Parameterized Algorithms

Lecture 2: Bounded Search Trees
A parameterized algorithm has running time of the form \(f(k)n^{O(1)} \) where \(k \) is the parameter.

A parameterized problem is fixed-parameter tractable (FPT) if it admits a parameterized algorithm.
Vertex Cover: $O^*(2^k)$-Time Algorithm

Vertex Cover.

Input: Graph G; non-negative integer k.

Question: Does G have a vertex cover of size at most k?

![Graph G with $n=m=40$ and $k=5$](image)
Vertex Cover: $O^*(2^k)$-Time Algorithm

Vertex Cover.

Input: Graph G; non-negative integer k.

Question: Does G have a vertex cover of size at most k?

G is a graph with $n = m = 40$ vertices. The vertex cover is represented by the red vertices. The algorithm determines that $k = 5$ is not sufficient to cover all edges, hence the answer is **No**.
Vertex Cover: $O^*(2^k)$-Time Algorithm

Vertex Cover.

Input: Graph G; non-negative integer k.

Question: Does G have a vertex cover of size at most k?

G has a vertex cover of size at most k. The number of nodes $n = m = 40$ and $k = 6$.

Yes
Vertex Cover: $O^*(2^k)$-Time Algorithm

We have a list of rules of the form $[\text{Condition}]$: Action. We execute the first rule whose condition is satisfied.
We have a list of rules of the form [Condition]: Action. We execute the **first** rule whose condition is satisfied.

After we execute Rule X, the condition of Rule Y<X might be true. Thus, we always scan the list of rules from its beginning.
We have a list of rules of the form [Condition]: Action. We execute the first rule whose condition is satisfied.

After we execute Rule X, the condition of Rule Y<X might be true. Thus, we always scan the list of rules from its beginning.

The order can be essential for correctness.
We have a list of rules of the form [Condition]: Action. We execute the first rule whose condition is satisfied.

After we execute Rule X, the condition of Rule Y<X might be true. Thus, we always scan the list of rules from its beginning.

A rule where the algorithm calls itself recursively at most once is a reduction rule, and a rule where it calls itself recursively at least twice is a branching rule.
Rule 1. If G has no edges, return Yes.
Rule 1. If G has no edges, return Yes.

Rule 2. If $k=0$, return No.
Rule 1. If G has no edges, return Yes.

Rule 2. If $k=0$, return No.

G has at least one edge, and k is positive. What should we do next?
Vertex Cover: \(O^*(2^k)\)-Time Algorithm

Rule 1. If \(G \) has no edges, return Yes.

Rule 2. If \(k=0 \), return No.

\(G \) has at least one edge, and \(k \) is positive. What should we do next?
Vertex Cover: $O^*(2^k)$-Time Algorithm

Rule 1. If G has no edges, return Yes.

Rule 2. If $k=0$, return No.

G has at least one edge, and k is positive. What should we do next?

Rule 3. Pick an edge $\{u,v\}$.

i. Call ALG($G-u,k-1$).

ii. Call ALG($G-v,k-1$).

Return Yes iff at least one of the calls returns Yes.
Vertex Cover: $O^*(2^k)$-Time Algorithm

Correctness. Induction.
Vertex Cover: $O^*(2^k)$-Time Algorithm

Correctness. Induction.

Rules 1+2.
Suppose correctness for graphs with $n-1$ vertices, and prove correctness for graphs with n vertices.
Suppose correctness for graphs with $n-1$ vertices, and prove correctness for graphs with n vertices.

Forward direction. Suppose that (G,k) has a solution S.
Suppose correctness for graphs with $n-1$ vertices, and prove correctness for graphs with n vertices.

Forward direction. Suppose that (G,k) has a solution S. Then, S must contain at least one vertex among u and v. If it contains u, then $S\setminus\{u\}$ is a solution to $(G-u,k-1)$, and otherwise $S\setminus\{v\}$ is a solution to $(G-v,k-1)$.

