Ordered Dictionary
An **ordered dictionary** stores a set S whose elements are from an ordered universe U, and supports the following operations:

- **Insert**(S, x) Insert an element x to S.
- **Delete**(S, x) Delete an element x from S.
- **Successor**(S, x) Return the smallest $s \in S$ s.t. $s \geq x$.
- **Predecessor**(S, x) Return the largest $s \in S$ s.t. $s \leq x$.

Example

$S = \{1, 4, 8, 10\}$.

- **Successor**(S, 5) = 8
- **Predecessor**(S, 5) = 4
An ordered dictionary stores a set S whose elements are from an ordered universe U, and supports the following operations:

- $\text{Insert}(S, x)$ Insert an element x to S.
- $\text{Delete}(S, x)$ Delete an element x from S.
- $\text{Successor}(S, x)$ Return the smallest $s \in S$ s.t. $s \geq x$.
- $\text{Predecessor}(S, x)$ Return the largest $s \in S$ s.t. $s \leq x$.

Using a balanced search tree, each of the operations above can be implemented in $\Theta(\log n)$ time, where n is the current size of S.
An ordered dictionary stores a set S whose elements are from an ordered universe U, and supports the following operations:

- **Insert**(S, x) Insert an element x to S.
- **Delete**(S, x) Delete an element x from S.
- **Successor**(S, x) Return the smallest $s \in S$ s.t. $s \geq x$.
- **Predecessor**(S, x) Return the largest $s \in S$ s.t. $s \leq x$.

- Using a balanced search tree, each of the operations above can be implemented in $\Theta(\log n)$ time, where n is the current size of S.
- Suppose that $U = \{1, \ldots, u\}$ for “small” u. Can we do better in this case?
If $u \leq 3$, store the elements of S in a linked list.
Otherwise, partition U into \sqrt{u} blocks $B_1, \ldots, B_{\sqrt{u}}$ of size \sqrt{u}.

$\text{block}(x)$ = the index i such that $x \in B_i$.

Example

For $U = \{1, 2, \ldots, 16\}$, $S = \{2, 5, 6, 8, 11\}$,

- $B_1 = \{1, 2, 3, 4\}$
- $B_2 = \{5, 6, 7, 8\}$
- $B_3 = \{9, 10, 11, 12\}$
- $B_4 = \{13, 14, 15, 16\}$

$\text{block}(10) = 3$.
van Emde Boas tree

- For all i, store a structure for $S_i = S \cap B_i$ if $S_i \neq \emptyset$.
- Store a structure for the set $S' = \{ i : S_i \neq \emptyset \}$.
- Store array min: $\text{min}[i] = \min(S_i)$.
- Store array max: $\text{max}[i] = \max(S_i)$.

Example

For $U = \{1, 2, \ldots, 16\}$, $S = \{2, 5, 6, 8, 11\}$,

- $S_1 = S \cap \{1, 2, 3, 4\} = \{2\}$
- $S_2 = S \cap \{5, 6, 7, 8\} = \{5, 6, 8\}$
- $S_3 = S \cap \{9, 10, 11, 12\} = \{11\}$
- $S_4 = S \cap \{13, 14, 15, 16\} = \emptyset$
- $S' = \{1, 2, 3\}$

$\text{min}[2] = 5, \text{max}[2] = 8.$
Example

\[U = \{1, 2, \ldots, 16\}, \ S = \{2, 5, 6, 8, 11\} \]
\(S_i = S \cap B_i \).

\(S' = \{ i : S_i \neq \emptyset \} \).

\(\text{block}(x) = \text{the index } i \text{ such that } x \in B_i \).

Successor

\[\text{Successor}(S, x) : \]

\[\text{if } x \leq \max[\text{block}(x)] \text{ then} \]

\[\text{return } \text{Successor}(S_{\text{block}(x)}, x) \]

\[\text{else} \]

\[i \leftarrow \text{Successor}(S', \text{block}(x) + 1) \]

\[\text{return } \min[i] \]

Case 1:

\(x \) and its successor are in the same block.

