among these items in \(\Theta(1)\) time.
Parallel comparison

- Let $x_1 < x_2 < \cdots < x_k$ the items of a node v.
- Let q be a query.
- Suppose that x_1, \ldots, x_k and q are L-bit integers, where $(L + 1) \cdot k \leq w$.
- Pack x_1, \ldots, x_k into x', separated by 1's.
- Pack k copies of q into q', separated by 0's.
- x' and q' have $\leq w$ bits.

Example

$x_1, \ldots, x_4 = 0, 2, 8, 11$, $q = 5$

$x' = 10000100101100011011$

$q' = 00101001010010100101$
Parallel comparison

Example

\[x_1, \ldots, x_4 = 0, 2, 8, 15, \quad q = 5 \]

\[
\begin{align*}
 x' &= 10000100101100011011 \\
 q' &= 00101001010010100101
\end{align*}
\]

Compute \(y = (x' - q') \text{ AND } \text{mask} \), where \(\text{mask} = (10^l)^k \).

- How to handle \(w \)-bit integers?

Fusion Tree
Parallel comparison

Example

\(x_1, \ldots, x_4 = 0, 2, 8, 15, \ q = 5 \)

\[
\begin{align*}
\text{x'} &= 10000100101100011011 \\
\text{q'} &= 00101001010010100101 \\
\text{x'} - \text{q'} &= 01011011011001110110
\end{align*}
\]

Compute \(y = (x' - q') \text{ AND mask} \), where mask = \((10^l)^k\).
Example

\(x_1, \ldots, x_4 = 0, 2, 8, 15, \ q = 5 \)

\[
\begin{align*}
 x' & = 10000100101100011011 \\
 q' & = 00101001010010100101 \\
 x' - q' & = 01011011011001110110 \\
 \text{mask} & = 10000100001000010000 \\
 y = (x' - q) \ \text{AND} \ \text{mask} & = 00000000001000010000
\end{align*}
\]

Compute \(y = (x' - q') \ \text{AND} \ \text{mask} \), where \(\text{mask} = (10^l)^k \).
Parallel comparison

Example

$x_1, \ldots, x_4 = 0, 2, 8, 15$, $q = 5$

$x' = 10000100101100011011$

$q' = 00101001010010100101$

$x' - q' = 01011011011001110110$

mask = 10000100001000010000

$y = (x' - q) \text{ AND mask} = 00000000001000010000$

- Compute $y = (x' - q') \text{ AND mask}$, where mask = $(10^l)^k$.
- The ith red bit in y is 1 iff $q \leq x_i$.
Parallel comparison

Example

\(x_1, \ldots, x_4 = 0, 2, 8, 15, \ q = 5 \)

\[
\begin{align*}
 x' &= 10000100101100011011 \\
 q' &= 00101001010010100101 \\
 x' - q' &= 01011011011001110110 \\
 \text{mask} &= 10000100001000010000 \\
 y = (x' - q) \ \text{AND} \ \text{mask} &= 00000000001000010000
\end{align*}
\]

- Compute \(y = (x' - q') \ \text{AND} \ \text{mask} \), where \(\text{mask} = (10^l)^k \).
- The \(i \)th red bit in \(y \) is 1 iff \(q \leq x_i \).
- Find the leftmost 1 in \((x' - q') \ \text{AND} \ \text{mask} \).
 (or count the number of ones).
- How to handle \(w \)-bit integers?
Build a trie from x_1, \ldots, x_k.

$S = \{0, 2, 56, 59, 63\}$
Build a trie from x_1, \ldots, x_k.
There are $k - 1$ branching nodes, and $\leq k - 1$ branching levels.

$S = \{0, 2, 56, 59, 63\}$
Build a trie from x_1, \ldots, x_k.
There are $k - 1$ branching nodes, and $\leq k - 1$ branching levels.

$\text{sketch}_v(x) =$ bits of x corresponding to branching levels.

$S = \{0, 2, 56, 59, 63\}$
Finding predecessor using sketches

- \(\text{sketch}_v(x_1), \ldots, \text{sketch}_v(x_k) \) can be packed in one word (number of bits is \(\leq k^2 = O(w^{2/5}) \)).

![Diagram showing the process of finding a predecessor using sketches](image-url)
Finding predecessor using sketches

- $\text{sketch}_v(x_1), \ldots, \text{sketch}_v(x_k)$ can be packed in one word (number of bits is $\leq k^2 = O(w^{2/5})$).
- $\text{sketch}_v(x_1) < \text{sketch}_v(x_2) < \cdots < \text{sketch}_v(x_k)$.

