
Image Synthesis for Solar Flare Prediction

Elad Amar and Ohad Ben-Shahar1
Ben Gurion University of the Negev, Be’er Sheva, Israel

Received 2023 September 8; revised 2024 January 9; accepted 2024 January 10; published 2024 March 1

Abstract

Solar flare prediction is a topic of interest to many researchers owing to the potential of solar flares to affect various
technological systems, both terrestrial and in orbit. In recent years, the forecasting task has become progressively
more reliant on data-driven computations and machine-learning algorithms. Although these efforts have improved
solar flare predictions, they still falter in doing so for large solar flares, in particular under operational conditions,
since large-flare data are very scarce and labeled data are heavily imbalanced. In this work, we seek to address this
fundamental issue and present a scheme for generating synthetic magnetograms to reduce the imbalance in the
data. Our method consists of (1) synthetic oversampling of line-of-sight magnetograms using Gaussian mixture
model representation, followed by (2) a global optimization technique to ensure consistency of both physical
features and flare precursors, and (3) the mapping of the generated representations to realistic magnetogram images
using deep generative models. We show that these synthetically generated data indeed improve the capacity of
solar flare prediction models and that, when tested on such a state-of-the-art model, it significantly enhances its
forecasting performance, achieving an F1-score as high as 0.43± 0.08 and a true skill statistic of 0.64± 0.10 for
X-class flares in the 24 hr operational solar flare data split.

Unified Astronomy Thesaurus concepts: Space weather (2037); Solar active regions (1974); Neural networks
(1933); Gaussian mixture model (1937); Solar flares (1496)

1. Introduction

Solar flares are sudden, rapid, and intense eruptions of
electromagnetic radiation emerging from the Sun’s atmosphere.
They are caused by complex patterns of reorganization of the
Sun’s magnetic field in temporary regions in its atmosphere
(Hesse & Cassak 2020). These regions, known as active
regions (ARs), may consist of several sunspots—subregions
where the magnetic field wells up to the surface of the Sun,
inhibits the convection of hot plasma from its interior, and thus
induces cooler regions that appear darker than their surround-
ings. Sunspots usually group in pairs, one for each magnetic
pole of the magnetic field that penetrates the Sun’s surface.

Solar flares are classified on a logarithmic scale into five
progressive classes labeled A, B, C, M, and X according to the
peak emission of soft X-ray radiation they emit. While the �M-
class flares have minor or inconspicuous effects on Earth,2 the
energy emitted during X-class flares might disturb Earth’s outer
atmosphere and can interrupt power grids, communication, and
navigation infrastructures (Camporeale et al. 2018), both in
orbit and terrestrial. While forecasting efforts of these space
weather events are thus essential, X-class flares are considered
rare (Georgoulis et al. 2021), and in the last decades only a few
hundred have been recorded, as opposed to the tens of
thousands of weaker flares. But regardless of their strength,
solar flare prediction can be considered a binary classification
task based on AR data during a predefined time interval. If a
flare of a specified class or stronger indeed bursts during the

time interval of interest, the AR data are labeled “positive” for
that class, and “negative” otherwise.
With no clear and precise physical model of solar flares yet

available, one way to address their prediction is driven by data.
And data are in no shortage, especially since the 2010 launch of
NASA’s Solar Dynamic Observatory (SDO). The satellite
produces a variety of data, including images, dopplergrams,
magnetograms, and spectra (Pesnell et al. 2012). One of the
data sources on board the SDO is the Helioseismic and
Magnetic Imager (HMI) instrument, which continuously maps
the photospheric vector magnetic field, including the line-of-
sight (LOS) component. In addition, the HMI team also
produces the Space-weather HMI Active Region Patches
(SHARPs; Bobra et al. 2014), which consist of patches of
magnetic concentrations on the Sun’s surface. Each HMI
Active Region Patch (HARP) is localized and tracked auto-
matically during the Sun rotation, providing the type of
extended temporal data useful for flare prediction. Two more
instruments aboard the SDO are the Atmospheric Imaging
Assembly (AIA) and the Extreme ultraviolet Variability
Experiment (EVE). The AIA takes images of the Sun in
multiple wavelengths, while EVE measures the solar extreme-
ultraviolet irradiance. Taken in combination, SDO’s instru-
ments produce around 1.5 TB of data every day, and with so
much data it begs to consider empirical forecasting of solar
flares using machine-learning algorithms. Recent years have
indeed experienced rapid growth in this direction (Lugaz et al.
2021).
Several attempts to forecast solar flares using handcrafted