Vertex Cover: $O^*(2^k)$-Time Algorithm

Suppose correctness for graphs with $n-1$ vertices, and prove correctness for graphs with n vertices.

Forward direction. Suppose that (G,k) has a solution S. Then, S must contain at least one vertex among u and v. If it contains u, then $S\setminus\{u\}$ is a solution to $(G-u,k-1)$, and otherwise $S\setminus\{v\}$ is a solution to $(G-v,k-1)$.
Vertex Cover: \(O^*(2^k)\)-Time Algorithm

Suppose correctness for graphs with \(n-1\) vertices, and prove correctness for graphs with \(n\) vertices.

Forward direction. Suppose that \((G,k)\) has a solution \(S\). Then, \(S\) must contain at least one vertex among \(u\) and \(v\). If it contains \(u\), then \(S\{u\}\) is a solution to \((G-u,k-1)\), and otherwise \(S\{v\}\) is a solution to \((G-v,k-1)\). In either case, at least one of the recursive calls will return Yes (by the inductive hypothesis).
Suppose correctness for graphs with $n-1$ vertices, and prove correctness for graphs with n vertices.

Reverse direction. Suppose that the algorithm returns Yes. W.l.o.g., suppose that the recursive call on $(G-u,k-1)$ returned Yes.
Vertex Cover: \(O^*(2^k)\)-Time Algorithm

Suppose correctness for graphs with \(n-1\) vertices, and prove correctness for graphs with \(n\) vertices.

Reverse direction. Suppose that the algorithm returns Yes. W.l.o.g., suppose that the recursive call on \((G-u,k-1)\) returned Yes.

By the inductive hypothesis, \((G-u,k-1)\) has a solution \(S\).
Suppose correctness for graphs with \(n-1 \) vertices, and prove correctness for graphs with \(n \) vertices.

Reverse direction. Suppose that the algorithm returns Yes. W.l.o.g., suppose that the recursive call on \((G-u,k-1)\) returned Yes.
By the inductive hypothesis, \((G-u,k-1)\) has a solution \(S\).
Then, \(SU\{u\}\) is a solution to \((G,k)\).
Running time. Number of recursive calls at the leaves:
\[N(k) = 2N(k-1); \ N(0)=1. \]
Running time. Number of recursive calls at the leaves:
N(k) = 2N(k-1); N(0)=1.
→ N(k) = 2^k.
Running time. Number of recursive calls at the leaves:

\[N(k) = 2N(k-1); \quad N(0) = 1. \]

\[\rightarrow N(k) = 2^k. \]
Running time. Number of recursive calls at the leaves: \(N(k) = 2N(k-1); \ N(0)=1. \)

\[\rightarrow N(k) = 2^k. \]

Total number of recursive call (including internal nodes): \(O(2^k) \).

Each recursive call is executed in linear time.

Time complexity: \(O(2^k(n+m)) \).
d-Hitting Set: \(O^*(d^k) \)-Time Algorithm

d-Hitting Set. Given a family \(F=\{S_1, S_2, \ldots, S_m\} \) of sets of size \(d \) over a universe \(U \) and a parameter \(k \), determine whether there exists a subset \(X \) of \(U \) of size at most \(k \) that has a nonempty intersection with every set in \(F \).
d-Hitting Set: \(O^*(d^k) \)-Time Algorithm

d-Hitting Set. Given a family \(F=\{S_1,S_2,\ldots,S_m\} \) of sets of size \(d \) over a universe \(U \) and a parameter \(k \), determine whether there exists a subset \(X \) of \(U \) of size at most \(k \) that has a nonempty intersection with every set in \(F \).

Vertex Cover is 2-Hitting Set.
Rule 1. If F is empty, return Yes.

Rule 2. If $k=0$, return No.
d-Hitting Set: O*(d^k)-Time Algorithm

Rule 1. If F is empty, return Yes.

