
Melody – Expert-Free System Analysis

Sivan Sabato, Elad Yom-Tov and Ohad Rodeh
IBM Haifa Research Labs

1 Introduction

Effective diagnosis and early identification of system problems
are crucial to the reliable operation of today’s computer sys-
tems. In this article we describe the Melody project, where we
apply machine learning in several tools that aim to aid in these
tasks in IBM System X servers. Several inherent problems
present themselves when developing machine learning tools in
this domain. These include the difficulty of obtaining labeled
examples of system problems, continuous changes in the fea-
tures describing a system, and the requirement for a low false
positive ratio. Our work puts forward several directions for
dealing with these problems.

The system’s current configuration and status, as well as its
event logs, are important resources used by system adminis-
trators and support engineers to perform system diagnosis and
problem identification. In IBM System X servers, this infor-
mation is made easily accessible by the IBM Dynamic System
Analysis (DSA) application, which collects this information
into an XML file1. However, a typical DSA XML file includes
thousands of data items and tens of thousands of event log
messages. Thus, it is impossible to manually read through all
this information.

The Melody project aims to assist system administrators
and support engineers by providing tools to analyze the data
collected by DSA. A common approach to system analysis is
to use manually encoded information, such as system specifi-
cations and alert rules, to provide predefined indications about
the inspected system. However, this approach severely limits
the usability of the tools over time; it is usually not feasi-
ble to keep the specifications and rules up-to-date as systems
change, versions are upgraded, and system use-models evolve.
For these reasons, Melody is based on a purely data-driven
approach. Information manually encoded by domain experts
is precluded. Only information that can be learned from avail-
able data may be used. Furthermore, tools must be designed
to adapt automatically to changes in system populations over
time. This is a challenge to the underlying algorithms, as
the tools must re-train periodically as the system population
changes, and they must do so without human intervention.
This implies the following restrictions on any algorithm em-
ployed by Melody:

• Only labels that can be reliably retrieved for new data
may be used. This precludes the use of targeted manual
labeling for a pre-determined dataset.

• The features describing the system cannot be assumed to
be known in advance; the set of possible system compo-
nents, messages, and configuration attributes evolve con-
stantly.

1The format of the file conforms to the Common Information Model,
see http://www.dmtf.org/standards/cim/

• The tools must provide a good estimation of the quality
of the results for each analyzed system. To maintain the
trust of the users, it is better to provide no results on
some occasions than to provide low-quality results.

Melody uses DSA XML files that have been recorded in the
support center as a sample of the population of operational
systems. Thousands of such files, representing a similar num-
ber of systems, are collected by DSA each month. However, as
is often the case with system related data, reliable information
describing the problem in the system is usually not available.

Two Melody tools that we have developed, the Configu-
ration Analyzer and the Event Log Analyzer, are already in
use in IBM System X support centers around the world. We
present these tools and preliminary results for an additional
tool, the Event Rules Detector.

2 Configuration Analyzer

The input to the Configuration Analyzer is a description of
the system configuration, which is provided as a set of com-
ponent descriptions. Each component description corresponds
to a hardware or software component in the system and is
described by a set of attributes and values. For instance, a
component may be one of the system’s hard drives and its de-
scription may include attributes such as the hard drive model,
the controller type, and the current size of the free space. The
set of attributes included in a component description depends
on the type of component. A typical system has hundreds of
components with a total of thousands of attribute-value pairs.
Many of the attributes have categorical values, while some at-
tributes are numerical or free strings. The set of possible values
for each attribute is not known in advance. Likewise, the num-
ber of possible values for an attribute is unknown and ranges
from two to a practically unbounded number – for example, in
attributes that can include user-typed strings.

When applying machine learning algorithms to system con-
figuration descriptions, one of the first challenges we face is
how to model the descriptions for use with standard algo-
rithms. Many machine learning algorithms assume that each
data point is represented by a feature vector. This becomes
more complex for system configurations since different systems
may have different types and numbers of components, and
there is no trivial mapping between components of one system
and components of another. For example, some systems have
four processors while other systems have two. Different drivers
may exist in different systems, with each driver described by
a different set of attributes.

A representation similar to the text analysis bag-of-words
approach may be considered. In this representation, the fea-
tures indicate the existence of a specific value for a specific
attribute. This approach has the disadvantage of creating an
abundance of features that may cause overfitting and high
computational overhead. In the Melody Configuration An-
alyzer, we take another approach, where each type of com-
ponent defines a separate dataset and each component of this
type represents a single data point. A system with four proces-
sors thus contributes four data points to the processor dataset.



This approach renders the different datasets manageable, al-
though it should be taken into account that the examples in
each dataset are not statistically independent. In addition,
it is not possible to identify relationships between component
types within this approach.