features were established throughout the years, depending
mainly on physics-based features. Early work focused on
identifying parameters that are associated with (mainly large)
solar flares by applying discriminant analysis (Leka &
Barnes 2003a, 2003b, 2007) on data from the Imaging Vector
Magnetograph (Mickey et al. 1996). Georgoulis & Rust (2007)
defined the effective connected magnetic field as a significant
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flare precursor, and Schrijver (2007) pointed out the gradient
next to polarity inversion lines (PILs). Both used data produced
by the Michelson Doppler Imager (Scherrer et al. 1995) on
board the Solar and Heliospheric Observatory. However, it was
argued that conclusions may be sensitive to the data collection
and the metrics employed (Barnes & Leka 2008). Indeed, after
the launch of the SDO, most subsequent research employed
physical parameters derived from its data, with various
machine-learning tools and skill scores for the analysis.

Employing this general trend, Bobra & Couvidat (2015)
used support vector machine (SVM) with features calculated
from the vector magnetogram maps. Liu et al. (2017)
introduced the random forest algorithm to the problem. Both
methods have shown that some of the magnetic parameters are
redundant and do not contribute to flare forecasting. Nishizuka
et al. (2017) added more solar features from multiple data
sources and showed that k-nearest neighbors outperforms both
SVM and extremely randomized trees. With the emergence of
deep neural networks (DNNs) the task was addressed by
various models. Nishizuka et al. (2018) extracted parameters
from SDO/AIA in addition to those from prior research as
input to a neural network. Unlike the preceding algorithms, the
neural network achieved good results on forecasting �M-class
flares also in operational data splits (Leka et al. 2019), where
the training and testing are split into dichotomous chronolo-
gical intervals. But due to an insufficient number of samples,
the authors abstained from forecasting X-class flares. Another
DNN model is the long short-term memory (LSTM), which is
widely used in language processing owing to its ability to
remember and process dependencies through time. This
property makes LSTMs useful for solar flare prediction task
too (Chen et al. 2019; Liu et al. 2019; Jiao et al. 2020),
facilitating the exploition of the changes in time of the
parameters describing the ARs. For the present, however, the
triggering mechanism of solar flares is still unknown, making
the feature selection challenging.

In recent years the rise of machine-learning algorithms based
on automatically extracted features did not skip the space
weather community, with notable deployment of methods such
as convolutional neural networks (CNNs). For example, Huang
et al. (2018) used LOS magnetograms with a two-layered
network architecture, and Tang et al. (2021) proposed a fusion
model composed of CNN and LSTM independently. And yet,
as mentioned above, large solar flares are considered rare
events, resulting in extremely imbalanced data sets, and while
these models perform well in nonoperational data splits, they
are biased toward the majority class, obtaining low precision
and high recall scores. In general, imbalanced data sets can
pose challenges for deep-learning models because they can lead
to biased or skewed results (Krawczyk 2016). To tackle the
issue, several methods have been proposed, such as the use of
data augmentations for the minority class or undersampling the
majority class. For example, Deshmukh et al. (2022) suggested
adding extremely randomized trees after the CNN and
combining both visual properties and physics-based features
to reduce false positives, stating that augmenting the minority
class did not improve the predictive skill. Zheng et al.
(2019, 2021) used both of these schemes with an ensemble
of independent binary CNNs to improve prediction perfor-
mance. While such methods indeed improve results, image
augmentation is still limited to the measured data and cannot