Rule 2. If $k=0$, return No.

F has at least one set, and k is positive. What should we do next?

Rule 3. Pick a set S in F.
- For every element e in S, call $\text{ALG}(U\{e\},F',k-1)$, where $F' = \{T \in F : e \notin T\}$.

Return Yes iff at least one of the calls returns Yes.
d-Hitting Set: \(O^*(d^k)\)-Time Algorithm

Correctness. Very similar to the case of Vertex Cover (left as exercise).
Running time. Number of recursive calls:
\[N(k) = dN(k-1); \quad N(0) = 1. \]
\[\rightarrow N(k) = d^k. \]
Running time. Number of recursive calls:

\[N(k) = dN(k-1); \quad N(0) = 1. \]

\[\rightarrow N(k) = d^k. \]
Rule 1. If G has no edges, return Yes.

Rule 2. If $k=0$, return No.

Rule 3. Pick an edge $\{u,v\}$.

i. Call $\text{ALG}(G-u,k-1)$.

ii. Call $\text{ALG}(G-v,k-1)$.

Return Yes iff at least one of the calls returns Yes.
Vertex Cover: $O^*(1.62^k)$-Time Algorithm

Rule 1. If G has no edges, return Yes.

Rule 2. If $k=0$, return No.

Rule 3. Pick an edge $\{u,v\}$ a non-isolated vertex v.
 i. Call $\text{ALG}(G-u,k-1)$ $\text{ALG}(G-N(v),k-|N(v)|)$.
 ii. Call $\text{ALG}(G-v,k-1)$.

Return Yes iff at least one of the calls returns Yes.
Vertex Cover: $O^{*}(1.62^k)$-Time Algorithm

Rule 1. If G has no edges, return Yes.

Rule 2. If $k=0$, return No.

Rule 3. Pick an edge $\{u,v\}$ a non-isolated vertex v.

i. Call $\text{ALG}(G-u,k-1) \text{ALG}(G-N(v),k-|N(v)|)$.

ii. Call $\text{ALG}(G-v,k-1)$.

Return Yes iff at least one of the calls returns Yes.

How can we ensure that $|N(v)|$ is at least 2?
Rule 3. If there exists an isolated vertex v, call $\text{ALG}(G-v, k)$.
Rule 3. If there exists an isolated vertex \(v \), call \(\text{ALG}(G-v,k) \).

Rule 4. If there exists a degree-1 vertex \(v \), call \(\text{ALG}(G-u,k-1) \) where \(u \) is the neighbor of \(v \).
Rule 3. If there exists an isolated vertex v, call $\text{ALG}(G-v,k)$.

Rule 4. If there exists a degree-1 vertex v, call $\text{ALG}(G-u,k-1)$ where u is the neighbor of v.

Correctness of Rule 4. Forward direction: Suppose that (G,k) has a solution S. Then, S must contain at least one vertex among u and v. Note that $S\setminus\{u,v\}$ is a vertex cover of $G-u$. Thus, $S\setminus\{u,v\}$ is a solution to $(G-u,k-1)$.
Vertex Cover: $O^*(1.62^k)$-Time Algorithm

Rule 3. If there exists an isolated vertex v, call $\text{ALG}(G-v,k)$.

Rule 4. If there exists a degree-1 vertex v, call $\text{ALG}(G-u,k-1)$ where u is the neighbor of v.

Correctness of Rule 4. **Forward direction:** Suppose that (G,k) has a solution S. Then, S must contain at least one vertex among u and v. Note that $S\backslash\{u,v\}$ is a vertex cover of $G-u$. Thus, $S\backslash\{u,v\}$ is a solution to $(G-u,k-1)$. [True because the only neighbor of v is u.]
Rule 3. If there exists an isolated vertex \(v \), call \(\text{ALG}(G-v,k) \).