Does the pred. of $\text{sketch}_v(q)$ in $\{\text{sketch}_v(x_i)\}_{i}$ gives the pred. of q in x_1, \ldots, x_k?
No!
Finding predecessor using sketches

- \(\text{sketch}_v(x_1), \ldots, \text{sketch}_v(x_k) \) can be packed in one word (number of bits is \(\leq k^2 = O(w^{2/5}) \)).
- \(\text{sketch}_v(x_1) < \text{sketch}_v(x_2) < \cdots < \text{sketch}_v(x_k) \).
- Does the pred. of \(\text{sketch}_v(q) \) in \(\{\text{sketch}_v(x_i)\}_i \) gives the pred. of \(q \) in \(x_1, \ldots, x_k \)?
Finding predecessor using sketches

- \(\text{sketch}_v(x_1), \ldots, \text{sketch}_v(x_k)\) can be packed in one word (number of bits is \(\leq k^2 = O(w^{2/5})\)).
- \(\text{sketch}_v(x_1) < \text{sketch}_v(x_2) < \cdots < \text{sketch}_v(x_k)\).
- Does the pred. of \(\text{sketch}_v(q)\) in \(\{\text{sketch}_v(x_i)\}_i\) gives the pred. of \(q\) in \(x_1, \ldots, x_k\)? **No!**
Finding predecessor using sketches

After the path of q exits the trie, the bits of $\text{sketch}_v(q)$ are “noise”. We have two tasks:

1. Find where q exits the trie.
2. If q exits at node w to the right child of w, find the maximum x_i in the subtree of the left child of w (the case when q exits to the left child of w is similar)

![Diagram of a trie with nodes labeled x_i, sketch(x_i), and w. The path for $q=001001$ is indicated with arrows.]
Finding predecessor using sketches

- Let pred. of $\text{sketch}_v(q)$ in $\{\text{sketch}_v(x_i)\}_i$ be $\text{sketch}_v(x_j)$.

- $y \leftarrow$ longest common prefix between q and x_j or x_{j+1} (find leftmost 1 in $q \text{ XOR } x_j \& q \text{ XOR } x_{j+1}$).

- If $|y| + 1$-th bit of q is 1, let $q_2 = y1 \cdots 1$. Find pred. of $\text{sketch}_v(q_2)$ in $\text{sketch}_v(x_1), \ldots, \text{sketch}_v(x_k)$.

\begin{align*}
\text{sketch}(x_i) & \quad 000 & 001 & 000 \\
\text{sketch}(q) & \quad 000000 & 000010 & 001001
\end{align*}

\begin{align*}
x_i & \quad 000 & 001 & 000 \\
q & \quad 001001 & 111000 & 111011 & 111111
\end{align*}
Finding predecessor using sketches

- Let \(\text{pred. of sketch}_v(q) \) in \(\{\text{sketch}_v(x_i)\}_i \) be \(\text{sketch}_v(x_j) \).

- \(y \leftarrow \) longest common prefix between \(q \) and \(x_j \) or \(x_{j+1} \)
 (find leftmost 1 in \(q \) XOR \(x_j \) & \(q \) XOR \(x_{j+1} \)).

- If \(|y| + 1\)-th bit of \(q \) is 1, let \(q_2 = y1 \cdots 1 \).
 Find pred. of \(\text{sketch}_v(q_2) \) in \(\text{sketch}_v(x_1), \ldots, \text{sketch}_v(x_k) \).
For each visited node \(v \) in the search tree, we need to compute \(\text{sketch}_v(q) \) in \(\Theta(1) \) time!

Example

\(q = 1000110 \)

The search path of \(q \) is \(v_1, v_2 \).

- Keys of \(v_1 \): 0100100, 1000100, 1010101 \(\text{x}_v = 100110111 \)
- Keys of \(v_2 \): 1001000, 1001010, 1010010 \(\text{x}_v' = 100101111 \)

\(\text{sketch}_{v_1}(q) = 10, \text{sketch}_{v_2}(q) = 01 \)
Computing $\text{sketch}_v(q)$

For each visited node v in the search tree, we need to compute $\text{sketch}_v(q)$ in $\Theta(1)$ time!

Example

$q = 1000110$

The search path of q is v_1, v_2.

