Parameterized Algorithms

Lecture 5: DP + Color Coding
Steiner Tree. Given a graph G and a terminal set $W \subseteq V(G)$, what is the minimum size of a subtree T of G such that $W \subseteq V(T)$?

Parameter. $k = |W|$.
Steiner Tree. Given a graph G and a terminal set $W \subseteq V(G)$, what is the minimum size of a subtree T of G such that $W \subseteq V(T)$?

Parameter. $k = |W|$.

(Size of subtree $T = |E(T)|$.)
Notation.

\[\text{dist}(u,v) = \text{length of a shortest path in } G \text{ between } u \text{ and } v. \]
DP: Steiner Tree

Assumptions.

1. $|W| > 1$.
Assumptions.

1. $|W| > 1$. (Else the problem is trivial.)
DP: Steiner Tree

Assumptions.

1. $|W| > 1$.
2. G is connected.
DP: Steiner Tree

Assumptions.

1. $|W| > 1$.

2. G is connected. (If there is no connected component that contains all terminals, then the answer is No.)
DP: Steiner Tree

Assumptions.

1. $|W| > 1$.
2. G is connected.
3. W is an independent set, and each vertex in W is a leaf in G.
Assumptions.

1. $|W| > 1$.
2. G is connected.
3. W is an independent set, and each vertex in W is a leaf in G.

DP: Steiner Tree
DP: Steiner Tree

Assumptions.

1. $|W| > 1$.
2. G is connected.
3. W is an independent set, and each vertex in W is a leaf in G.
DP Table. Entry $M[v, W']$ for all $v \in V(G) \setminus W$ and $W' \subseteq W, \ W' \neq \emptyset$.
DP: Steiner Tree

DP Table. Entry $M[v, W']$ for all $v \in V(G) \setminus W$ and $W' \subseteq W$, $W' \neq \emptyset$.

Meaning. $M[v, W']$: What is the minimum size of a subtree T of G such that $W' \cup \{v\} \subseteq V(T)$?
DP: Steiner Tree

DP Table. Entry $M[v, W']$ for all $v \in V(G) \setminus W$ and $W' \subseteq W$, $W' \neq \emptyset$.

Meaning. $M[v, W']$: What is the minimum size of a subtree T of G such that $W' \cup \{v\} \subseteq V(T)$?

Basis. $M[v, \{w\}] = \text{dist}(v, w)$.
Recursion. $M[v, W'] = \min_{u \in V(G) \setminus W} \{ M[u, X] + M[u, W \setminus X] + \text{dist}(v,u) \}$.

$X \subseteq W'$, $X \neq \emptyset$
Proof. $M[v, W'] \leq \min\{M[u, X] + M[u, W \setminus X] + \text{dist}(v, u)\}$.

$u \in V(G) \setminus W$

$X \subseteq W'$, $X \neq \emptyset$
Proof. \(M[v, W'] \leq \min\{M[u, X] + M[u, W \setminus X] + \text{dist}(v, u)\} \).

\[
\begin{align*}
&\text{for } u \in V(G) \setminus W \\
&X \subseteq W', X \neq \emptyset
\end{align*}
\]

For \(u \) and \(X \) that realize \(\min \), by the inductive hypothesis:
Proof. \(M[v,W'] \leq \min\{ M[u,X] + M[u,W\setminus X] + \text{dist}(v,u) \} \).

\[u \in V(G) \setminus W \]
\[X \subseteq W', X \neq \emptyset \]

For \(u \) and \(X \) that realize min, by the inductive hypothesis:

Subgraph \(S \) with at most \(*\) edges such that \(W' \cup \{v\} \subseteq V(S) \).
Proof. $M[v,W'] \geq \min\{M[u,X] + M[u,W' \setminus X] + \text{dist}(v,u)\}.
\begin{align*}
&\quad u \in V(G) \setminus W \\
&\quad X \subseteq W', X \neq \emptyset
\end{align*}
DP: Steiner Tree

Proof. \(M[v, W^*] \geq \min\{M[u, X] + M[u, W \setminus X] + \text{dist}(v, u)\}. \)

\[
\begin{align*}
u &\in V(G) \setminus W \\
X &\subseteq W^*, X \neq \emptyset
\end{align*}
\]

