Minimal Factorizations of Rational Matrix Functions
in Terms of Polynomial Models

T. Shamir and P. A. Fuhrmann
Department of Mathematics and Computer Science
Ben Gurion University of the Negev
Beer Sheva, Israel

Submitted by Hans Schneider

ABSTRACT

The problem of minimal factorization of rational bicausal matrices is considered, using polynomial models. The factors are given explicitly in terms of polynomial matrices.

1. INTRODUCTION

Much has been written about the problem of minimal factorization of rational matrix functions, for example, [14, 12, 4, 13]. A comprehensive treatment of the problem is given in [2], using the concept of supporting projections, which relies strongly on systems and realizations.

In this paper, we attempt to simplify the solution of the problem by using polynomial models. The solution need not go into systems and realizations, but uses polynomial matrices, and the algebraic aspects of the system-theoretic interpretation are exhibited.

The factorization itself, whenever it exists, is given concretely in terms of polynomial matrices.

In Section 4 we consider a few particular cases, and in Section 5, symmetric matrices are treated.

It is well known that the transfer function of a series connection of two systems is the product of the two transfer functions. In particular, it was shown by Callier and Nahum [3] how minimality of a series connection of two systems is related to certain coprimeness conditions of the corresponding polynomial matrices. Our objective is to tackle the inverse problem, namely, when a transfer function can be factored minimally into the product of two
transfer functions. In this context minimality means that the McMillan degree of the transfer function W, denoted as $\delta(W)$, is equal to the sum of the McMillan degrees of the factors.

Factorization of polynomial matrices are related to invariant subspaces and (A, B)- or (C, A)-invariant subspaces. Here the work by Emre and Hautus [5], Antoulas [1], Fuhrmann and Willems [11], and Fuhrmann [8] is particularly relevant. In much the same way, one expects some such relation in the case of factorizations of transfer functions. As we shall see, this indeed turns out to be the case.

We shall assume throughout that W is a square proper matrix with constant term equal to the identity. We will call such a matrix a normalized bicausal isomorphism. In particular, the inverse of a normalized bicausal isomorphism is a normalized bicausal isomorphism.

Assume $W = T^{-1}D$ is a left coprime factorization of W into nonsingular polynomial matrices T and D. Since W is normalized bicausal, it has the form $W = I + T^{-1}U$, where $U - D$ is a polynomial matrix such that $T^{-1}U$ is strictly proper, T and U being left coprime.

In $F^{m}((z))$, define Π_{+} and Π_{-} as the projections on the polynomial and strictly proper parts of a vector function respectively. Let T be a nonsingular $m \times m$ polynomial matrix. We define a projection on $F^{m}[z]$:

$$\Pi_{T}f = T\Pi_{-}T^{-1}f$$

and $X_{T} = \text{Im} \Pi_{T}$. The restricted shift operator S_{T} operating in X_{T} is defined as $S_{T}f = \Pi_{T}zf$.

Let $\Sigma = \{A, B, C, I_{s}\}$ be the associated minimal realization of W in the state space $X = X_{T}$, with F^{m} being the input-output space. Hence $Af = S_{T}f$, $B\xi = U\xi$, $Cf = [T^{-1}f]_{-1}$ for $f \in X_{T}$, $\xi \in F^{m}$.

For further details and notation, see [6].

By [2, Theorem 4.8], we have the following:

Theorem. W can be factored into two bicausal factors $W = W_{1}W_{2}$ minimally, i.e. $\delta(W) = \delta(W_{1}) + \delta(W_{2})$, iff Σ can be represented as the series connection of two systems Σ_{1}, Σ_{2} (first Σ_{2}, then Σ_{1}) such that if

$$\Sigma_{i} = \{A_{i}, B_{i}, C_{i}, I\} \quad (i = 1, 2)$$

then

$$X = X_{1} \oplus X_{2},$$
and X_1 is A-invariant whereas X_2 is $(A - BC)$-invariant. In this case W_i is the transfer function of the system Σ_i.

We shall actually re-prove this theorem in terms of polynomial models.

2. PRELIMINARIES ON INVARIANT SUBSPACES

In terms of polynomial models, X_1 is an A-invariant or S_T-invariant subspace of X_T iff it is of the form

$$X_1 = T_1 X_{r_2}$$

for some factorization $T = T_1 T_2$ into nonsingular factors. Also, $A^\# = A - BC$ is the state-space operator of the inverse system with transfer function $W^{-1} = D^{-1} T$, i.e.

$$A^\# = S_D = S_{T+U}.$$

A simple calculation confirms that indeed

$$S_{T+U} f = S_T f - U \left[T^{-1} f \right]_{-1} = (A - BC) f.$$

In particular, any S_T-invariant subspace is (A, B, C)-invariant, and hence both (A, B)- and (C, A)-invariant. We can actually prove that for the associated realization of any strictly proper transfer function $G = T^{-1} U$ in the state space X_T, V is an (A, B, C)-invariant subspace iff it is of the form $E X_F$, where $E F = T + U K$ for any constant matrix K of appropriate size.

Also, since $T^{-1} D$ is bicausal isomorphism, X_T and X_D are equal as sets, or as vector spaces, although they have different module structures (see [11]). Thus, X_2 is an S_D-invariant subspace of X_T iff it is of the form

$$X_2 = D_1 X_{D_2}$$

for some factorization $D = D_1 D_2$.

Thus, the existence of a minimal factorization of W is equivalent to the existence of factorizations $T = T_1 T_2$, $D = D_1 D_2$ such that

$$X_T = T_1 X_{T_2} \oplus D_1 X_{D_2}.$$ \hfill (2.1)
In Theorem 3.3 we shall specify in terms of the polynomial factors when such decompositions exist. In this case, the factors W_1 and W_2 of W are the transfer functions of the restrictions and projections of the system $\Sigma = (A, B, C)$ in the state spaces T_1X_1 and $D_1X_{D_1}$ respectively. We shall specify the factors W_1 and W_2 in Theorem 3.4.

Since we are dealing with geometric relations between subspaces that are in particular (C, A)-invariant, it is of interest to analyse the connection between these geometric properties and the arithmetic of the corresponding nonsingular polynomial matrices. This analysis is of interest on its own.

We begin by studying inclusion of (C, A)-invariant subspaces.

Lemma 2.1. Let M_1, M_2 be two (C, A)-invariant subspaces of X_T with the representations $M_i = E_iX_{F_i}$. Then $M_1 \subset M_2$ if and only if $E_1 = E_2Y$ for some polynomial matrix Y.