\(S = \{ 7, 10, 26, 29, 33 \} \)

\(S' = \{ 2, 5, 6 \} \)
\(S_i = S \cap B_i. \)

\(S' = \{ i : S_i \neq \emptyset \}. \)

\(\text{block}(x) = \) the index \(i \) such that \(x \in B_i. \)

\[\text{Successor}(S, x): \]
\[\text{if } x \leq \max[\text{block}(x)] \text{ then} \]
\[\quad \text{return } \text{Successor}(S_{\text{block}(x)}, x) \]
\[\text{else} \]
\[\quad i \leftarrow \text{Successor}(S', \text{block}(x) + 1) \]
\[\quad \text{return } \min[i] \]

\[S = \{7, 10, 26, 29, 33\} \]
\[S' = \{2, 5, 6\} \]

Case 2:
\(x \) and its successor are in different blocks.
Successor(S, x):

\[
\text{if } x \leq \max[\text{block}(x)] \text{ then}
\]

\[
\text{return Successor}(S_{\text{block}(x)}, x)
\]

\[
\text{else}
\]

\[
i \leftarrow \text{Successor}(S', \text{block}(x) + 1)
\]

\[
\text{return min}[i]
\]

\[
T_{\text{Suc}}(u) = T_{\text{Suc}}(\sqrt{u}) + \Theta(1) \implies T_{\text{Suc}}(u) = \Theta(\log \log u).
\]
Insert

Insert(S, x):
 $j \leftarrow \text{block}(x)$
 if $\min[j] = \infty$ then
 Insert(S', j)
 Insert(S_j, x)
 $\min[j] \leftarrow \min(\min[j], x)$
 $\max[j] \leftarrow \max(\max[j], x)$

+ $T_{\text{Ins}}(u) = 2T_{\text{Ins}}(\sqrt{u}) + \Theta(1) \implies T_{\text{Ins}}(u) = \Theta(\log u)$.

Ordered Dictionary
Improved Insert

Build structures on $\hat{S}_i = S_i \setminus \{\min(S_i)\}$ instead of S_i.

Insert(S, x):

\[
\begin{align*}
 j & \leftarrow \text{block}(x) \\
 \text{if } \min[j] = \infty \text{ then} & \\
 \quad \text{Insert}(S', j) \\
 \quad \min[j] & \leftarrow x \\
 \quad \max[j] & \leftarrow x \\
 \text{else} & \\
 \quad \text{if } x < \min[j] \text{ then} & \\
 \quad \quad \text{Insert}(\hat{S}_j, \min[j]) \\
 \quad \quad \min[j] & \leftarrow x \\
 \quad \text{else} & \\
 \quad \quad \text{Insert}(\hat{S}_j, x) \\
 \quad \max[j] & \leftarrow \max(\max[j], x)
\end{align*}
\]

\[
T_{\text{Ins}}(u) = T_{\text{Ins}}(\sqrt{u}) + \Theta(1) \quad \Longrightarrow \quad T_{\text{Ins}}(u) = \Theta(\log \log u).
\]
New Successor

Successor(S, x):

\[j \leftarrow \text{block}(x) \]

if $x \leq \min[j]$ then

\[\text{return } \min[j] \]

if $x \leq \max[\text{block}(x)]$ then

\[\text{return } \text{Successor}(\hat{S}_j, x) \]

\[i \leftarrow \text{Successor}(S', j + 1) \]

\[\text{return } \min[i] \]

\[T_{\text{Suc}}(u) = \Theta(\log \log u). \]
Let \(S(u) \) be the space complexity of a van Emde Boas tree.

The top structure uses \(\Theta(\sqrt{u}) \) words (min/max arrays and pointers to the sub-structures).

Recurrence:

\[
S(u) = (\sqrt{u} + 1)S(\sqrt{u}) + \sqrt{u}
\]

We prove using induction that \(S(u) \leq u - 2 \).

Base: \(S(u) \leq u - 2 \) for \(u = 1, 2, 3, 4 \).