- Keys of v_1: 0100100, 1000100, 1010101, $x'_v = 100110111$
- Keys of v_2: 1001000, 1001010, 1010010, $x'_v = 100101111$

$\text{sketch}_{v_1}(q) = 10$, $\text{sketch}_{v_2}(q) = 01$
For each visited node v in the search tree, we need to compute $\text{sketch}_v(q)$ in $\Theta(1)$ time!

Example

$q = 1000110$

The search path of q is v_1, v_2.

- Keys of v_1: 0100100, 1000100, 1010101, $x'_{v_1} = 100110111$
- Keys of v_2: 1001000, 1001010, 1010010, $x'_{v_2} = 100101111$

$\text{sketch}_{v_1}(q) = 10$, $\text{sketch}_{v_2}(q) = 01$

We can use a modified sketch that contain “few” zeros between the branching bits.

Example

$\text{sketch}_{v_1}'(q) = 001 \ x'_{v_1} = 100011001101$

$\text{sketch}_{v_2}'(q) = 0001 \ x'_{v_2} = 100001000111001$
Mask non-branching bits.

\[
\begin{align*}
011010011010 & \quad \text{AND} \quad 010001000010 \\
= 010000000010
\end{align*}
\]
Computing modified sketch

1. Mask non-branching bits.

 \[
 \begin{align*}
 011010011010 \\
 \text{AND} \quad 010001000010 \\
 = 010000000010
 \end{align*}
 \]

2. Use multiplication to shift bits.

 \[
 \begin{align*}
 010000000010 \\
 \times \quad 1001001 \\
 = \quad 010000000010 \\
 + \quad 010000000010 \\
 + \quad 010000000010 \\
 = \quad 010010010010010010
 \end{align*}
 \]

 If every column contains at most one red bit, there will be no carry in the addition.
Computing modified sketch

1. Mask irrelevant bits.

\[
\begin{align*}
011010011010 \\
\text{AND} \quad 010001000010 \\
= 010000000010
\end{align*}
\]

2. Use multiplication to shift bits.

\[
\begin{align*}
010000000010 \\
* \quad 1001001 \\
= 010010010010010010
\end{align*}
\]

3. Mask irrelevant bits.

\[
\begin{align*}
010010010010010010 \\
\text{AND} \quad 000000011010000000 \\
= 000000010010000000
\end{align*}
\]
Computing modified sketch

1. Mask irrelevant bits.

 \[
 \begin{align*}
 011010011010 \\
 \text{AND} & \quad 010001000010 \\
 = & \quad 010000000010
 \end{align*}
 \]

2. Use multiplication to shift bits.

 \[
 \begin{align*}
 010000000010 \\
 * & \quad 1001001 \\
 = & \quad 010010010010010010
 \end{align*}
 \]

3. Mask irrelevant bits.

 \[
 \begin{align*}
 010010010010010010 \\
 \text{AND} & \quad 0000000110100000 \\
 = & \quad 0000000100100000
 \end{align*}
 \]

4. Truncate zeros.

 \[
 \begin{align*}
 000000001001000000 & \gg 7 = 000000001001
 \end{align*}
 \]
Computing modified sketch

- Let $b_1 < b_2 < \cdots < b_r$ be the branching bits of a node v (counting from right, and starting from 0).
- Let M be a number with ones in the indices $m_1 > m_2 > \cdots > m_r$.
- The relevant bits in the product are $b_i + m_i$.

Example

$b_1 = 1, b_2 = 6, b_3 = 10, m_1 = 6, m_2 = 3, m_3 = 0$

\[
\begin{align*}
 &010000000010 \\
\times &1001001 \\
= &010000000010 \quad (\text{shift by } m_3) \\
+ &010000000010 \quad (\text{shift by } m_2) \\
+ &010000000010 \quad (\text{shift by } m_1) \\
= &010010010010010010
\end{align*}
\]

Relevant bits are $b_1 + m_1, b_2 + m_2, b_3 + m_3 = 7, 9, 10$
Choosing m_is

Example

$b_1 = 1, b_2 = 6, b_3 = 10, m_1 = 6, m_2 = 3, m_3 = 0$

\[
\begin{array}{c}
010000000010 \\
\times \quad 1001001 \\
= \quad 010000000010 \quad \text{(shift by m_3)} \\
+ \quad 010000000010 \quad \text{(shift by m_2)} \\
+ \quad 010000000010 \quad \text{(shift by m_1)} \\
= \quad 010010010010010010
\end{array}
\]