Proof. Assume $E_1 = E_2Y$ for some polynomial matrix Y. Then

$$M_1 = E_1X_{F_1} = E_2YX_{F_1} \subset E_2X_{YF_1} = E_2X_{F_2} = M_2.$$

Conversely, assume $E_1X_{F_1} \subset E_2X_{F_2}$. Then, since clearly $E_2X_{F_2} \subset E_2F^p[z]$, we have

$$E_1X_{F_1} \subset E_2F^p[z]. \quad (2.2)$$

From the inclusion $M_1 \subset M_2$ it follows that M_1 and M_2 are compatible (C, A)-invariant subspaces. Thus there exist F_1 and F_2 such that

$$E_1F_1 = E_2F_2 = T'$$

with $T^{-1}T'$ a bicausal isomorphism. Now

$$E_1X_{\bar{F}_1} = E_1X_{\bar{F}_1} \quad \text{and} \quad E_1\bar{F}_1F^p[z] \subset E_2F^p[z].$$

Taking this together with (2.1), we have the inclusion

$$E_1F^p[z] \subset E_2F^p[z],$$

which implies, by [6], that $E_1 = E_2Y$.

Next we study the intersection of (C, A)-invariant subspaces, which is again a (C, A)-invariant subspace.
Lemma 2.2. Let $M_1, M_2 \subset X_T$ be (C, A)-invariant subspaces, and let $M_i = E_i X_F$, $i = 1, 2$. Let $M = M_1 \cap M_2$. Then

$$M = X_T \cap EF^p[z]$$

where E is the l.c.r.m. of E_1 and E_2.

Proof. Let

$$f \in E_1 X_{F_1} \cap E_2 X_{F_2} \subset E_1 F^p[z] \cap E_2 F^p[z] = EF^p[z],$$

where E is the l.c.r.m. of E_1 and E_2. But f also belongs to X_T, so $f \in X_T \cap EF^p[z]$.

Conversely, let E be any common right multiple of E_1 and E_2. Then

$$E = E_i Y_i \text{ and } EF^p[z] \subset E_i F^p[z], \quad i = 1, 2.$$

In turn this implies

$$X_T \cap EF^p[z] = X_T \cap E_i F^p[z], \quad i = 1, 2,$$

and so

$$X_T \cap EF^p[z] = M_1 \cap M_2 = M.$$

In particular, if E is the l.c.r.m. of E_1 and E_2, we have the equality (2.3).

Now the sum of two (C, A)-invariant subspaces is in general no longer (C, A)-invariant. However, there is a unique smallest (C, A)-invariant subspace containing this sum. This is characterized next.

Lemma 2.3. Let $M_1, M_2 \subset X_T$ be (C, A)-invariant subspaces, and let $M_i = E_i X_F$. Let M be the smallest (C, A)-invariant subspace containing both M_1 and M_2. Then $M = X_T \cap EF^p[z]$, where E is a g.c.l.d. of E_1 and E_2.

Proof. Let M be the smallest (C, A)-invariant subspace containing $M_1 + M_2$. Assume $M = EX_F$. Since $M_1 \subset M$, it follows, by Lemma 2.1, that E
is a left divisor of \(E_1 \). Similarly \(E \) is a left divisor of \(E_2 \). So \(E \) is a common left divisor.

Let \(E' \) be any common left divisor of \(E_1 \) and \(E_2 \). Thus \(E_1 = E'Y_1 \), \(E_2 = E'Y_2 \), and so

\[
E_1X_{F_1} = E'Y_1X_{F_1} \subseteq E'X_{Y_1F_1} = X_T \cap E'F^p[z].
\]

Analogously,

\[
E_2X_{F_2} \subseteq X_T \cap E'F^p[z].
\]

But this implies that \(E' \) is a left divisor of \(E \). Hence \(E \) is a g.c.l.d. of \(E_1 \) and \(E_2 \).

Conversely, let \(E \) be a g.c.l.d. of \(E_1 \) and \(E_2 \). Then \(X_T \cap EF^p[z] \) is \((C, A)\)-invariant and has the representation \(EX_F \) for some \(F \). Since \(E_i = EY_i \), it follows that

\[
M_i = X_T \cap E_iF^p[z] \subseteq X_T \cap EF^p[z] = M.
\]

So \(M_1 + M_2 \subseteq M \). Minimality follows by an argument as in the first part of the proof.

3. MINIMAL FACTORIZATIONS IN TERMS OF POLYNOMIAL MODELS

In this section we shall prove some necessary and sufficient conditions for the existence of minimal factorizations of \(W \), or equivalently, for the existence of a direct-sum decomposition of the state space of the form (2.1). We shall re-prove this equivalence in terms of polynomial models and polynomial matrices.

We first prove two lemmas.

Lemma 3.1. Let \(T = T_1T_2 \) and \(D = D_1D_2 \) be any factorizations of \(T \) and \(D \) respectively into nonsingular factors, and let

\[
E = T_1D_1 = D_1T_1
\]

be a least common right multiple of \(T_1 \) and \(D_1 \). Then

\[
T_1X_{T_2} \cap D_1X_{D_2} = X_T \cap EF^m[z].
\]
Proof. We first note that by [6]

\[T_1F^m[z] \cap D_1F^m[z] = EF^m[z], \]

and of course

\[T_1X_{T_2} \subseteq D_1X_{D_2} \subseteq X_T = X_D. \]

Hence

\[T_1X_{T_2} \cap D_1X_{D_2} \subseteq X_T \cap (T_1F^m[z] \cap D_1F^m[z]) = X_T \cap EF^m[z]. \]

Conversely, if \(Ef \in X_T \cap EF^m[z] \), then \(T^{-1}Ef \) is strictly proper, so that \(T^{-1}Ef = T_2^{-1}(T_1^{-1}E)f = T_1^{-1}D_1f. \) But \(T^{-1}D_1f \) strictly proper implies \(D_1f \in X_{T_2}. \) Thus,

\[T_1D_1f = Ef \in T_1X_{T_2}. \]

By the same considerations and bearing in mind that \(X_T = X_D \), we have \(Ef \in D_1X_{D_2}. \) Hence \(Ef \in T_1X_{T_2} \cap D_1X_{D_2}. \)

\[\square \]

Lemma 3.2. With the same notation as in Lemma 3.1, \(X_T \cap EF^m[z] = \{0\} \) iff all the left Wiener-Hopf factorization indices of \(T^{-1}E \) are nonnegative.