Rule 4. If there exists a degree-1 vertex \(v \), call \(\text{ALG}(G-u,k-1) \) where \(u \) is the neighbor of \(v \).

Rule 5. Pick a vertex \(v \).
 i. Call \(\text{ALG}(G-N(v),k-|N(v)|) \).
 ii. Call \(\text{ALG}(G-v,k-1) \).

Return Yes iff at least one of the calls returns Yes.
Rule 3. If there exists an isolated vertex v, call $\text{ALG}(G-v,k)$.

Rule 4. If there exists a degree-1 vertex v, call $\text{ALG}(G-u,k-1)$ where u is the neighbor of v.

Rule 5. Pick a vertex v.

i. Call $\text{ALG}(G-N(v),k-|N(v)|)$. [Note: $|N(v)| \geq 2$.]

ii. Call $\text{ALG}(G-v,k-1)$.

Return Yes iff at least one of the calls returns Yes.
Running time. Number of recursive calls:
\[N(k) = N(k-1) + N(k-2); \quad N(0)=1. \]
Running time. Number of recursive calls:

\[N(k) = N(k-1) + N(k-2); \quad N(0) = 1. \quad \text{Worse case.} \]
Vertex Cover: $O^*(1.62^k)$-Time Algorithm

Running time. Number of recursive calls:

$N(k) = N(k-1) + N(k-2); N(0) = 1.$
Running time. Number of recursive calls:

\[N(k) = N(k-1) + N(k-2); \quad N(0) = 1. \]

Guess \(N(k) = c^k \).

\[\rightarrow c^k = c^{k-1} + c^{k-2}. \]

\[\rightarrow c^2 = c + 1. \]

\[\rightarrow c = (1 + \sqrt{5})/2 < 1.6181. \]
Vertex Cover: $O^*(1.62^k)$-Time Algorithm

Running time. Number of recursive calls:

$N(k) = N(k-1) + N(k-2); \ N(0) = 1.$

Guess $N(k) = c^k.$

$\rightarrow c^k = c^{k-1} + c^{k-2}.$

$\rightarrow c^2 = c + 1.$

$\rightarrow c = (1 + \sqrt{5})/2 < 1.6181.$

To get an upper bound, it is suffices to find c such that

$c^k \geq c^{k-1} + c^{k-2}.$
More generally. Number of recursive calls:

\[N(k) = N(k-t_1) + N(k-t_2) + \ldots + N(k-t_r); \quad (0)=1. \]

Guess \(N(k) = c^k \).

\[c^k = c^{k-t_1} + c^{k-t_2} + \ldots + c^{k-t_r}. \]

\[c_{\text{max}}(t_1, \ldots, t_r) = c_{\text{max}}(t_1, \ldots, t_r)-t_1 + c_{\text{max}}(t_1, \ldots, t_r)-t_2 + \ldots + c_{\text{max}}(t_1, \ldots, t_r)-t_r. \]

\[[c_{\text{max}}(t_1, \ldots, t_r) \geq c_{\text{max}}(t_1, \ldots, t_r)-t_1 + c_{\text{max}}(t_1, \ldots, t_r)-t_2 + \ldots + c_{\text{max}}(t_1, \ldots, t_r)-t_r. \]
Rule 3. If there exists an isolated vertex v, call $\text{ALG}(G-v,k)$.

Rule 4. If there exists a degree-1 vertex v, call $\text{ALG}(G-u,k-1)$ where u is the neighbor of v.

Rule 5. Pick a vertex v.

i. Call $\text{ALG}(G-N(v),k-|N(v)|)$.

ii. Call $\text{ALG}(G-v,k-1)$.

Return Yes iff at least one of the calls returns Yes.
Vertex Cover: \(O^*(1.47^k)\)-Time Algorithm

Rule 3. If there exists an isolated vertex \(v\), call \(\text{ALG}(G-v,k)\).

Rule 4. If there exists a degree-1 vertex \(v\), call \(\text{ALG}(G-u,k-1)\) where \(u\) is the neighbor of \(v\).