For an optimal Steiner tree w.r.t. \(W' \cup \{v\} \):
DP: Steiner Tree

Proof. \(M[v, W'] \geq \min\{M[u, X] + M[u, W \setminus X] + \text{dist}(v, u)\} \).

\[
\begin{align*}
u \in & V(G) \setminus W \\
X \subseteq & W', \ X \neq \emptyset
\end{align*}
\]

For an optimal Steiner tree w.r.t. \(W' \cup \{v\} \):

- \(|W'| > 1 \),
- \(W \) is an independent set of leaves
Proof. $M[v, W'] \geq \min \{M[u, X] + M[u, W \setminus X] + \text{dist}(v, u) \}$.

$\forall u \in V(G) \setminus W$

$X \subseteq W$, $X \neq \emptyset$

For an optimal Steiner tree w.r.t. $W' \cup \{v\}$:
Proof. $M[v,W'] \geq \min\{M[u,X] + M[u,W'\backslash X] + \text{dist}(v,u)\}$.

$u \in V(G) \backslash W$

$X \subseteq W', X \neq \emptyset$

For an optimal Steiner tree w.r.t. $W' \cup \{v\}$:
Recursion. $M[v,W'] = \min \{M[u,X] + M[u,W \setminus X] + \text{dist}(v,u)\}.$

$u \in V(G) \setminus W$
$X \subseteq W', X \neq \emptyset$

Running Time.
Recursion. $M[v, W'] = \min \{M[u, X] + M[u, W \setminus X] + \text{dist}(v, u)\}$.

\[
\begin{align*}
u & \in V(G) \setminus W, \\
X & \subset W', \ X \neq \emptyset
\end{align*}
\]

Running Time.

\[
O(\sum_{W' \subset W} \sum_{v \in V(G)} \sum_{X \subset W'} \sum_{u \in V(G) \setminus W} 1) = O(n^2 \sum_{W' \subset W} \sum_{X \subset W'} 1) = O(3^k n^2)
\]
Color Coding

Highlight a small pattern in a large input so that it will be easy to find it and then solve the problem.
The pattern is usually the solution or part of it.
Color Coding: \(k \)-Path

\(k \)-Path.

Input: Graph \(G \); parameter \(k \).

Question: Does \(G \) have a path on at least \(k \) vertices?

\(k = 5 \)
Color Coding: k-Path

k-Path.

Input: Graph G; parameter k.

Question: Does G have a path on at least k vertices?
Color Coding: k-Path

Color-set: \{1,2,...,k\}.

To each vertex, randomly assign a color.

Highlight a solution \rightarrow colorful solution.
Color Coding: k-Path

Color-set: $\{1,2,...,k\}$.
To each vertex, randomly assign a color.
Highlight a solution \rightarrow colorful solution.

Unlike Lecture 1, now we ignore the order!
Color Coding: k-Path

Color-set: $\{1,2,...,k\}$.
To each vertex, randomly assign a color.
Highlight a solution \rightarrow colorful solution.
We are also happy with...
Color Coding: k-Path

Color-set: $\{1,2,...,k\}$.

To each vertex, randomly assign a color. Highlight a solution \rightarrow colorful solution.

And with...
Color Coding: k-Path

Color-set: $\{1,2,\ldots,k\}$.
To each vertex, randomly assign a color.
Highlight a solution \rightarrow colorful solution.
But not with...
Color Coding: k-Path

The probability of highlighting a solution: $k!/k^k$
The probability of highlighting a solution:

\[
k!/k^k > (k^k/e^k)/k^k = 1/e^k. \quad \text{(Stirling’s approx.)}
\]
Probability of highlighting a solution: $(1/e)^k$. \(\rightarrow O(e^k) \) iterations.

$k = 5$
Color Coding: k-Path

Probability that a single iteration fails: $1 - (1/e^k)$.

Prob. that $100e^k$ iterations fail: $[1 - (1/e^k)]^{100e^k} < e^{-100}$

Prob. of success $> 1 - e^{-100}$.
Color Coding: k-Path

Probability of highlighting a solution: $(1/e)^k$. \(\rightarrow O(e^k)\) iterations.