Proof. Let \(T^{-1}E = \Gamma \Delta V^{-1} \), with \(\Gamma \) bicausal, \(\Delta = \text{diag}(z^{s_1}, \ldots, z^{s_m}) \), and \(V \) unimodular, be a left W-H factorization of \(T^{-1}E \).

If, say \(\kappa_1 < 0 \), then

\[T^{-1}EV = \Gamma \begin{pmatrix} z^{s_1} \\ 0 \\ \vdots \\ 0 \end{pmatrix} \]

is strictly proper. Hence

\[EV \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \in X_T \cap EF^m[z] \]

is nonzero.
Conversely, suppose all the κ_i's are nonnegative. Note that if V is unimodular, then

$$EF'[z] = EVF'[z],$$

so we may as well take EV instead of E and assume the factorization $T^{-1}E = \Gamma \Delta$.

Assume $0 \neq Ef \in X_T \cap EF'[z]$, so $T^{-1}Ef$ is strictly proper. Thus, $\Gamma T^{-1}Ef = \Delta f$ is also strictly proper. However, this cannot be, since f is a polynomial vector and Δ a polynomial matrix. Thus $f = 0$.

Remark. Since we assume T and D to be left coprime, then any left factors T_1 and D_1 of T and D respectively are left coprime.

We are now in a position to prove:

Theorem 3.3. Let $W = T^{-1}D$ be a bicausal isomorphism, and let $T = T_1T_2$, $D = D_1D_2$ be factorizations of T and D. Then

$$X_T = T_1X_{T_2} \oplus D_1X_{D_2}$$

iff there exists a least common right multiple

$$E = T_1\overline{D}_1 = D_1\overline{T}_1$$

of T_1 and D_1 such that $T^{-1}E$ is a bicausal isomorphism.

Proof. Assume first that there exists a l.c.r.m. of T_1 and D_1 such that $T^{-1}E$ is a bicausal isomorphism. Note that since $T^{-1}D$ is a bicausal, then $T^{-1}E$ is bicausal iff $D^{-1}E$ is.

Now, if $T^{-1}E$ is bicausal, then $X_T = X_E$, and by minimality of E, \overline{D}_1 and \overline{T}_1 are right coprime. Also, by left coprimeness of T_1 and D_1, the representations

$$E = T_1\overline{D}_1 = D_1\overline{T}_1$$

imply, by [6], $X_T = X_E = T_1X_{D_1} \oplus D_1X_{T_2}$. However, $T^{-1}E = T_2^{-1}\overline{D}_1$ is bicausal, so $X_{\overline{D}_1} = X_{T_2}$, and by symmetry considerations, $X_{\overline{T}_1} = X_{D_2}$. Hence, $X_T = T_1X_{T_2} \oplus D_1X_{D_2}$.

Conversely, assume $X_T = T_1X_{T_2} \oplus D_1X_{D_2}$, and let E be any least common right multiple of T_1 and D_1. Since $T_1X_{T_2} \cap D_1X_{D_2} = \{0\}$ by Lemmas 3.1 and
3.2, all the left W-H indices of $T^{-1}E$ are nonnegative. Moreover,
\[\dim X_{T_2} + \dim X_{D_2} = \dim X_T, \]
or $\deg \det T_2 + \deg \det D_2 = \deg \det T_1 + \deg \det D_1 = \deg \det T = \deg \det D$.

Let $E = T_1 \bar{D}_1 = D_1 \bar{T}_1$. By left coprimeness of T_1 and D_1 and right coprimeness of \bar{D}_1 and \bar{T}_1, we have up to a constant factor
\[\det E = (\det T_1)(\det D_1), \]
so that $\deg \det E = \deg \det T$. Now, if $T^{-1}E = \Gamma \Delta V^{-1}$ is a left W-H factorization with Γ bicausal, and V unimodular, $\Delta = \text{diag}(z^{\kappa_1}, \ldots, z^{\kappa_m})$, the nonnegativity of all the κ_i's and the equality $\deg \det E = \deg \det T$ imply $\kappa_i = 0$, $i = 1, \ldots m$. Hence $T^{-1}E = \Gamma V^{-1}$, or $T^{-1}(EV) = \Gamma$, so that the least common right multiple of T_1 and D_1, EV, satisfies the condition that $T^{-1}(EV)$ is bicausal.

Remark. The decomposition $X_T = X_E = T_1 X_{D_1} \oplus D_1 X_{T_1}$ means that on X_T we can redefine the $F[z]$-module structure so that both $T_1 X_{T_2}$ and $D_1 X_{D_2}$ become submodules. Thus the invariant subspace $T_1 X_{T_2}$ and the (C, A)-invariant subspace $D_1 X_{D_2}$, both regarded as (C, A)-invariant subspaces, are compatible, in the sense that for the same constant output injection matrix H, both are $(A + HC)$-invariant. In this case, $A + HC$ is simply S_E.

This should come as no surprise, since we know from Wonham [15] that two (A, B)-invariant subspaces are compatible iff their intersection is also (A, B)-invariant. Hence, by duality, any two (C, A)-invariant subspaces are compatible iff their sum is also (C, A)-invariant. Incidentally, a direct proof of this fact is rather elusive.

With the above conditions we can give a concrete representation of the factors of $W = W_1 W_2$ in terms of polynomial matrices whenever such a minimal factorization exists.

Theorem 3.4. $W = T^{-1}D$ has a minimal factorization $W = W_1 W_2$ iff there exist factorizations $T = T_1 T_2$, $D = D_1 D_2$ such that
\[X_T = T_1 X_{T_2} \oplus D_1 X_{D_2}. \]
(3.1)

In this case, $W_1 = T_2^{-1} \bar{D}_1$, $W_2 = \bar{T}_1^{-1}D_2$, where $E = T_1 \bar{D}_1 = D_1 \bar{T}_1$ is a l.c.r.m. of T_1 and D_1 such that $T^{-1}E$ is bicausal.
Proof. If there exist factorizations of T and D such that (3.1) holds, then by Theorem 3.3, there exists a polynomial matrix E such that E is a least common right multiple of T_1 and D_1 and $T^{-1}E$ is bicausal. Suppose $E = T_1D_1 = D_1T_1$, so we have, by coprimeness, that $\det T_1 = \det \bar{T}_1$. Hence, \(W = T^{-1}D = (T^{-1}E)(E^{-1}D) = (T^{-1}D_1)(\bar{T}_1^{-1}D_2) = W_1W_2 \) and \(\delta(W) = \delta(T^{-1}D) = \deg \det T = \deg \det T_2 + \deg \det \bar{T}_1 = \delta(T_2^{-1}D_1) + \delta(\bar{T}_1^{-1}D_2) \), so the factorization is minimal and W_1 and W_2 are bicausal isomorphisms.