ensure robustness in operational data splits as mentioned by the
authors.
While the class imbalance problem confounds machine-

learning algorithms (Abd Elrahman & Abraham 2013; Branco
et al. 2016), a different approach to address the issue is by
generating new data samples from the minority class, for example,
using the synthetic minority oversampling technique (SMOTE;
Chawla et al. 2002) and its extensions (Fernández et al. 2018). In
order to address the class imbalance problem for solar flare
prediction while exploiting the advantages of visual properties of
ARs as flare precursors, in this work we propose using SMOTE
for generating synthetic positive samples. Subsequently, the
training data set, now composed of genuine and synthetic data at a
desired and controllable balance, is utilized to enhance solar flare
prediction through machine-learning algorithms.
The general idea of generating synthetic images is not new

and has been improving dramatically over the years, including
for tackling class imbalance in various domains such as
medical applications (Frid-Adar et al. 2018; Iqbal & Ali 2018;
Nie et al. 2018), classification tasks (Ali-Gombe & Elyan 2019;
Lee & Park 2021; Zhu & Pan 2022), and weather
forecasting (Xu et al. 2019; Li et al. 2021). So far, previous
work on space weather image synthesis has focused on
converting SDO/AIA imagery to SDO/HMI imagery (Dani
et al. 2022; Sun et al. 2022), or vice versa (Dash et al. 2022),
and mapping SDO/AIA images to corresponding images with
different extreme-ultraviolet channels (Salvatelli et al. 2022).
Such image-to-image translation is a class of computer vision
tasks that typically involves learning a mapping function
between the two domains, such that the output image preserves
the content and key features of the input image.
Two well-known architectures for generating synthetic images

are generative adversarial networks (GANs; Goodfellow et al.
2014) and denoising diffusion probabilistic models, or diffusion
models in short (Ho et al. 2020; Nichol & Dhariwal 2021). GANs
are composed of two CNNs, a generator and a discriminator, that
play a two-player minimax game. The generator network learns to
create samples resembling the training data, while the discrimi-
nator network is trained to differentiate between real training
samples and the fake ones generated by the generator. The two
networks are trained together until the generator produces
samples indistinguishable from the discriminator. A conditional
GAN (cGAN) is a modification of GAN trained to generate
synthetic data that are conditioned on a set of input variables or
input images (Mirza & Osindero 2014; Isola et al. 2017).
Next to GANs and cGANS, diffusion models are a class of

likelihood-based models that are trained to generate images or
signals. These models work by sequentially adding noise to the
data and then learning the opposite mapping function between
the noisy input and a denoised version of it. Recently diffusion
models have outperformed GANs (Dhariwal & Nichol 2021)
and have also been introduced for image-to-image translation
tasks (Saharia et al. 2022).

2. Data

We use LOS magnetograms from HMI taken between the
years 2011 and 2017 inclusive. The data set consists of 67,180
images with resolutions ranging from 480× 370 to
2356× 785. In order to synthesize images correlated visually
to large flares, for the image-to-image translation task we
considered only magnetograms of ARs that produced the rare
X-class flares, with a 12 minute cadence. For the prediction
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task, the data set consists of C-, M-, and X-class flares. Due to
the minor visual changes in successive images of AR, the
images were taken with 96 minute cadence. This helps remove
redundant images and train the model much faster. Further-
more, ARs on the limb, i.e., those extending beyond ±70° from
the central meridian, were removed from the data set owing to
distortion in the images. Following Leka et al. (2019), we
adopted operational data splitting, where the train, validation,
and test sets are split into dichotomous chronological intervals.
As opposed to other data splitting approaches, such as
randomly splitting all the magnetograms or placing magneto-
grams belonging to an AR in one specific set, this
chronological data split mimics reality and allows a better
assessment of the prediction model in case it will be used for
future forecasting. For the evaluation, we used a 24 hr preflare
time interval of X-class flares. The data set is split into training,
validation, and test sets as displayed in Table 1.

