Evolutionary Software Improvement for Instruction Set Meta-evolution

Michael Orlov and Moshe Sipper

Department of Computer Science
Ben-Gurion University
Israel

August 19, 2008
In Evolutionary Computation, only relatively small-scale solutions are viable

Our goal: evolving large-scale solutions

Method: **evolutionary software improvement**

First step: Instruction set (meta-)evolution in the genetic-programming system Megavac

Result: ESI process is feasible for evolutionary improvement of large software systems
Megavac

- Spatially structured, steady-state evolutionary platform
- Individuals are represented as cyclic linear programs (stack-based)
- Similar in concept to Avida (with emphasis is on EC and not ALife)
- Main components:
 - Genomes container (each in *wait* or *active* state)
 - Instruction scheduler (runs instructions of *active* genomes)
 - Connection topology (e.g., toroidal)
 - Selection method (e.g., tournament)
 - Mutator (variable-length mutations)
 - Reproducer (e.g., best-neighbor into worst-self)
 - Environment that provides inputs to genomes in *wait* state, and rewards genomes that send back correct outputs
Evolutionary Software Improvement: Requirements

1. There must be some aspect of the system that can be changed to improve some of the system’s characteristics
 - not necessarily a specific component — can be some behavioral aspect

2. The chosen sub-system’s function is representable as an evolvable program
 - requires definition of sufficiently expressive primitives

3. The chosen component or aspect has to be *amenable* to evolutionary improvement
 - the functionality should be sufficiently algorithmic in nature
 - comparison of evolved functionalities should be reasonably fast (this does not restrict the size of the system as a whole!)
Evolutionary Software Improvement: Process

1. Analyze the software system, and locate the aspect / component that can be expressed algorithmically
 - has to be sufficiently independent to be expressible with a reasonable-size program
 - must possess sufficient behavioral freedom to justify the evolutionary approach
 - substitution and evaluation of an altered component must be sufficiently brief

2. Define a fitness measure quantifying the performance of the component
 - must express objective software improvement goals: efficiency, quality, parsimony pressure, ...

3. Analyze the chosen component, and define the language for expressing evolving individuals
 - primitives must allow the necessary freedom of expressed individuals
 - the existing component must be naturally expressible in the language — may be used to seed the initial population
If the software improvement process evolves a better aspect or component, the system as a whole is improved using evolutionary computation.

If such a system is a state of the art software, the result may be human-competitive!
Let’s go over the ESI requirements and apply the ESI process.

- Key aspect to improve: instruction set (it’s a first step for ESI...)
- Representable as evolvable program: simple bit-vector will do
- Amenability to evolutionary improvement: due to linear GP, Megavac is very fast
- Fitness measure: the area below the maximal fitness curve
 - nice property — independent from problems on which Megavac is run

We develop problem-fitting instruction sets in meta-circular fashion.
Experimental Setup

- ECJ framework (by Luke and Panait) is used to evolve bit vectors
- Simple genetic algorithm is used
- Each bit vector of size 33 represents a subset of the complete Megavac instruction set
- ECJ:
 - population size — 40
 - 40 generations
 - single-point crossover $p_{\text{cross}} = 0.8$, single bit mutation $p_{\text{mut}} = 0.05$
 - tournament selection of size 2
- Megavac:
 - 1000 generations
 - 32 instruction execution rounds in each generation
 - population size 128, torus 4-neighbor topology
 - tournament selection includes all neighbors
 - variable-length mutation, data / control stack sizes of 4, 3 general-purpose registers
Experimental Setup Comments

ECJ setup is actually quite simple, this is a diagram straight from ECJ Tutorial:

![ECJ Setup Diagram]

- **New Population**
- **Vector Mutation**
- **Vector Crossover**
- **Breeding Pipeline Tree**
- **Tournament Selection**
- **Old Population**

Breeding Pipelines
- (copy, then modify individuals)

Selection Methods
- (select and return old individuals)
■ Fitness of a bit vector is the area below max-fitness curve of one Megavac execution
 ■ this is the sum of per-generational maximal fitnesses
 ■ other possibilities: area below average-fitness curve, sum of fitness exponents (to emphasize higher Megavac fitness), . . .

■ Meta-evolution proceeds reasonably fast due to linear GP in Megavac
 ■ single run: 22 minutes on 2.6 GHz dual-core AMD Opteron
 ■ this is for evaluating 40 Megavac instances for 40 generations!