$k=5$
Color Coding: k-Path

One-sided error:
- If we say Yes, then there exists a solution.
- If there exists a solution, then we say Yes with high probability.
Running time:
Let T be the time in which we can decide whether there is a colorful k-path. Then, the running time is $O(T \cdot e^k)$.
Running time:
Let T be the time in which we can decide whether there is a colorful k-path. Then, the running time is $O(T \cdot e^k)$. We will get $T = O^*(2^k)$.

Color Coding: k-Path
- Compared to Lecture 1, now it was much easier to highlight a solution.
- But the highlighted problem we got is NP-hard. Nevertheless, it can be solved "efficiently".
Color Coding: k-Path

k-Path. Input: Graph G; parameter k.

Question: Does G have a path k vertices?

DP Table. $M[U,v]$ for every subset of vertices U of G and vertex v in U.

Meaning. Is there a $(|U|)$-path whose set of vertices is exactly U and it ends at v? (True or False.)
Color Coding: k-Path

k-Path. Input: Graph G; parameter k.

Question: Does G have a path k vertices?

DP Table. $M[U,v]$ for every subset of vertices U of G and vertex v in U.

Meaning. Is there a $(|U|)$-path whose set of vertices is exactly U and it ends at v? (True or False.)

Color Coding: \(k \)-Path

\textbf{\(k \)-Path. Input:} Graph \(G \); parameter \(k \).
\textbf{Question:} Does \(G \) have a path \(k \) vertices?

\textbf{DP Table.} \(M[U,v] \) for every subset of vertices \(U \) of \(G \) and vertex \(v \) in \(U \).
\textbf{Meaning.} Is there a \((|U|\text{-})\)path whose set of vertices is exactly \(U \) and it ends at \(v \)? (True or False.)

\textbf{Basis.} \(|U|=1\). \(M[U,v]=\text{True iff } U=\{v\} \).

\textbf{Recursion.} \(|U|\geq2\).

\[M[U,v] = \text{OR}_{u \text{ neighbor of } v \text{ and in } U} (M[U\setminus\{v\},u]). \]
Color Coding: k-Path

k-Path. Input: Graph G; parameter k.
Question: Does G have a path k vertices?

DP Table. $M[U,v]$ for every subset of vertices U of G and vertex v in U.

Meaning. Is there a $(|U|)$-path whose set of vertices is exactly U and it ends at v? (True or False.)

Basis. $|U|=1$. $M[U,v]=\text{True}$ iff $U=\{v\}$.

Recursion. $|U|\geq2$.

$M[U,v] = \text{OR}_{u \text{ neighbor of } v \text{ and in } U}(M[U\setminus\{v\},u])$.

Answer. Yes iff $M[U,v]$ is True for some U of size k and v.
Color Coding: k-Path

k-Path. Input: Graph G; parameter k.
Question: Does G have a path k vertices?

DP Table. $M[U,v]$ for every subset of vertices U of G and vertex v in U.

Meaning. Is there a $(|U|)$-path whose set of vertices is exactly U and it ends at v? (True or False.)

Recursion. $|U|\geq 2$.

$$M[U,v] = \text{OR}_{u \text{ neighbor of } v \text{ and in } U}(M[U\setminus\{v\},u]).$$

Time. $O(2^n\sum_v \deg(v))=O(2^nm)$.
Color Coding: k-Path

k-Path. Input: Graph G; parameter k.

Question: Does G have a path k vertices?

DP Table. $M[U,v]$ for every subset of vertices U of G and vertex v in U.

Meaning. Is there a ($|U|$-)path whose set of vertices is exactly U and it ends at v? (True or False.)

Recursion. $|U|\geq2$.

$$M[U,v] = \bigvee_{u \text{ neighbor of } v \text{ and in } U}(M[U\setminus\{v\},u]).$$

Time. $O(2^nm)$. (Can prune to $O(\binom{n}{k}m)$).
Color Coding: \(k\)-Path

Colorful \(k\)-Path. Input: Graph \(G\); parameter \(k\).

Question: Does \(G\) have a colorful path \(k\) vertices?

DP Table. \(M[C,v]\) for every subset of colors \(C\) of \(\{1,...,k\}\) and vertex \(v\) in \(G\) whose color is in \(C\).

Meaning. Is there a colorful (\(|C|\)-)path whose set of colors is exactly \(C\) and it ends at \(v\)?
Color Coding: \(k \)-Path

Colorful \(k \)-Path. Input: Graph \(G \); parameter \(k \).