Rule 5. Pick a vertex \(v\).

i. Call \(\text{ALG}(G-N(v),k-\mid N(v)\mid)\). How to ensure \(\mid N(v)\mid \geq 3\)?

ii. Call \(\text{ALG}(G-v,k-1)\).

Return Yes iff at least one of the calls returns Yes.
Rule 5. If the maximum degree of a vertex in the graph is 2, then solve the problem in polynomial time.
Rule 5. If the maximum degree of a vertex in the graph is 2, then solve the problem in polynomial time.

Collection of cycles:
Rule 5. If the maximum degree of a vertex in the graph is 2, then solve the problem in polynomial time.

Rule 5. Pick a vertex \(v \) of degree at least 3.

i. Call \(\text{ALG}(G-N(v),k-|N(v)|) \).

ii. Call \(\text{ALG}(G-v,k-1) \).

Return Yes iff at least one of the calls returns Yes.
Vertex Cover: O*(1.47^k)-Time Algorithm

Rule 5. If the maximum degree of a vertex in the graph is 2, then solve the problem in polynomial time.

Rule 5. Pick a vertex \(v \) of degree at least 3.

i. Call \(\text{ALG}(G-N(v),k-|N(v)|) \).

ii. Call \(\text{ALG}(G-v,k-1) \).

Return Yes iff at least one of the calls returns Yes.
Vertex Cover: $O^{*}(1.47^k)$-Time Algorithm

Running time. Similar to the analysis of the previous algorithm (left as an exercise).
Cluster Vertex Deletion: $O^*(3^k)$-Time Algo.

Cluster Vertex Deletion. Given a graph G and a parameter k, determine whether there exists a subset S of $V(G)$ of size $\leq k$ such that $G-S$ is a cluster graph, that is, every connected component of $G-S$ is a clique.
Cluster Vertex Deletion. Given a graph G and a parameter k, determine whether there exists a subset S of $V(G)$ of size $\leq k$ such that $G-S$ is a cluster graph, that is, every connected component of $G-S$ is a clique.
Cluster Vertex Deletion: $O^*(3^k)$-Time Algo.

Cluster Vertex Deletion. Given a graph G and a parameter k, determine whether there exists a subset S of $V(G)$ of size $\leq k$ such that $G - S$ is a cluster graph, that is, every connected component of $G - S$ is a clique.
Observation. A graph G is a cluster graph if and only if it has no induced P_3 (i.e. there do not exist three vertices u,v,w such that $\{u,v\}$ and $\{v,w\}$ are edges in G, but $\{u,w\}$ is not).
Observation. A graph G is a cluster graph if and only if it has no induced P_3 (i.e. there do not exist three vertices u,v,w such that $\{u,v\}$ and $\{v,w\}$ are edges in G, but $\{u,w\}$ is not).

\rightarrow Objective. Determine whether there exists a subset S of $V(G)$ such that S intersects the vertex set of every induced P_3 in G.
Observation. A graph G is a cluster graph if and only if it has no induced P_3 (i.e. there do not exist three vertices u, v, w such that $\{u, v\}$ and $\{v, w\}$ are edges in G, but $\{u, w\}$ is not).

→ **Objective.** Determine whether there exists a subset S of $V(G)$ such that S intersects the vertex set of every induced P_3 in G.

1. A special case of 3-Hitting Set and therefore solvable in time $O^*(3^k)$.
Observation. A graph G is a cluster graph if and only if it has no induced P_3 (i.e. there do not exist three vertices u,v,w such that $\{u,v\}$ and $\{v,w\}$ are edges in G, but $\{u,w\}$ is not).

→ Objective. Determine whether there exists a subset S of $V(G)$ such that S intersects the vertex set of every induced P_3 in G.

2. Design an $O^*(3^k)$-time algorithm directly (left as an exercise).