Conversely, suppose $W = W_1W_2$ is a minimal factorization. Let

$$W_1 = T_2^{-1}\bar{D}_1, \quad W_2 = \bar{T}_1^{-1}D_2$$

be left coprime factorizations of W_1 and W_2. By minimality of the factorization $W = (T_2^{-1}\bar{D}_1)(\bar{T}_1^{-1}D_2)$, \bar{D}_1 and \bar{T}_1 must be right coprime.

Let \(\bar{D}_1\bar{T}_1^{-1} = T_1^{-1}D_1 \) (3.3)

with T_1 and D_1 left coprime. This factorization is determined up to a common left unimodular factor. It follows that $\deg \det \bar{D}_1 = \deg \det D_1 = \deg \det T_2$ and that $\deg \det \bar{T}_1 = \deg \det T_1 = \deg \det D_2$, and by minimality $\delta(W) = \deg \det T = \delta(W_1) + \delta(W_2) = \deg \det T_2 + \deg \det \bar{T}_1 = \deg \det T_2 + \deg \det T_1$, and by the same considerations $\deg \det D = \deg \det D_1 + \deg \det D_2$.

Hence the equality $W = T^{-1}D = (T_1T_2)^{-1}(D_1D_2)$ and left coprimeness of T and D imply that the matrices T_1T_2 and D_1D_2 are also left coprime. This, however implies that up to a left unimodular factor V we have $VT = T_1T_2$, $VD = D_1D_2$.

Since we could have started out the factorization $W = (VT)^{-1}(VD)$ in the first place, we can conclude without loss of generality that $T = T_1T_2$ and $D = D_1D_2$. Thus T_1 and D_1 are left factors of T and D respectively.

Now (3.3) implies that $T_1\bar{D}_1 = D_1\bar{T}_1 = E$, and by right coprimeness of \bar{D}_1 and \bar{T}_1, E is a least common right multiple of T_1 and D_1. Also,

$$T^{-1}E = T^{-1}T_1\bar{D}_1 = T_2^{-1}\bar{D}_1 = W_1$$

is bicausal by assumption. Thus the conditions of Theorem 3.3 are fulfilled, and we have a direct-sum decomposition $X_T = T_1X_{T_2} \oplus D_1X_{D_2}$, where $T = T_1T_2$, $D = D_1D_2$, so that $T_1X_{T_2}$ is S_T-invariant and $D_1X_{D_2}$ is S_T-invariant. \(\blacksquare \)
RATIONAL MATRIX FUNCTIONS

REMARKS.

(1) Note that W can be factored minimally into $W = W_1 W_2$ iff W^{-1} can be factored $W^{-1} = W_2^{-1} W_1^{-1}$. Thus, since $W^{-1} = D^{-1} T$, we have symmetry of roles for T and D.

(2) Since E is unique up to a right unimodular factor, then so is the factorization of W associated with the particular decomposition of the state space.

4. EXAMPLES AND SOME PARTICULAR CASES

In this section we shall work out some particular cases and examples. The following is well known [4, 14, 21:

Lemma 4.1. Suppose $\delta(W) = \dim X_T = n$. If X_T can be decomposed into a direct sum of n one-dimensional S_T-invariant subspaces, or equivalently, if A can be diagonalized, then W admits a minimal factorization $W = W_1 \cdots W_n$ such that $\delta(W_i) = 1$ and the poles of the W_i's can be arranged in any order.

In particular, if S_T has n distinct eigenvalues, then there exists a minimal factorization of W into first-order factors.

By symmetry of roles, if $A^\#$, or S_D can be diagonalized, we have the same result.

Remark. Given any transfer function W, there is always an output-injection equivalent transfer function W' with any spectrum. Hence by output injection, we can always get (say) n distinct eigenvalues, and hence factorization into first-order factors.

Lemma 4.2. Suppose $\delta(W) = \dim X_T = 2$, and suppose neither S_T nor S_D can be diagonalized. Let λ be the eigenvalue of S_T, and μ of S_D.

Then W can be factored iff either

$$\text{Ker} T(\lambda) \cap \text{Ker} D(\mu) = \{0\}$$

or, for some

$$0 \neq \xi \in \text{Ker} T(\lambda) \cap \text{Ker} D(\mu) ,$$
we have

\[\frac{1}{z - \lambda} T\xi - \frac{1}{z - \mu} D\xi = 0. \]

Proof. By the assumptions, the only \(S_T \) or \(S_D \)-invariant subspaces are the respective one-dimensional eigenspaces, say \(M_1 \) and \(M_2 \). So either \(M_1 = M_2 \), in which case there is no direct-sum decomposition, or \(X_T = M_1 \oplus M_2 \).

Equivalently, there is no decomposition, hence no factorization of \(W \) iff \(S_T \) and \(S_D \) have a common eigenvector.

Now, by [6], \(f \in X_T \) is an eigenvector of \(S_T \) iff it is of the form

\[f = \frac{1}{z - \lambda} T\xi_f \]

for some \(\xi_f \in \text{Ker} T(\lambda) \subset F^m \) and \(\xi_f = \Pi_+ T^{-1}zf \). Also note that for any scalar constant \(\alpha, \xi_{\alpha f} = \alpha \xi_f \).

Furthermore,

\[\Pi_+ D^{-1}zf = \Pi_+ (D^{-1}T)T^{-1}zf \]

\[= \Pi_+ (I - D^{-1}U)T^{-1}zf = \Pi_+ T^{-1}zf. \]

The last equality holds because \(D^{-1}U \) is strictly proper and \(T^{-1}zf \) is proper. Thus \(f \) is a common eigenvector iff

\[f = \frac{1}{z - \lambda} T\xi_f = \frac{1}{z - \mu} D\xi_f \]

and \(0 \neq \xi_f \in \text{Ker} T(\lambda) \cap \text{Ker} D(\mu) \).