3. Methods

We propose a method for generating synthetic positive data
samples to facilitate better solar flare prediction using machine-
learning algorithms despite the inherent imbalance in solar flare
data sets. To be effective, these novel synthetic data need to be
perceptually realistic (namely to perceptually resemble plau-
sible SDO/HMI data) while also reflecting real ARs’ physical
features. At the same time, they need to have a different
sunspot structure than real data in order to add diversity and
enable forecasting on unseen data.

In general, evaluating the perceptual quality of generated
images can be done through subjective and objective methods.
Since subjective assessments involve human opinion-based
tests, objective quality assessment is generally preferred, where
one employs distance metrics between real and generated
image distributions (Blau & Michaeli 2018). Indeed, in this
work, we suggest using an objective assessment for perceptual
quality by minimizing the disparity between the actual and
predicted probability distributions for real and generated
images. Such minimization can facilitate samples having
realistic visual properties despite never really being observed
in SDO/HMI magnetograms. The bulk of our contribution is
thus formalizing and implementing such a synthesis method
and showing that it indeed improves the prediction and
classification capacity of learning schemes on real data.

Formally, let pX be the true distribution of flaring
magnetograms, ˆpX a sought-after distribution of synthesized
magnetogram images, and ( )ˆP p p,X X a nonnegative diver-
gence measure between them. Given x ä pX and Îˆ ˆx pX , let

( ˆ)F x x, be an estimator of similarity between the physical
properties of x and x̂, while ( ˆ)D x x, is a measure of their visual
dissimilarity. Given x ä pX, our goal is to find a distribution ˆpX

that solves the following optimization problem:




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where Îd is a dissimilarity tolerance and λ is a weight
parameter. A solution for the optimization problem in
Equation (1) provides a distribution of images that closely
resembles the original data distribution with physical features
similar to a real magnetogram. At the same time, it ensures that
samples drawn from the generated distribution are not too similar
visually to existing flaring magnetograms (a condition we will test
for explicitly before adopting generated samples). Given that pX is
unknown, we consider the positively labeled magnetograms as
samples drawn from it. The following subsections present the
different building blocks of our proposed method.

3.1. GMM Representation of Magnetograms

Processing the magnetograms directly can be computationally
expensive owing to their size and resolution. Each magnetogram
has a different aspect ratio and different size depending on the AR
evolution and its location on the solar disk, making comparison of
magnetograms more difficult. Hence, we seek a representation of
magnetograms that not only is as compact as possible but also
maintains sunspots’ visual information in a fashion independent of
resolution and other image parameters. One natural choice is using
Gaussian mixture models (GMMs; Reynolds 2009), a type of
probabilistic model that represents a data distribution as a mixture
of multiple normal distributions. The mixture estimation for

Îx d is given by

å m= S
=
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i

K
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where K is the number of components, wi are the mixture
weights and satisfy å == w 1i

K
i1 , and μi and Σi are the mean

and covariance matrix of each Gaussian component, respec-
tively. Each component of the mixture is the multivariate
normal distribution:
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Given a gray-scale SHARP LOS magnetogram with N
sunspots, we consider each sunspot as a set of image points
(pixels) that we seek to model as a GMM. Toward this end, we
first segment out the different sunspots, each being a connected
component of consistent polarity in the AR. This computation
begins with the binarization of the image, followed by edge
detection to find the contour of each sunspot. Morphological
closing (Serra 1986) is used to smooth noise and areas with weak
polarization (aka quiet Sun) and to close holes inside the sunspot’s
boundary. Next, flood fill (Smith 1979) is used in order to detect
and segment all sunspots in the AR. The set of points (pixels) of
each sunspot is then fitted with a K-GMM using an expectation-
maximization process (Moon 1996), and the result is a representa-
tion of the sunspot as a set of GMM parameters. Clearly, the more
GMM components are allowed (i.e., the larger the value of K ),
the finer-grained the fitting result, but also the more complex and
higher dimensional its representation. The visual approximation of