Induction step: \(S(u) \leq (\sqrt{u} + 1)(\sqrt{u} - 2) + \sqrt{u} = u - 2 \).
Reducing space

- The min/max arrays and pointer arrays can be replaced by a hash table (assume we use a hash table with $\Theta(1)$ worst case search time).
- For every i such that $S_i \neq \emptyset$ the table stores a tuple $(i, \text{min}[i], \text{max}[i], p_i)$ where p_i is a pointer to the structure on \hat{S}_i.
- The space is $\Theta(n)$.
- Insert takes $\Theta(\log \log u)$ expected amortized time.
- Successor/Predecessor take $\Theta(\log \log u)$ time (worst case).
Y-fast Trie
Build a trie from the binary representations (of length $\lceil \log_2 u \rceil$) of the elements of S.

$U = \{0, 1, \ldots, 15\}
S = \{0, 2, 9, 13, 14\}$
x-fast trie

U = \{0,1,...,15\}
S = \{0,2,9,13,14\}

Create a doubly linked list on the leaves.
Each internal node store pointers to its minimum & maximum descendants leaves (figure shows only some of these pointers)
To find the successor of \(x \), find the node \(y \) in which the path of \(x \) exits the trie.
If y exits the trie to the right, go to the max. descendant leaf of y, and then move one position in the list of leaves.
If y exits the trie to the right, go to the max. descendant leaf of y, and then move one position in the list of leaves.
If y exits the trie to the right, go to the max. descendant leaf of y, and then move one position in the list of leaves.
\[U = \{0, 1, \ldots, 15\} \]
\[S = \{0, 2, 9, 13, 14\} \]

Time complexity: \(\Theta(\log u) \).
Successor in $\Theta(\log \log u)$ time

- Store the nodes in a hash table with $\Theta(1)$ worst case search time.
- The key of a node v is a pair (k, d) where k is the bit sequence of v (the bits on the path from the root to v) and d is the depth of v.

U = \{0,1,...,15\}
S = \{0,2,9,13,14\}

Y-fast Trie
Successor in $\Theta(\log \log u)$ time

- To find the successor of x, find the longest prefix of x in the hash table using binary search.
- Time complexity: $\Theta(\log \log u)$ (worst case).

$x = 0110011$

Y-fast Trie
Successor in $\Theta(\log \log u)$ time

- To find the successor of x, find the longest prefix of x in the hash table using binary search.
- Time complexity: $\Theta(\log \log u)$ (worst case).

$x=0110011$

Find(0110,4)
Successor in $\Theta(\log \log u)$ time

- To find the successor of x, find the longest prefix of x in the hash table using binary search.
- Time complexity: $\Theta(\log \log u)$ (worst case).

$\text{Find}(0110,4)$
$\text{Find}(01,2)$

$x=0110011$

Y-fast Trie
Analysis

- Successor/Predecessor: $\Theta(\log \log u)$ time (worst case).
- Insert/Delete: $\Theta(\log u)$ expected amortized time.
- Space: $O(n \log u)$.

$U=\{0,1,...,15\}$
$S=\{0,2,9,13,14\}$
Partition the elements of S into consecutive groups S_1, S_2, \ldots of sizes between $\frac{1}{2} \log u$ and $2 \log u - 1$.

Space complexity:

- The search tree of S_i takes $\Theta(|S_i|)$ space.
- The x-fast trie takes $\Theta(n \log u \cdot \log u) = \Theta(n)$ space.

Total space complexity: $\Theta(n)$.
- Partition the elements of S into consecutive groups S_1, S_2, \ldots of sizes between $\frac{1}{2} \log u$ and $2 \log u - 1$.
- Store each S_i in a balanced search tree.

Space complexity:
The search tree of S_i takes $\Theta(|S_i|)$ space.
The x-fast trie takes $\Theta(n \log u \cdot \log u) = \Theta(n)$ space.
Total space complexity: $\Theta(n + \sum |S_i|) = \Theta(n)$.
Partition the elements of S into consecutive groups S_1, S_2, \ldots of sizes between $\frac{1}{2} \log u$ and $2 \log u - 1$.

Store each S_i in a balanced search tree.

Select separators r_1, r_2, \ldots s.t. $\max(S_i) \leq r_i < \min(S_{i+1})$.

Store $S' = \{r_1, r_2, \ldots\}$ in an x-fast trie.
y-fast trie (x-fast trie + indirection)

- Partition the elements of S into consecutive groups S_1, S_2, \ldots of sizes between $\frac{1}{2} \log u$ and $2 \log u - 1$.
- Store each S_i in a balanced search tree.
- Select separators r_1, r_2, \ldots s.t. $\max(S_i) \leq r_i < \min(S_{i+1})$.
- Store $S' = \{r_1, r_2, \ldots\}$ in an x-fast trie.

