Hidato Solving
Noam Gianella, Noa Finkelshtein
Advisors: Prof. Daniel Berend

The problem:

Original Hidato: In Hidato, a grid of \(n \) cells is given, some cells are labeled with a natural number from 1 to \(n \). The goal is to find the label of each cell, so that there's a path of adjacent from label 1 to label \(n \).

Example:

<table>
<thead>
<tr>
<th></th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Our project consider the following generalization of Hidato: Given is a graph on \(n \) vertices, where some of the vertices are labeled by distinct numbers between 1 and \(n \). The goal is to find a Hamiltonian path which passes through the labeled vertices at the times (labels) showed at those vertices.

Graph Generators:

Adding edges is done by two methods:
- \(G(n,p) \) Generator: Every edge is added with probability \(p \), received as input.
- Path plus Generator: First an Hamilton path is added to the graph, guaranteeing at least one solution. Then \(c \times n \) edges are added randomly, when \(c \) is constant input.

Solvers:

Naive Solver: split to intervals according to labels \(\Rightarrow \) find all possible solutions for each interval \(\Rightarrow \) combine the intervals’ solutions.

Matching Solver: search for a certainly match according to the game rules, until none can be deduced \(\Rightarrow \) guess a match and try to find a solution.

SAT Reduction Solver: transform graph instance to CNF expression \(\Rightarrow \) solve with miniSAT solver \(\Rightarrow \) transform the output to a solution (if such exist).

Statistical analysis:

For graphs that were generated with the \(G(n,p) \) generator we analyzed the influence of the probability, \(p \), on the number of solutions.

For graphs that were generated with the Path plus generator we analyzed the influence of the constant, \(c \), on the number of solutions.