We conclude this section with some simple examples, the first of which illustrates the results of Section 3:

Example 4.3. Let

\[W = \begin{pmatrix} \left(\frac{z + 1}{z} \right)^2 & -\frac{z + 1}{z} & z^2 & z + 1 \frac{z}{z} \\ 0 & z + 1 & z \end{pmatrix} = T^{-1}D \]
with

\[T = \begin{pmatrix} z^2 & z \\ 0 & z \end{pmatrix}, \quad D = \begin{pmatrix} (z+1)^2 & 0 \\ 0 & z+1 \end{pmatrix}. \]

Let

\[T = T_1T_2 = \begin{pmatrix} z & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} z & 0 \\ 0 & z \end{pmatrix} \]

and

\[D = D_1D_2 = \begin{pmatrix} z+1 & 0 \\ 0 & z+1 \end{pmatrix} \begin{pmatrix} z+1 & 0 \\ 0 & 1 \end{pmatrix}. \]

Now

\[X_T = \text{Sp}\{\begin{pmatrix} z \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \}, \quad X_{T_2} = \text{Sp}\{\begin{pmatrix} 1 \\ 0 \end{pmatrix} \}, \quad X_{D_2} = \text{Sp}\{\begin{pmatrix} 1 \\ 0 \end{pmatrix} \}. \]

whereas

\[X_{T_2} = \text{Sp}\{\begin{pmatrix} 1 \\ 0 \end{pmatrix} \}, \quad X_D = \text{Sp}\{\begin{pmatrix} 1 \\ 0 \end{pmatrix} \}. \]

So

\[T_1X_{T_2} = \text{Sp}\{\begin{pmatrix} z \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \}, \quad D_1X_{D_2} = \text{Sp}\{\begin{pmatrix} z+1 \\ 0 \end{pmatrix} \}. \]

Thus, \(X_T = T_1X_{T_2} \oplus D_1X_{D_2} \). Let

\[E = \begin{pmatrix} z & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} z+1 & 0 \\ 0 & z+1 \end{pmatrix} = \begin{pmatrix} z+1 & 0 \\ 0 & z+1 \end{pmatrix} \begin{pmatrix} z & 1 \\ 0 & 1 \end{pmatrix} \]

be a least common right multiple of \(T_1 \) and \(D_1 \) with

\[T^{-1}E = \begin{pmatrix} z/(z+1) & 0 \\ 0 & z/(z+1) \end{pmatrix} \]
bicausal. Thus W has a factorization:

$$W = (T_2^{-1}D_1)(T_1^{-1}D_2)$$

$$= \begin{pmatrix} 1/z & 0 \\ 0 & 1/z \end{pmatrix} \begin{pmatrix} z+1 & 0 \\ 0 & z+1 \end{pmatrix} \begin{pmatrix} 1/z & -1/z \\ 0 & 1 \end{pmatrix} \begin{pmatrix} z+1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= W_1W_2,$$

with $\delta(W) = 3$, $\delta(W_1) = 2$, $\delta(W_2) = 1$.

The next two examples illustrate Lemma 4.2.

Example 4.4. This example is very similar in structure to the one given by Dewilde and Vandewalle [4], where there was no factorization.

Let

$$T = \begin{pmatrix} z & 0 \\ 1 & z \end{pmatrix}, \quad D = \begin{pmatrix} z-1 & 0 \\ 1 & z-1 \end{pmatrix}.$$

In this case, the eigenvalues of T and D respectively are $\lambda = 0$, $\mu = 1$. Now

$$\text{Ker } T(0) = \text{Sp} \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} = \text{Ker } D(1)$$

and

$$\frac{1}{z-0} T \begin{pmatrix} 0 \\ 1 \end{pmatrix} - \frac{1}{z-1} D \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0.$$

So, by Lemma 4.2, there is no factorization of $W = T^{-1}D$.

Example 4.5. Let

$$T = \begin{pmatrix} z^2 & 0 \\ 1 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} (z-1)^2 & 0 \\ 1 & 1 \end{pmatrix}.$$

Although

$$\text{Ker } T(0) = \text{Ker } D(1) = \text{Sp} \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\},$$
we have
\[
\frac{1}{z} T \left(\begin{array}{c} 1 \\ -1 \end{array} \right) - \frac{1}{z-1} D \left(\begin{array}{c} 1 \\ -1 \end{array} \right) = \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \neq 0,
\]
so there is a factorization of W, since S_T and S_D have no common eigenvector.

Let
\[
T = T_1 T_2 = \left(\begin{array}{cc} z & 0 \\ 0 & 1 \end{array} \right) \left(\begin{array}{cc} z & 0 \\ 1 & 1 \end{array} \right),
\]
\[
D = D_1 D_2 = \left(\begin{array}{cc} z - 1 & 0 \\ 0 & 1 \end{array} \right) \left(\begin{array}{cc} z - 1 & 0 \\ 1 & 1 \end{array} \right).
\]

So
\[
T_1 X_{T_2} = \text{Sp}\left(\left(\begin{array}{c} z \\ 0 \end{array} \right) \right) \quad \text{and} \quad D_1 X_{D_2} = \text{Sp}\left(\left(\begin{array}{c} z - 1 \\ 0 \end{array} \right) \right)
\]
and
\[
X_T = \left(\begin{array}{c} az + b \\ 0 \end{array} \right) = T_1 X_{T_2} \oplus D_1 X_{D_2},
\]
and we have the following factorization:
\[
W = \left(\begin{array}{ccc} \left(\frac{z - 1}{z} \right)^2 & 0 \\ \frac{2z - 1}{z^2} & 1 \end{array} \right) = \left(\begin{array}{ccc} \frac{z - 1}{z} & 0 \\ \frac{1}{z} & 1 \end{array} \right) \left(\begin{array}{ccc} \frac{z - 1}{z} & 0 \\ \frac{1}{z} & 1 \end{array} \right)
\]
\[
= W_1 W_2, \quad \text{with} \quad W_1 = W_2 = T_2^{-1} \bar{D}_1 = \bar{T}_1^{-1} D_2,
\]
where
\[
E = T_1 \bar{D}_1 = D_1 \bar{T}_1
\]
\[
- \left(\begin{array}{cc} z & 0 \\ 0 & 1 \end{array} \right) \left(\begin{array}{cc} z - 1 & 0 \\ 1 & 1 \end{array} \right) - \left(\begin{array}{cc} z - 1 & 0 \\ 1 & 1 \end{array} \right) \left(\begin{array}{cc} z & 0 \\ 0 & 1 \end{array} \right)
\]
is such that $T^{-1} E$ is bicausal.
5. FACTORIZATION OF SYMMETRIC MATRICES

In this section we specialize the analysis of Section 3 to the case of a real symmetric transfer function. This work is motivated by Ran [13], whose tools in the analysis are those of Bart, Gohberg, and Kaashoeck [2], whereas here we apply again polynomial methods. In particular we shall see how the symmetry of W is reflected in the factors.