The tool identifies attribute values that are anomalous in
the analyzed system as compared to the training set systems,
and displays only those attributes to the user. This summa-
rization technique is based on the premise that even though
most of the systems in the training set have some faults, the
faults and their causes are diverse; each specific problem is
present only in a small fraction of the systems. Therefore, it
can be assumed that sub-configurations that are relevant for
a system problem are ones that are not common among the
systems in the training set. For each attribute, the tool gen-
erates a classifier that identifies anomalous values based on
the training set. The classifiers are built so that the marginal
probability of each classifier detecting an anomaly is no larger
than a predetermined threshold. This guarantees that the ex-
pected number of items displayed in a system’s configuration
summary is limited, while still allowing variance in the number
of anomalies found in each system.

The presence of many categorical features with an unknown
number of values in a system’s configuration requires special
care. In the anomaly detection setting, we must estimate the
missing probability mass [1] to ensure that the anomaly thresh-
old is correct. In a supervised setting, feature selection and
classification algorithms that support these types of features
are needed (see, for instance, [3]). Automatic recognition of
feature types is also required to ensure that the correct tech-
nique is applied to each feature.

The Configuration Analyzer produces useful results, as the
example in Fig. 1 demonstrates. Adding supervision to this
process may further improve the results. While it is not feasi-
ble to obtain labels for all the systems in a dataset, it may be
possible to use a hybrid approach, where the parameters of the
anomaly detection mechanism are learned as ‘meta-features’.
Interactive responses from users of the tool indicating the help-
fulness of the anomaly results may allow us to tune the algo-
rithm parameters. It might be possible to model this setting
as a reinforcement learning problem [5].

3 Event Log Analyzer

The contents of the systems event logs are an important part
of the system’s description collected by DSA. Some examples
include the Windows event logs in Windows and the syslog
in Linux. Event logs record the messages emitted by vari-
ous components of the system during its day-to-day operation.
Emitted messages may be informational or they can indicate a
problem in the system, whether trivial or more serious. System
logs usually record a large number of messages, most of which
are not relevant for problem identification or diagnosis. It is
usually impossible to manually read through all the messages
to identify the relevant ones.

Given the event logs from a specific system, the Event Log
Analyzer generates a summarized ranked view of this log. The
messages are clustered into mutually exclusive sets that cor-

respond to message type profiles. Message groups are then
ranked by how unexpected it is for a system of this type to
have this number of messages in this message group. Finally,
messages are displayed in order of rank (see Fig. 2). The
probability of having this number of messages in the message
group is estimated using the DSA dataset. A comprehensive
presentation of the Event Log Analyzer can be found in [4].

4 Event Rules Detector

The Event Rules Detector automatically identifies decision
rules that typify system problems. Although labels that in-
dicate the presence of a problem in a system are not readily
available, we obtain labels by assuming that user behavior im-
plies a labeling. In the context of the IBM System X support
centers, if a DSA XML file was collected from a system, it can
be assumed that the system was faulty at the time of collection.
This is a very noisy label: users sometimes mistakenly identify
a system as faulty, DSA may be activated only some time after
a fault has developed, and it may be activated when no fault
has been identified. However, the experiment described below
shows that this assumption can still be used to create valuable
decision rules.

In the experiment a dataset of event logs from hundreds of
systems was used. We built a feature vector for each calendar
day in which the system emitted messages. The features are
counts of the number of messages of each type found in the
log in each of several time windows. Thus, one feature may be
the number of system restarts during the current day, another
feature is the number of restarts during the last two days, etc.

Each feature vector was labeled by assuming that the most
recent day recorded in the event log, i.e., the day the DSA ap-
plication was activated, indicated a faulty system, and that all
the days that are more than two weeks earlier than the most re-
cent day indicated non-faulty systems. We built a decision tree
for separating these feature vectors using the C4.5 algorithm
[2], and rules that identify faulty systems with high probabil-
ity (in our case, more than 99% correct) were extracted from
the tree. Preliminary indicators show that this method finds
meaningful rules from the data. An example is shown in Fig-
ure 3. These rules could be applied for diagnosing a problem
after it has occurred, or for early identification of imminent
system problems.

References

[1] D.A. McAllester and R.E. Schapire. On the convergence rate of
good-turing estimators. In COLT, 2000.

[2] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

[3] S. Sabato and S. Shalev-Shwartz. Prediction by categorical
features: Generalization properties and application to feature
ranking. In COLT, 2007.

[4] S. Sabato, E. Yom-Tov, A. Tsherniak, and S. Rosset. Analyzing
system logs: A new view of what’s important. In SysML, 2007.

[5] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.



A Appendix: Figures

Figure 1: An example output of the Configuration Analyzer

Figure 2: An example output of the Event Log Analyzer

Rule 1 (System log):
(eventID = 26(t− 26) > 58) & (Source = Print(t− 21) ≤ 620)
Explanation: Too many failed writes into a system which is not a print server.

Rule 2 (Application):
(eventID = 17055(t− 22) ≥ 873) & (eventCount(t− 22) ≤ 4854)
Explanation: SQL server keeps failing

Figure 3: Examples of rules generated by the Event Detection Rules module.