■ ECJ easily supports parallelization
 ■ the architecture is scalable
Experiment: A multi-input problem

- Megavac facilitates *concurrent layered learning via composite environments*

- We define a composite environment with the following problems:
 - **Echo** — reward of 3.0 for returning the same input
 - **SubTwo** — reward of 15.0 for returning the difference of two inputs
 - **SubTwo** is impossible to evolve without **Echo**
 - evolving **SubTwo** requires >10000 generations with the complete instruction set

- Five ECJ runs (meta-runs) in total

- Typical best-of-run result:
 - only 16 out of 33 instructions are enabled
 - optimal **Echo** individual: generation 52, wait-read-send
 - optimal **SubTwo** individual: generation 257, wait-read-push-rswap(2)-sub-send
 - multi-input, but one read per each send — surprising result!
Table: Best-of-run instruction sets are shown. Average Megavac fitness is derived from dividing the meta-fitness by the number of Megavac generations, 1000. Average fitness of over 40.0 guarantees (a very good) ability to solve SubTwo.

<table>
<thead>
<tr>
<th>Meta-fitness</th>
<th>Average</th>
<th>Instruction set</th>
</tr>
</thead>
<tbody>
<tr>
<td>79104</td>
<td>79.1</td>
<td>brge, brlez, brnz, call, dup, fitness, nop, pop, push, read, rswap, send, sub, swap, wait, zero (16 instructions)</td>
</tr>
<tr>
<td>74278</td>
<td>74.3</td>
<td>c2d, dup, erc, fitness, pop, push, read, rnd, rswap, send, store, sub, swap, wait, zero (15 instructions)</td>
</tr>
<tr>
<td>82820</td>
<td>82.8</td>
<td>add, brge, brlez, drop, dup, erc, jump, pop, read, send, sendn, sub, swap, wait (14 instructions)</td>
</tr>
<tr>
<td>82742</td>
<td>82.7</td>
<td>add, brge, call, drop, jump, load, nop, push, read, rswap, send, sendn, store, sub, wait, waitn (16 instructions)</td>
</tr>
<tr>
<td>79348</td>
<td>79.3</td>
<td>brge, br gez, brnz, c2d, d2c, erc, fitness, neg, nop, push, read, ret, rswap, send, store, sub, wait, waitn (18 instructions)</td>
</tr>
</tbody>
</table>
Figure: Fitness statistics after a typical run of the Megavac framework with the instruction set evolved to solve the Echo+SubTwo problem. Maximum and average fitness values per generation are shown in the plot.
We extend the composite environment with another problem:
- SubSq — reward of 75.0 for returning $x^2 - y$ for two inputs x and y

As expected, Megavac does not evolve a solution to SubSq with the complete instruction set.
- Not surprising, since even SubTwo needs > 10000 generations

When the instructions set is restricted (the first best-of-run discussed previously), SubSq does evolve:
- Optimal individual wait-read-swap-dup-push-mul-sub-send appears at generation 2066
- Again, one read per each send
Typical Results for Both Environments

Megavac

- Fitness max
- Fitness avg
- Length avg±sd
- Prob. meta. mutate avg
- Prob. reprod. attempt avg
- Prob. reprod. mutation avg
- Prob. reprod. copy avg
- Prob. reprod. insert avg
- Prob. reprod. delete avg
- Active genomes avg
- Reproductions avg

[Graphs showing fitness, length, probability, activity over generations for Megavac]
Conclusions

- The evolutionary software improvement process can be seen to weed out unnecessary, or at least less contributing, instructions, and improving the software system as a whole by reducing its complexity and tightening its code.

- We have shown the feasibility of evolutionary software improvement. Representing Megavac as a genetic program, and evolving it using traditional methods would not be possible. Instead, we located a critical component affecting Megavac’s evolutionary performance—its instruction set, and evolved instruction subsets that drastically improved the performance.

- We view evolutionary software improvement primarily as a general technique for applying evolution to complex systems.
Discussion and Future Work

- Represent Megavac’s reproduction process as an algorithm
 - GA is no more suitable, use genetic programming?
 - Requires careful definition of primitives, such as reproductive variation operators
 - Will an automatically evolved evolutionary algorithm find an interesting exploration / exploitation policy?
- Take an unrelated (non-evolutionary) system, and apply ESI
 - We want to show viability of evolutionary software improvement as a general technique
Thank You

Questions?