A complete analysis in terms of supporting projections is given in [13].

Assume throughout this section that $W = \tilde{W}$, where $\tilde{}$ denotes transpose.

As before, assume $W = T^{-1}D = I + T^{-1}U$. So $D = T + U$, $T^{-1}U$ is strictly proper, and T and D left coprime.

$W = W$ implies

$$
T^{-1}D = \tilde{D}\tilde{T}^{-1},
$$

$$
T^{-1}U = \tilde{U}\tilde{T}^{-1}.
$$

Since $T^{-1}D$ is bicausal, $X_{\tilde{T}} = X_D$ (equality as sets). This, however, is not the case for X_T and $X_{\tilde{T}}$. But they are isomorphic as linear spaces (not as modules). This isomorphism is related to the following: Let $G \in F^{m \times m}(z^{-1})$. Then $T_G : F^m[z] \to F^m[\tilde{z}]$ is the Toeplitz operator defined by

$$
T_Gf = \Pi_+ Gf, \quad f \in F^m[z].
$$

In particular, if EF^{-1} is a polynomial matrix fraction representation of a bicausal isomorphism, then

$$
\Pi_E T_{EF^{-1}} \text{ restricted to } X_F
$$

is an isomorphism acting from X_F to X_E, whose inverse is given by

$$
\Pi_F T_{FE^{-1}} \text{ restricted to } X_F,
$$

Since we can assume without loss of generality that E^{-1} is proper, in which case so is F^{-1}, then the isomorphisms above are simply

$$
T_{EF^{-1}} \text{ restricted to } X_F, \quad T_{FE^{-1}} \text{ restricted to } X_E.
$$

Now (5.1) implies that $D\tilde{T} = \tilde{T}D$ with T, D left coprime and \tilde{T}, \tilde{D} right coprime; hence by [6] there exists a module isomorphism

$$
Z_1 : X_{\tilde{T}} \to X_T
$$
given by \(Z_1 f = \Pi_D Df, \ f \in X_T \). Note that

\[
Z_1 f = \Pi_D Df = T \Pi_D T^{-1} Df = T \Pi_D (I - T^{-1} U) f = T \Pi_D T^{-1} U f = \Pi_D U f.
\]

\(Z_1 \) is an intertwining map in the sense that

\[
Z_1 S_T = S_T Z_1.
\]

By symmetry of roles, we also have

\[
Z_2 : X_D \rightarrow X_D,
\]

\[
Z_2 f = \Pi_D U f,
\]

\(f \in X_D \) a module isomorphism, and

\[
Z_2 f = - \Pi_D U f.
\]

Definition. Let \(f \in X_T, \ g \in X_T \). Define \(\langle f, g \rangle = \langle T^{-1} f, g \rangle \), where for \(h, k \in F^m((z^{-1})) \), \(h = \sum h_i z^{-i} \), \(k = \sum k_i z^{-i} \) we define

\[
[h, k] = \sum (h_i, k_{-i-1}).
\]

Under the pairing \(\langle \ , \ \rangle \), we can identify the dual space of \(X_T \) with \(X_T \). Also, under this scalar product, \(Z_1 \) is a self-adjoint system isomorphism.

Lemma 5.1. The following diagram is commutative:

\[
\begin{array}{ccc}
X_T & \xrightarrow{Z_1} & X_T \\
R = T_D^{-1} & \downarrow & \downarrow \text{Id} = R^* \\
X_D & \xrightarrow{Z_2} & X_D
\end{array}
\]

or

\[
-Z_2 = Z_1 T_D^{-1}
\]

Notice that both \(Z_1 \) and \(Z_2 \) are self-adjoint maps, and since, by [6],

\[
T_D^{-1} = \text{Id},
\]
it follows that
\[-Z_2 = R^* Z_1 R,\]
i.e., \(-Z_2\) and \(Z_1\) are congruent.

Proof. Let \(f \in X_{\tilde{T}}\). Then
\[
Z_1 T_{\tilde{T},D^{-1}} f = \Pi T D \Pi_+ TD^{-1} f = \Pi T D (1 - \Pi_+) \tilde{T} \tilde{D}^{-1} f
\]
\[
= \Pi T D \tilde{T} \tilde{D}^{-1} f - \Pi T D \Pi_+ TD^{-1} f = \Pi T \tilde{T} \tilde{D}^{-1} f - \Pi T D \Pi_+ D^{-1} T f
\]
\[
= \Pi T f - \Pi T D \Pi_+ (I - D^{-1} U) f = 0 + \Pi T D \Pi_+ D^{-1} U f
\]
\[
= T \Pi_+ T^{-1} D \Pi_+ D^{-1} U f = \Pi D U f,
\]
the last equality holding because \(\Pi_+ D^{-1} U f\) is strictly proper and \(T^{-1} D\) proper, whence the first \(\Pi_+\) can be canceled and so can \(T\) and \(T^{-1}\).

The congruence of \(Z_1\) and \(-Z_2\) is related to generalized Bezoutians. The generalized Bezoutian of the quadrupole \((D, \tilde{T}, T, \tilde{D})\) is defined as
\[
B_1(z, w) = \frac{D(z) \tilde{T}(w) - T(z) \tilde{D}(w)}{z - w}.
\]
Since \(D \tilde{T} = T \tilde{D}\), \(B_1(z, w)\) is a polynomial matrix in \(z\) and \(w\); hence it has a representation as
\[
B_1(z, w) = \sum \sum B_{ij} z^{j-1} w^{i-1}.
\]
It has been shown in Fuhrmann [9, Theorem 4.2] that the Bezoutian \(B_1\) can be identified as a matrix representation of the intertwining map \(Z_1\), so its signature is equal to the signature of \(Z_1\), i.e.,
\[
\sigma(B_1) = \sigma(Z_1).
\]

Now the Bezoutian associated with the quadruple \((T, \tilde{D}, D, \tilde{T})\) is
\[
B_2(z, w) = \frac{T(z) \tilde{D}(w) - D(z) \tilde{T}(w)}{z - w},
\]
and obviously,

\[B_1 = -B_2, \text{ whence } \sigma(B_1) = -\sigma(B_2). \]

By symmetry, \(B_2 \) can be identified as a matrix representation of \(Z_2 \), so its signature is equal to that of \(Z_2 \). In other words,

\[\sigma(Z_1) = -\sigma(Z_2). \]

This is not surprising, since by Theorem 5.3 of [9], the congruency of \(-Z_2 \) and \(Z_1 \), i.e. \(-Z_2 = R^*Z_1R \), means that \(-Z_2 \) and \(Z_1 \) have the same rank and signature.