Relevant bits are $b_1 + m_1, b_2 + m_2, b_3 + m_3 = 7, 9, 10$

We need to show that there are m_i that satisfy

1. $b_1 + m_1 < b_2 + m_2 < \cdots < b_r + m_r$.
2. All $b_i + m_j$ values are distinct.
3. $b_r + m_r - (b_1 + m_1)$ is small.
Choosing m_is

Lemma

For every b_1, \ldots, b_r we can choose m_1, \ldots, m_r such that

1. $b_1 + m_1 < b_2 + m_2 < \cdots < b_r + m_r$.
2. All $b_i + m_j$ values are distinct modulo r^3.
3. $b_r + m_r - (b_1 + m_1) \leq r^4 - 1$.
Choosing m_is

Lemma

For every b_1, \ldots, b_r we can choose m_1, \ldots, m_r such that

1. $b_1 + m_1 < b_2 + m_2 < \cdots < b_r + m_r$.
2. All $b_i + m_j$ values are distinct modulo r^3.
3. $b_r + m_r - (b_1 + m_1) \leq r^4 - 1$.

To prove the lemma, we first first show the existence of $0 \leq m'_1, \ldots, m'_r < r^3$ that satisfy the 2nd property. Build the m'_i-s iteratively. The value of m'_t is chosen from

$$\{0, \ldots, r^3 - 1\} \setminus \{m'_i + b_j - b_l \mod r^3 : i < t, j < r, l < r\}$$

This set has size $\geq r^3 - tr^2 > 0$.
Choosing m_i's

Example

$b_1 = 1, \ b_2 = 6, \ b_3 = 10 \quad r = 3, \ r^3 = 27$

\[
\begin{array}{ccc}
1 & 6 & 10 \\
\end{array}
\]
Choosing m_i's

Example

$b_1 = 1, b_2 = 6, b_3 = 10 \quad r = 3, r^3 = 27$

<table>
<thead>
<tr>
<th>m'_i</th>
<th>b_i</th>
<th>1</th>
<th>6</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$x + 1 \neq 1$
$x + 1 \neq 6$
$x + 1 \neq 10$
$x + 6 \neq 1$
$x + 6 \neq 6$
$x + 6 \neq 10$
$x + 10 \neq 1$
$x + 10 \neq 6$
$x + 10 \neq 10$
Choosing m_i's

Example

$b_1 = 1, b_2 = 6, b_3 = 10 \quad r = 3, r^3 = 27$

<table>
<thead>
<tr>
<th>m_i</th>
<th>b_i</th>
<th>1</th>
<th>6</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>1</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$x + 1 \neq 1 \quad x \neq 1 - 1 = 0$

$x + 1 \neq 6 \quad x \neq 6 - 1 = 5$

$x + 1 \neq 10 \quad x \neq 10 - 1 = 9$

$x + 6 \neq 1 \quad x \neq 1 - 6 = 22$

$x + 6 \neq 6 \quad x \neq 6 - 6 = 0$

$x + 6 \neq 10 \quad x \neq 10 - 6 = 4$

$x + 10 \neq 1 \quad x \neq 1 - 10 = 19$

$x + 10 \neq 6 \quad x \neq 6 - 10 = 23$

$x + 10 \neq 10 \quad x \neq 10 - 10 = 0$
Choosing m'_is

Example

$b_1 = 1, b_2 = 6, b_3 = 10 \quad r = 3, r^3 = 27$

<table>
<thead>
<tr>
<th>m'_i</th>
<th>b_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Fusion Tree
Choosing m_i's

Example

$b_1 = 1$, $b_2 = 6$, $b_3 = 10$ \quad r = 3$, $r^3 = 27$

<table>
<thead>
<tr>
<th>m_i'</th>
<th>b_i</th>
<th>1</th>
<th>6</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>1</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$y+1 \neq$	1	3
$y+6 \neq$	1	3
$y+10 \neq$	1	3