Question: Does \(G \) have a colorful path \(k \) vertices?

DP Table. \(M[C,v] \) for every subset of colors \(C \) of \(\{1,\ldots,k\} \) and vertex \(v \) in \(G \) whose color is in \(C \).

Meaning. Is there a colorful \((|C|-)\)path whose set of colors is exactly \(C \) and it ends at \(v \)?

Note. If every color is used only once, a walk is a path. We use colors (rather than vertices) to ensure that no vertex is visited more than once.
Color Coding: k-Path

Colorful k-Path. Input: Graph G; parameter k.
Question: Does G have a colorful path k vertices?

DP Table. $M[C,v]$ for every subset of colors C of $\{1,...,k\}$ and vertex v in G whose color is in C.
Meaning. Is there a colorful $(|C|)$-path whose set of colors is exactly C and it ends at v?
Basis. $|C|=1$. $M[C,v]=\text{True}$ iff $C=\{\text{col}(v)\}$.
Color Coding: k-Path

Colorful k-Path. Input: Graph G; parameter k.

Question: Does G have a colorful path k vertices?

DP Table. $M[C,v]$ for every subset of colors C of $\{1,\ldots,k\}$ and vertex v in G whose color is in C.

Meaning. Is there a colorful ($|C|$-)path whose set of colors is exactly C and it ends at v?

Basis. $|C|=1$. $M[C,v]=\text{True}$ iff $C=\{\text{col}(v)\}$.

Recursion. $|C|\geq 2$.

$M[C,v] = \text{OR}_{u \text{ neighbor of } v \text{ with color in } C\setminus\{\text{col}(v)\}} (M[C\setminus\{\text{col}(v)\},u])$.
Color Coding: k-Path

Colorful k-Path. **Input:** Graph G; parameter k.

Question: Does G have a colorful path k vertices?

DP Table. $M[C,v]$ for every subset of colors C of $\{1,...,k\}$ and vertex v in G whose color is in C.

Meaning. Is there a colorful $(|C|-)$-path whose set of colors is exactly C and it ends at v?

Basis. $|C|=1$. $M[C,v]=\text{True}$ iff $C=\{\text{col}(v)\}$.

Recursion. $|C|\geq 2$.

$M[C,v] = \text{OR}_{u \text{ neighbor of } v \text{ with color in } C\{\text{col}(v)\}} (M[C\{\text{col}(v)\},u])$.

Answer. Yes iff $M[\{1,...,k\},v]$ is True for some v.
Color Coding: \(k\)-Path

Colorful \(k\)-Path. Input: Graph \(G\); parameter \(k\).

Question: Does \(G\) have a colorful path \(k\) vertices?

DP Table. \(M[C,v]\) for every subset of colors \(C\) of \(\{1,...,k\}\) and vertex \(v\) in \(G\) whose color is in \(C\).

Meaning. Is there a colorful (\(|C|\)-)path whose set of colors is exactly \(C\) and it ends at \(v\)?

Basis. \(|C| = 1\). \(M[C,v] = \text{True} \iff C = \{\text{col}(v)\}\).

Recursion. \(|C| \geq 2\).

\(M[C,v] = \text{OR}_{u \text{ neighbor of } v \text{ with color in } C \setminus \{\text{col}(v)\}} (M[C \setminus \{\text{col}(v)\}, u])\).

Time. \(O(2^km)\).
d-Set Packing. Given a family $F=\{S_1,S_2,...,S_m\}$ of sets of size exactly d over a universe U and a parameter k, decide whether there is a subset F' of F of size at least k whose sets are pairwise vertex disjoint.
Color Coding: \(d\)-Set Packing

\(d\)-Set Packing. Given a family \(F=\{S_1, S_2, \ldots, S_m\}\) of sets of size exactly \(d\) over a universe \(U\) and a parameter \(k\), decide whether there is a subset \(F'\) of \(F\) of size at least \(k\) whose sets are pairwise vertex disjoint.

\(O^*((2e)^{dk})\)-Time Algorithm. Use the method of color coding with \(dk\) colors. Here, a colorful solution refers to a solution \(F'\) such that all elements in \(UF'\) have distinct colors.
Color Coding: d-Set Packing

d-Set Packing. Given a family $F=\{S_1, S_2, \ldots, S_m\}$ of sets of size exactly d over a universe U and a parameter k, decide whether there is a subset F' of F of size at least k whose sets are pairwise vertex disjoint.