Table 1
Data Split into Training, Validation, and Test Sets, Guided by Operational

Setting

Data Split Year # Negatives # Positives

Train 2011–2013 33,462 140
Validation 2014 12,915 111
Test 2015–2017 20,514 38

3

The Astrophysical Journal Supplement Series, 271:29 (11pp), 2024 March Amar & Ben-Shahar



the sunspot from the GMMmodel constitutes the direct plotting of
each component of the GMM as a confidence ellipse, where its
mean determines the center of the distribution and its covariance
matrix sets its orientation and size. Since each magnetogram has a
different size, we normalize the mean vectors by the HARP size.
This way, the GMM representation maintains the relative distance
between the sunspots in the AR and ignores their absolute location
in the magnetogram. The entire AR is thus fitted with a collection
of N K-GMMs based on the number of sunspots that were
detected. Figure 1 exemplifies this process for one selected AR,
and it also demonstrates how qualitatively the minimal number of
components for the GMM that provides good fits was found
empirically to be K= 3. This choice was set for all our
implementations.

The GMM abstraction and representation just described are
carried out for positive and negative sunspots separately. It
preserves sunspots' position, size, and orientation, as well as
their relative distance from one another, while discarding noise,
minute magnetic fluctuations, and quiet-Sun information. As a
result, it produces a relatively low-dimensional vector on which
it may be easier to apply additional processing. In particular, it
enables choosing the dissimilarity function to be the L2 distance
between the log-probability density functions fx and ˆfx of two
GMMs (Cui & Datcu 2015):

å= -
=

( ˆ) ( ( ) ( )) ( )ˆD x x f u f u, log log . 4
i

n

x i x i
1

2

By incorporating visual dissimilarity as a constraint, the
optimization procedure can seek a broader range of visual
differences, allowing for more flexibility and nuances in the
generated output. The dissimilarity tolerance d itself was set by
calculating the dissimilarity of two real random X-class flaring
magnetograms from two distinct ARs.

3.2. AR Synthesis for Minority Class

Although deep-learning algorithms have shown immense
potential in data generation tasks, one of the notable limitations
is their reliance on the availability of vast and diverse data
sets (Noguchi & Harada 2019). To address the class imbalance
problem, an alternative approach is SMOTE. This method is a
preprocessing stage that generates synthetic samples of the
minority class rather than augmenting existing samples in the
minority class. The first step of the algorithm starts by choosing
a random sample of the minority class and finding its k-nearest
neighbors. Out of the k-nearest neighbors the algorithm
chooses randomly a subset of neighbors; the subset size is
determined based on the amount of oversampling needed.

Then, the new samples are generated randomly on the segments
between the sample and each of the chosen nearest neighbors.
To use SMOTE for the imbalanced solar flare data set, we

first split the set of magnetograms  into flaring magneto-
gramsf and nonflaring magnetograms  = ⧹nf f . The
next step includes transforming the magnetograms to their
GMM representation. Each magnetogram Îxi has a
different number of sunspots denoted by Ni and can be
represented as a flat ni-dimensional vector where

= + = · · ( )n n n K N6 , 5i i
m

i
c

i

since

= · · ( )n K N2 6i
m

i

is the number of parameters that describe the means and

= · · ( )n K N4 7i
c

i

is the number of parameters that describe the collection of
covariance matrices. In addition, the ordering of the GMM
components within the vector has implications for projection, and
it determines the pairing between components for interpolation.
Nevertheless, the attributes preserved through the GMM abstrac-
tion are not affected by the arrangement of the components, and
neighboring points are similar in this regard. Therefore, we have
opted for an arbitrary ordering, where positive-polarity compo-
nents are placed first, followed by the negative-polarity
components, and the inner ordering is identical for all
components. To make sure that all the representations can be
projected onto the same vector space, vectors with a smaller
number of entries than = { }n nmaxi i are padded with zeros.
Once we project all Îxi onto the Euclidean space n, we can
use the SMOTE algorithm to sample new points between the
minority samples. These new samples were then rendered as
images 512× 512 pixels in size, and we emphasize again that
while this size may be different than the size of either HARP that
generated the SMOTE samples, the normalization by HARP size
guarantees that relative distance between oversampled sunspots is
preserved. Figure 2 shows several new samples on the segment
between the GMM representations of HARP 377 (from Figure 1)
and HARP 4781.