$Fusion Tree$
Choosing m_i's

Example

$b_1 = 1, b_2 = 6, b_3 = 10 \quad r = 3, r^3 = 27$

<table>
<thead>
<tr>
<th>m'_i</th>
<th>b_i</th>
<th>1</th>
<th>6</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>1</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- \(y \neq 1 - 1 = 0\)
- \(y \neq 3 - 1 = 2\)
- \(y \neq 6 - 1 = 5\)
- \(y \neq 8 - 1 = 7\)
- \(y \neq 10 - 1 = 9\)
- \(y \neq 12 - 1 = 11\)
- \(y \neq 1 - 6 = 22\)
- \(y \neq 3 - 6 = 24\)
- \(y \neq 6 - 6 = 0\)
- \(y \neq 8 - 6 = 2\)
- \(y \neq 10 - 6 = 4\)
- \(y \neq 12 - 6 = 6\)
- \(y \neq 1 - 10 = 19\)
- \(y \neq 3 - 10 = 20\)
- \(y \neq 6 - 10 = 23\)
- \(y \neq 8 - 10 = 25\)
- \(y \neq 10 - 10 = 0\)
- \(y \neq 12 - 10 = 2\)
For every b_1, \ldots, b_r we can choose m_1, \ldots, m_r such that

1. $b_1 + m_1 < b_2 + m_2 < \cdots < b_r + m_r$.
2. All $b_i + m_j$ values are distinct modulo r^3.
3. $b_r + m_r - (b_1 + m_1) \leq r^4 - 1$.

- The m'_is satisfy property 2, but not 1 and 3.
- Divide the integers into bins of size r^3.
- For $i = 1, \ldots, r$, set $m_i = m'_i + \delta_i r^3$, where δ_i is chosen so that $b_i + m_i$ is in bin i.

![Diagram of bins and values]

- $b_2 + m'_2$
- $b_3 + m'_3$
- $b_1 + m'_1$
- $b_4 + m'_4$
- $b_1 + m_1$
- $b_2 + m_2$
- $b_3 + m_3$
- $b_4 + m_4$
Build a \((k + 1)\)-ary search tree, with \(k = \left\lfloor \frac{1}{2} w^{1/5} \right\rfloor\).

For a node containing keys \(x_1, \ldots, x_k\), let \(b_1, \ldots, b_r\) be the branching bits, with \(r \leq k - 1\).

Define a sketch function for \(v\).

The length of the sketch of one integer is \(\leq r^4\).

Pack the sketches of \(x_1, \ldots, x_k\) into one word.

During a query \(q\), traverse the search tree. At each node, compute the sketch of \(q\) (and \(q_2\)), and use it to find the rank of \(q\) among \(x_1, \ldots, x_k\) in \(\Theta(1)\) time.
Build a \((k + 1)\)-ary search tree, with \(k = \lfloor \frac{\frac{1}{2} w^{1/5}}{w^{1/5}} \rfloor \).

For a node containing keys \(x_1, \ldots, x_k\), let \(b_1, \ldots, b_r\) be the branching bits, with \(r \leq k - 1\).

Define a sketch function for \(v\).

The length of the sketch of one integer is \(\leq r^4\).

Pack the sketches of \(x_1, \ldots, x_k\) into one word.

During a query \(q\), traverse the search tree. At each node, compute the sketch of \(q\) (and \(q_2\)), and use it to find the rank of \(q\) among \(x_1, \ldots, x_k\) in \(\Theta(1)\) time.

Analysis:

- A query takes \(\Theta(\log_k n) = \Theta(\log n / \log w)\) time.
Build a \((k + 1)\)-ary search tree, with \(k = \left\lfloor \frac{1}{2} w^{1/5} \right\rfloor\).

For a node containing keys \(x_1, \ldots, x_k\), let \(b_1, \ldots, b_r\) be the branching bits, with \(r \leq k - 1\).

Define a sketch function for \(v\).

The length of the sketch of one integer is \(\leq r^4\).

Pack the sketches of \(x_1, \ldots, x_k\) into one word.

During a query \(q\), traverse the search tree. At each node, compute the sketch of \(q\) (and \(q_2\)), and use it to find the rank of \(q\) among \(x_1, \ldots, x_k\) in \(\Theta(1)\) time.

Analysis:

- A query takes \(\Theta(\log_k n) = \Theta(\log n / \log w)\) time.
- Combining with \(\Theta(\log w)\) structure gives
 \[
 \Theta \left(\min \left(\frac{\log n}{\log w}, \log w \right) \right)
 \]
 time per query.
log \(w \) is monotone increasing as a function of \(w \), and \(\frac{\log n}{\log w} \) is monotone decreasing.

The maximum of the expression \(\min \left(\frac{\log n}{\log w}, \log w \right) \) is when \(\frac{\log n}{\log w} = \log w \), and then \(\min \left(\frac{\log n}{\log w}, \log w \right) = \sqrt{\log n} \).

Theorem

There is a static ordered dictionary that answers queries in \(\Theta(\sqrt{\log n}) \) time.