Genetic Programming
Riccardo Poli
Department of Computer Science
University of Essex

Overview: Part I
- Introduction
- Basics
- Examples
- More advanced techniques
- Applications

Overview: Part II
- Theory in theory
- GA schema theory
- GP schema theory
- Lessons and implications
- Conclusions

Videos from Koza’s GP4 DVD
- $m(H,t)$ is number of individuals in the schema H at generation t,
- M is the population size,
- $p(H,t)$ is the selection probability for strings in H at generation t,
- p_m is the mutation probability,
- $O(H)$ is the schema order, i.e. number of defining bits,
- p_c is the crossover probability,
- $L(H)$ is the defining length, i.e. distance between the furthest defining bits in H,
- N is the bitstring length.

Idea:
- The theorem includes an *expected value*
- It provides a *lower bound*
- So, it is difficult to make accurate predictions

The factor σ differs in the different formulation of the schema theorem:
- $\sigma=1-m(H,t)/M$ in (Holland, 1975),
- $\sigma=1$ in (Goldberg, 1989),
- $\sigma=1-p(H,t)$ in (Whitley, 1994).

In 1997 Stephens and collaborators produced an exact formulation for $\alpha(H,t)$: an "exact" schema theorem.

How can we get an exact schema theorem?
- Let us assume that only reproduction and (one-offspring) crossover are performed.
- Because these two operators are mutually exclusive, for a generic schema H we have:

$$\alpha(H,t) = \Pr[\text{An individual in } H \text{ is obtained via reproduction}] + \Pr[\text{An offspring matching } H \text{ is produced by crossover}]$$
Reproduction is performed with probability p_r and crossover with probability p_c (with $p_r + p_c = 1$), so

$$\alpha(H, t) = p_r \times \Pr'[\text{An individual in } H \text{ is selected for cloning}] + p_c \times \Pr'[\text{The parents and the crossover points are such that the offspring matches } H].$$

The process of crossover point selection is independent from the actual primitives in a parent. The probability of choosing a particular crossover depends only on the actual size of the parent. E.g., the probability of choosing any crossover point in 110101 is identical to the probability of choosing any crossover point in 000110.

Let us assume that crossover points are selected with uniform probability:

$$\Pr'[\text{Choosing crossover point at position } i = \frac{1}{\text{Number of bits} - 1}].$$
Stephens and Waelbroeck's Exact GA Schema Theory (1997)

- For a binary GA with one point crossover applied with probability p_{x_o} (and assuming $p_m=0$)

$$E[m(H, t+1)/M] = (1 - p_{x_o})p(H, t) + \frac{p_{x_o}}{N-1} \sum_{i=1}^{N-1} p(L(H, i), t)p(R(H, i), t)$$

$L(H, i)$ is obtained by replacing the elements of H to the right of position i with “don’t care” symbols

$R(H, i)$ is obtained by replacing the elements of H to the left of position $i+1$ with “don’t care” symbols

For example, if $H=1**111$, then $L(H, 1)=1****$, $R(H, 1)=***111$, $L(H, 3)=1*1**$, $R(H, 3)=***11$.

For the schema *11, the theorem gives:

$$E[m(*11, t)/M] = (1 - p_{x_o})p(*11, t) + \frac{p_{x_o}}{2} (p(***, t)p(*11, t) + p(*1*, t)p(**1, t))$$

$$= (1 - \frac{p_{x_o}}{2})p(*11, t) + \frac{p_{x_o}}{2}p(*1*, t)p(**1, t),$$

since $p(***, t)=1$.

Pr($L(H, i), t$) =

Pr[$\begin{array}{l}
\text{Selecting a first parent such that if crossed over at point } i \\
\text{provides the necessary material to create an offspring in } H
\end{array}$]

Pr($R(H, i), t$) =

Pr[$\begin{array}{l}
\text{Selecting a second parent such that if crossed over } \\
\text{at point } i \text{ provides the remaining necessary material}
\end{array}$]

Pr($L(H, i), t$) =

Pr[$\begin{array}{l}
\text{Selecting a first parent such that if crossed over at point } i \\
\text{provides the necessary material to create an offspring in } H
\end{array}$]