3.3. Maintaining Physical Properties via Global Optimization

While physical rules that govern sunspots, ARs, and flares
are far from being understood (Leka 2022), the obliviousness
of the SMOTE process just described to the physical reality of
the objects in the magnetogram images may lead to synthesized
ARs that will mislead their eventual use. As a general rule, we

Figure 1. Steps in the magnetogram’s GMM representation process. (a) The initial image, HARP 377 on 2011 February 15 at 01:36:00 TAI. (b) Segmentation of the
sunspots. (c) Result of fitting a GMM to the segments in the segmentation result and plotting the corresponding confidence ellipses. Here N = 9 and K = 3.
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only wish to generate physically plausible AR representations,
or what we call admissible samples. In practice, we seek to
generate such new representations whose physical properties
match reality. Hence, once the SMOTE process generates a
sample, we now seek to perturb it as needed such that its
physical properties converge to an admissible sample, and in
particular to the properties of flaring magnetograms drawn from
the training set. And while other properties could be used as
well, here we attempted to preserve (1) the total absolute
magnetic flux and (2) the total length of the PILs, which are the
lines where the direction of the magnetic field changes, and
previous work argued for their importance as a marker for a
solar event (Wang et al. 2020). Searching the space of
representations while preserving these properties amounts to
solving an optimization problem, for which we used particle
swarm optimization (PSO; Kennedy & Eberhart 1995).

PSO is an iterative optimization method used to seek the
globally optimal solution to optimization problems by
simulating the social behavior of a group of particles in the
search space. Each particle represents a possible solution to the
problem that updates its position based on its own experience
and the experience of its peers. While there are different
versions of how these updates are made, it is often defined
based on three vectors that each particle i maintains: its current
position pi, its current velocity vi, and its best position pi,b
encountered so far. In addition, the global best position pg of
the swarm is updated in each iteration. The velocity vector vi at
each iteration is then updated as

¬ + - + -· · · ( ) · · ( ) ( )v w v c r p p c r p p , 8i i i b i g i1 1 , 2 2

where Îw c c, ,1 2 are weights that combine the three factors.
The parameters r1 and r2 are two random values generated from
the uniform distribution U(0, 1) at each iteration. Note that this
definition formalizes the drive to move the particle from its current

position based on the knowledge gained by the particle and by the
swarm as a whole, keeping randomness in the process to balance
between exploitation and exploration and provide yet another
mechanism to escape local minima. With the new velocity
determined in each iteration, an update of the particle position
operation is performed in a straightforward way:

¬ + ( )p p v . 9i i i

With PSO as the global optimization scheme, a population of
synthetic oversampled points is generated and assigned to PSO
particles, and the objective function we seek to optimize (i.e.,
minimize) involves the two physical features mentioned above.
The total absolute magnetic flux is approximated by adding up the
areas of the white and black ellipses, representing the positive and
negative magnetic polarities, respectively. The total length of the
PILs is obtained by summing the lengths of the skeletons of the
areas where ellipses with opposing polarity intersect. Both
features are computed from the GMM representation of several
real AR images drawn randomly from the train set. Formally,
given a positive magnetogram x and a synthetic oversampled
point x̂, the objective function we seek to minimize becomes

l= - + -( ˆ) ∣ ( ) ( ˆ)∣ · ∣ ( ) ( ˆ)∣ ( )F x x g x g x l x l x, , 10

where  ´g: W H is a function that calculates the total
absolute magnetic flux, while  ´l: W H calculates the
corresponding total PIL length, for either the magnetogram or
the GMM representation. l Î is a weight parameter to
balance the importance of both measures. The combination of
SMOTE with PSO thus ensures the synthesis of physically
admissible samples and can be extended to include any other
computable features one wishes to preserve in the generation
process. To ensure that the new samples adhere to the specified
visual dissimilarity constraint in Equation (1), at the end of the