We now turn to orthogonality and orthogonal complements. Since we are identifying the dual space of \(X_T \) with \(X_T^\perp \), the orthogonal complement of a subspace of \(X_T \) is a subspace of \(X_T^\perp \).

Lemma 5.2. Let \(T = T_1T_2 \), \(D = D_1D_2 \). Then

(a) \((T_1X_{T_2})^\perp = T_2X_{T_1}^\perp \)

(b) \((D_1X_{D_2})^\perp = T_{D_2}^\perp(D_2X_{D_1}) \)

where the orthogonal complements in each case are subspaces of \(X_T^\perp \).

Proof. Part (a) has been proven in Fuhrmann [8, 9]. For part (b), since the dimensions are complementary, it suffices to prove orthogonality. Let \(f \in X_{D_2^\perp} \), \(g \in X_{D_1^\perp} \). Then

\[
\langle D_1f, T_{D_2}^{-1}D_2g \rangle = \left[T^{-1}D_1f, \Pi, T\bar{D}^{-1}D_2g \right]
= \left[D_1f, \bar{D}_2^{-1}D_2g \right] = \left[f, g \right] = 0.
\]

We now turn to decompositions and factorizations.

Assume \(W = W_1W_2 \) is a minimal factorization corresponding to a direct-sum decomposition

\[X_T = T_1X_{T_2} \oplus D_1X_{D_2}. \]

This induces a decomposition of \(X_T^\perp \)

\[X_T^\perp = \left(T_1X_{T_2} \right)^\perp \oplus \left(D_1X_{D_2} \right)^\perp. \]
or, by Lemma 5.2,

\[X_T = \tilde{T}_2 X_{T_1} \oplus T \tilde{D}_1 : (\tilde{D}_2 X_{D_1}). \]

Now, \(T_2 X_{T_1} \) is an \(S \)-invariant subspace, and \(\tilde{D}_2 X_{D_1} \) is \(S \)-invariant. (But \(T \tilde{D}_1 : (\tilde{D}_2 X_{D_1}) \) is not necessarily \(S \)-invariant.) If we apply the module isomorphism \(Z_1 : X_T \rightarrow X_T \), then

\[X_T = Z_1(\tilde{T}_2 X_{T_1}) \oplus Z_1 T \tilde{D}_1 : (\tilde{D}_2 X_{D_1}) \]

by Lemma 5.1.

Since \(Z_1 \) and \(Z_2 \) are intertwining maps, they preserve invariant subspaces; hence

\[Z_1(\tilde{T}_2 X_{T_1}) = T_1 X_{T_2} \quad \text{and} \quad Z_2(\tilde{D}_2 X_{D_1}) = D_1 X_{D_2} \]

for some other factorizations \(T = T_1 T_2 \) and \(D = D_1 D_2 \); and obviously, the direct-sum decomposition

\[X_T = T_1 X_{T_2} \oplus D_1 X_{D_2} \]

corresponds to the factorization \(W = \tilde{W} = \tilde{W}_2 \tilde{W}_1 \), since \(Z_1 \) is a system isomorphism, so it preserves transfer functions.

The next lemma specifies what \(T_1 \) and \(D_1 \) are, in terms of the first factorizations \(T = T_1 T_2 \) and \(D = D_1 D_2 \).

Lemma 5.3. Let

\[X_T = T_1 X_{T_2} \oplus D_1 X_{D_2} \quad \text{and} \quad X_T = T_1 X_{T_2} \oplus D_1 X_{D_2} \]

be the direct-sum decompositions corresponding to the factorizations \(W = W_1 W_2 \) and \(W = \tilde{W}_2 \tilde{W}_1 \) respectively. Then \(T_1 \) is a greatest common left divisor of \(T \) and \(\tilde{T} D_2 \).

Symmetrically, \(D_1 \) is a g.c.l.d. of \(D \) and \(T \tilde{D}_2 \).

Proof. By construction, we have

\[Z_1(\tilde{T}_2 X_{T_1}) = T_1 X_{T_2} \]
This means
\[\dim X_{\tilde{T}_1} = \dim X_{\tilde{T}_2}, \]
or, equivalently,
\[\deg \det T_1' = \deg \det T_2 \]
and
\[\mathcal{Z}_1(\tilde{T}_2 X_{\tilde{T}_1}) \subset T_1' X_{\tilde{T}_2}. \]

Let \(f \in X_{\tilde{T}_1} \), so
\[
\mathcal{Z}_1(\tilde{T}_2 f) = \Pi T \tilde{D} T_2 f = T \Pi' T^{-1} D \tilde{T}_2 f = T \Pi' \tilde{D} \tilde{T}_2^{-1} \tilde{T}_2 f = \]
\[T \Pi' \tilde{D} \tilde{T}_2^{-1} f \in T_1' X_{\tilde{T}_2}, \]
or
\[T_1'^{-1} T \Pi' \tilde{D} \tilde{T}_2^{-1} f = T_2' \Pi' \tilde{D} \tilde{T}_2^{-1} f \in X_{\tilde{T}_2}, \]
which implies that the last term is a polynomial. Hence
\[0 = \Pi T_2 \Pi' \tilde{D} \tilde{T}_2^{-1} f = \Pi T_2' \tilde{D} \tilde{T}_2^{-1} f \quad \forall f \in X_{\tilde{T}_1}. \]

Now, since any \(g \in F^m[z] \) can be decomposed into
\[g = f + \tilde{T}_1 h \]
with
\[f \in X_{\tilde{T}_1}, \quad h \in F^m[z] \]
and \(\Pi T_2' \tilde{D} \tilde{T}_2^{-1} (\tilde{T}_1 h) = 0 \) for any \(h \), we have
\[\Pi T_2' \tilde{D} \tilde{T}_2^{-1} g = 0 \quad \text{for any polynomial vector } g. \]
This implies that $T_2'\tilde{T}_1^{-1} = N$ is a polynomial matrix. To simplify: $N = T_2'\tilde{T}_1^{-1} = T_2'\tilde{T}^{-1}TT_1^{-1} = T_2'\tilde{T}^{-1}D\tilde{T}_2 = T_1'r^{-1}D\tilde{T}_2$; hence,

$$T_1'N = D\tilde{T}_2$$ \hspace{1cm} (5.2)

so T_1' is a common left factor of T and $D\tilde{T}_2$. Maximality follows from the fact that

$$\text{deg det } T_1' = \text{deg det } T_2$$

and by left coprimeness of T_1' and D.