$O^*((2e)^{dk})$-Time Algorithm. Use the method of color coding with dk colors. Here, a colorful solution refers to a solution F' such that all elements in $U \setminus F'$ have distinct colors. Coloring iterations and analysis almost identical to the case of k-Path.
Color Coding: d-Set Packing

d-Set Packing. Given a family $F=\{S_1, S_2, \ldots, S_m\}$ of sets of size exactly d over a universe U and a parameter k, decide whether there is a subset F' of F of size at least k whose sets are pairwise vertex disjoint.

$O^*((2e)^{dk})$-Time Algorithm. Use the method of color coding with dk colors. Here, a colorful solution refers to a solution F' such that all elements in $U \cup F'$ have distinct colors. Coloring iterations and analysis almost identical to the case of k-Path.

Design a DP-based algorithm that works in time $O^*(2^{dk})$ (exercise or on board).
Perfect Hash Family. A family F of functions $f : \{1,\ldots,n\} \rightarrow \{1,\ldots,k\}$ is an (n,k)-perfect hash family if for every subset S of $\{1,\ldots,n\}$ of size k, there exists a function in F that is injective when restricted to S.

Color Coding: Derandomization
Perfect Hash Family. A family F of functions $f : \{1,\ldots,n\} \rightarrow \{1,\ldots,k\}$ is an (n,k)-perfect hash family if for every subset S of $\{1,\ldots,n\}$ of size k, there exists a function in F that is injective when restricted to S.

Why does such a family exist?
Perfect Hash Family. A family F of functions $f : \{1, \ldots, n\} \rightarrow \{1, \ldots, k\}$ is an (n,k)-perfect hash family if for every subset S of $\{1, \ldots, n\}$ of size k, there exists a function in F that is injective when restricted to S.

Why does such a family exist? Consider the family of all functions.
Color Coding: Derandomization

Perfect Hash Family. A family F of functions $f : \{1,\ldots,n\} \rightarrow \{1,\ldots,k\}$ is an *(n,k)*-perfect hash family if for every subset S of $\{1,\ldots,n\}$ of size k, there exists a function in F that is injective when restricted to S.

Theorem. An (n,k)-perfect hash family of size $e^{k+O(\log^2 k) \log n}$ can be constructed in time $e^{k+O(\log^2 k) n \log n}$.
Perfect Hash Family. A family F of functions $f : \{1,\ldots,n\} \rightarrow \{1,\ldots,k\}$ is an (n,k)-perfect hash family if for every subset S of $\{1,\ldots,n\}$ of size k, there exists a function in F that is injective when restricted to S.

Theorem. An (n,k)-perfect hash family of size $e^{k+O(\log^2 k)} \log n$ can be constructed in time $e^{k+O(\log^2 k)} n \log n$.

How to use this theorem?
Perfect Hash Family. A family F of functions $f : \{1,\ldots,n\} \rightarrow \{1,\ldots,k\}$ is an (n,k)-perfect hash family if for every subset S of $\{1,\ldots,n\}$ of size k, there exists a function in F that is injective when restricted to S.

Theorem. An (n,k)-perfect hash family of size $e^{k+O(\log^2 k)} \log n$ can be constructed in time $e^{k+O(\log^2 k)} n \log n$.

How to use this theorem? Instead of random colorings, for each function f in F, consider one coloring: Vertex number i will be colored by color number $f(i)$.
Color Coding: Derandomization

Perfect Hash Family. A family F of functions $f : \{1, \ldots, n\} \rightarrow \{1, \ldots, k\}$ is an (n,k)-perfect hash family if for every subset S of $\{1, \ldots, n\}$ of size k, there exists a function in F that is injective when restricted to S.

Theorem. An (n,k)-perfect hash family of size $e^{k+O(\log^2 k)} \log n$ can be constructed in time $e^{k+O(\log^2 k)} n \log n$.

How to use this theorem? Instead of random colorings, for each function f in F, consider one coloring: Vertex number i will be colored by color number $f(i)$.

If there is a solution, then there is an iteration where it will be colorful.