<table>
<thead>
<tr>
<th>9</th>
<th>15</th>
<th>20</th>
<th>23</th>
<th>30</th>
<th>33</th>
<th>36</th>
<th>41</th>
<th>44</th>
<th>53</th>
</tr>
</thead>
</table>

Space complexity:

- The search tree of S_i takes $\Theta(|S_i|)$ space
- The x-fast trie takes $\Theta\left(\frac{n}{\log u} \cdot \log u\right) = \Theta(n)$ space.
- Total space complexity: $\Theta(n + \sum_i |S_i|) = \Theta(n)$.

![Y-fast Trie Diagram]
Successor(S, x)

- Find $r_i = \text{the successor of } x \text{ in the } x\text{-fast trie}$.
- If $\text{Successor}(S_i, x)$ exists, return it.
- Return $\text{Min}(S_{i+1})$.

Time complexity: $\Theta(\log \log u)$ (worst case).
Successor(S, x)

- Find $r_i = \text{the successor of } x \text{ in the x-fast trie.}$
- If $\text{Successor}(S_i, x)$ exists, return it.
- Return $\text{Min}(S_{i+1})$.

Time complexity: $\Theta(\log \log u)$ (worst case).
Insert(S, x)

- Find the group S_i in which x fits.
- Insert x to the search tree of S_i.
- If $|S_i| < 2 \log u$, stop.
- Split S_i into two sets S_i' and S_i'' of size $\log u$ each, and build search trees for S_i' and S_i''.
- Select a separator r_i' between S_i' and S_i'', and insert it to the x-fast trie.
\textbf{Insert}(S, x)

- Find the group S_i in which x fits.
- Insert x to the search tree of S_i.
- If $|S_i| < 2 \log u$, stop.
- Split S_i into two sets S'_i and S''_i of size $\log u$ each, and built search trees for S'_i and S''_i.
- Select a separator r'_i between S'_i and S''_i, and insert it to the x-fast trie.
Insert\((S, x)\)

- Find the group \(S_i\) in which \(x\) fits.
- Insert \(x\) to the search tree of \(S_i\).
- If \(|S_i| < 2 \log u\), stop.
- Split \(S_i\) into two sets \(S'_i\) and \(S''_i\) of size \(\log u\) each, and built search trees for \(S'_i\) and \(S''_i\).
- Select a separator \(r'_i\) between \(S'_i\) and \(S''_i\), and insert it to the x-fast trie.
Insert(S, x)

- Find the group S_i in which x fits.
- Insert x to the search tree of S_i.
- If $|S_i| < 2 \log u$, stop.
- Split S_i into two sets S'_i and S''_i of size $\log u$ each, and built search trees for S'_i and S''_i.
- Select a separator r'_i between S'_i and S''_i, and insert it to the x-fast trie.

![Diagram of Y-fast Trie](image)
Insert(S, x)

- Find the group S_i in which x fits.
- Insert x to the search tree of S_i.
- If $|S_i| < 2 \log u$, stop.
- Split S_i into two sets S'_i and S''_i of size $\log u$ each, and built search trees for S'_i and S''_i.
- Select a separator r'_i between S'_i and S''_i, and insert it to the x-fast trie.

Cost of insert is

- **Fast insert** (w/o split): $\Theta(\log \log u)$.
 - insert to the tree of S_i costs $\Theta(\log |S_i|))$.
- **Slow insert** (with split): $\Theta(\log u)$.
 - cost of insertion to the x-fast trie is $\Theta(\log u)$.
 - cost of splitting the tree of S_i is $\Theta(\log u)$.

Y-fast Trie
Cost of a single insert is either $\Theta(\log \log u)$ (fast) or $\Theta(\log u)$ (slow).

A split occurs due to $\log u$ fast insertions that increase the size of the set from $\log u$ to $2\log u$.

The cost of a slow insert can be charged to the cost of these $\log u$ fast insertions.

Time complexity: $\Theta(\log \log u)$ expected amortized.