If $T_1'S$ is a common left factor, we have

$T_1'SM = D\tilde{T}_2$ for some polynomial matrix M.

Therefore, by equality of determinantal degrees, SM and D are right coprime, so M and D are right coprime. Also, $T_1'S$ and D are left coprime, since $T_1'S$ is a left factor of T. This implies $\text{deg det } T_1'S = \text{deg det } T_2 = \text{deg det } T_1'$, so S is unimodular.

Corollary. With the above notation, we have the following factorization of W:

$$\tilde{T}^{-1}D = W = T_2^{-1}N\tilde{T}_2^{-1},$$

following from (5.2), and T_2' has the same determinantal degree as T_1 (or \tilde{T}_1') by construction, so this is a "minimal" factorization. In particular, T_2' has the same spectrum as T_1.

We conclude with an alternative proof of a theorem of Ran [13] about factorizations of the form

$$W = \tilde{W}_2W_3W_2.$$

We need two lemmas.

The first lemma is a general result about inclusion of invariant subspaces, which follows directly from Lemma 2.1.

Lemma 5.4. Suppose T has two factorizations

$$T = T_1T_2 = T_1'T_2'.$$
RATIONAL MATRIX FUNCTIONS

Then

\[T_1'X_{T_2} \subseteq T_1X_{T_2} \]

if for some polynomial matrix \(T_3 \),

\[T_1' = T_1T_3. \]

Lemma 5.5. Suppose \(X_T = T_1X_{T_2} \oplus D_1X_{D_2} = T_1'X_{T_2} \oplus D_1'X_{D_2} \) are two direct-sum representations such that

\[T = T_1T_2 = T_1'T_2', \quad D = D_1D_2 = D_1'D_2', \]

and suppose

\[T_1'X_{T_2} \subseteq T_1X_{T_2}. \]

Let \(E \) be the l.c.r.m. of \(T_1 \) and \(D_1 \) such that \(T^{-1}E \) is bicausal, and let \(E' \) be the corresponding matrix for \(T_1' \) and \(D_1' \). Then \(T_1X_{T_2} \) is invariant under both \(S_E \) and \(S_{E'} \).

Proof. The invariance under \(S_E \) is due to construction. Let \(E' = T_1'D_1' = D_1'T_1' \). By the previous lemma,

\[T_1' = T_1T_3, \]

hence

\[E' = T_1T_3D_1', \]

and \(T^{-1}E' = T_2^{-1}(T_3D_1') \) is bicausal. This implies that \(X_{T_2} = X_{T_3D_1} \).

Thus, the \(S_E \)-invariant subspace \(T_1X_{T_3D_1} \) is actually equal to \(T_1X_{T_2} \) \(\blacksquare \).

Corollary. If \(T_1'X_{T_2} \subseteq T_1X_{T_2} \) and \(D_1X_{D_2} \subseteq D_1'X_{D_2} \), then the \((C, \Lambda) \)-invariant subspace

\[V = T_1X_{T_2} \cap D_1X_{D_2} \]

is invariant under both \(S_E \) and \(S_{E'} \).
This means that the pair of subspaces $T'_1X_{T_2}$ and V, whose (direct) sum is $T_1X_{T_2}$, are compatible (C, A)-invariant subspaces, and so is the pair V and $D_1X_{D_2}$.

Theorem 5.6. Let W be a symmetric normalized bicausal isomorphism, and suppose $W = W_1W_2$ is a minimal factorization corresponding to the direct-sum decomposition

$$X_T = T_1X_{T_2} \oplus D_1X_{D_2},$$

and $W = \tilde{W}_2\tilde{W}_1$ corresponds to

$$X_T = T'_1X_{T_2} \oplus D'_1X_{D_2'}.$$

Then W admits a minimal factorization of the form

$$W = \tilde{W}_2W_3W_2$$

iff $T'_1X_{T_2} \subseteq T_1X_{T_2}$ and $D_1X_{D_2} \subseteq D'_1X_{D_2'}$.

Proof. Recall that by Theorem 3.3, $W_1 = T_2^{-1}\overline{D}_1 = T^{-1}E$, with $E = T_1\overline{D}_1 = D_1\overline{T}_1$ being a l.c.r.m. of T_1 and D_1 such that $T^{-1}E$ is bicausal. W_1 is the transfer function of the induced system operating in the state space $T_1X_{T_2}$, and \tilde{W}_2 is the transfer function of the system induced in $T'_1X_{T_2}$.

Now W_1 has a minimal factorization iff X_{T_2} can be decomposed into a direct sum of an S_{T_2}-invariant and an S_{D_1}-invariant subspace. Equivalently, $T_1X_{T_2}$ can be decomposed into an S_{T}-invariant subspace and an S_{E}-invariant subspace.

Thus if $W = \tilde{W}_2W_3W_2 = W_1W_2$ is a minimal factorization, then $W_1 = \tilde{W}_2W_3$ is a minimal factorization. This implies

$$T'_1X_{T_2} \subseteq T_1X_{T_2}.$$

By the same considerations, since \tilde{W}_1 is the transfer function of the system operating in $D'_1X_{D_2'}$, then the minimal factorization $\tilde{W}_1 = \tilde{W}_3\tilde{W}_2$ implies $D_1X_{D_2} \subseteq D'_1X_{D_2'}$.

Conversely, if $T'_1X_{T_2} \subseteq T_1X_{T_2}$ and $D_1X_{D_2} \subseteq D'_1X_{D_2'}$, then by Lemma 5.5,

$$V = T_1X_{T_2} \cap D'_1X_{D_2'},$$

regarded as a subspace of $T_1X_{T_2}$, is the necessary S_{E}-invariant complement to
yielding the minimal factorization $W_1 = \hat{W}_2 W_3$ corresponding to the direct-sum decomposition

$$T_1 X_{T_2} = T_1 X_{T_2} \oplus V.$$

Hence $W = W_1 W_2 = \hat{W}_2 W_3 W_2$ is a minimal factorization.

REFERENCES

Received 16 January 1984; revised 15 May 1984