Figure 2. An illustration for SMOTE process and synthetic oversampled samples on the interpolation segment. The leftmost image shows HARP 4781 on 2014
November 6 at 17:36:00 TAI and its corresponding GMM model as confidence ellipses. The rightmost image shows HARP 377 on 2011 February 15 at 01:36:00 TA
and its GMM representation (from Figure 1). The middle images illustrate synthetic oversampled GMM points sampled on the interpolation segment between the
GMM representations of the two HARPs. The position of the samples along the segment represents how the properties of the two HARPs are weighted in the
interpolation, including the sunspots’ location, orientation, and size. Note that while HARPs depicted here have similar image sizes, this is not necessary for the
SMOTE process, as normalization by HARP size is instrinsic to the process.
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synthesis procedure (with or without the optimization phase)
the dissimilarity distance is tested and samples that do not
satisfy it are disregarded. Figure 3(a) shows a result of the
optimization process with 150 particles and the features of
HARP 4781 from Figure 2.

3.4. Realistic AR Image Synthesis with Image-to-image
Translation

As implied above, the modeling of the magnetograms, either
before or after the SMOTE and the PSO optimization, provides
a labeled image with four semantic categories (e.g., Figure 2):
quiet-Sun regions (bright gray background), positive (white)
and negative (black) magnetic concentrations, and overlapping
areas (dark gray) where ellipses with opposing polarity overlap,
often around PILs. This is not yet a realistic magnetogram
image that can endow data sets, a result we obtain by an
additional step of image translation. Following the review in
Section 1, we explore and develop this mapping using one of
two deep generative models. These two models effectively
minimize the disparity between the distributions of generated
data and the real data (Kwon et al. 2022), just as we sought in
our formal optimization (see Equation (1)). Training on real
magnetograms, it is thus possible to map labeled images to
images that closely mirror the intricate visual features of real
solar events. For both models, we used the same training data,
namely magnetograms of ARs that produced X-class flares.
The following sections provide a concise overview of the
concepts behind the two models.

3.4.1. Image-to-image Translation Using cGAN

The objective of cGANs is to find a generator G* such that
for a label image x, a corresponding magnetogram y, and a
random noise vector z, it holds that

*  l= +( ) ( ) ( )G G D Garg min max , , 11
G D

LcGAN 1

where  ( )G D,cGAN is the binary cross-entropy loss,




 =
+ -

( ) [ ( )]
[ ( ( ( )))] ( )

y x y
x x z

G D D
D G

, , log ,
log 1 , , , 12

x

x

cGAN

and  ( )GL1 is the L1-loss,

 = -( ) [ ( ) ] ( ) y y x zG G, , . 13xL L1 1

The optimal generator essentially generates a data distribu-
tion that perfectly matches the distribution of real
samples (Goodfellow et al. 2014). The model used for the
cGAN-based mapping is Pix2Pix (Isola et al. 2017). The basic
components of the generator and the discriminator are
convolutional blocks consisting of a convolutional layer and
rectified linear unit (ReLU) activation function followed by
batch normalization. The generator structure resembles a Unet
architecture (Ronneberger et al. 2015) and is composed of eight
such convolutional blocks followed by a symmetric path of
deconvolutional blocks (Zeiler et al. 2010), which serve to
upscale and reconstruct finer details in the generated output.
Additionally, skip connections are incorporated within the
architecture to facilitate the gradient flow during backpropoga-
tion. The discriminator is composed of five convolutional
blocks and outputs real/fake map based on its decision.

3.4.2. Image-to-image Translation Using Diffusion Models

Diffusion models learn to sample new images using an
iterative denoising process. This denoising process, also called
the reverse process, produces samples via a Markov chain,
starting from a prior distribution. The objective of the reverse
process is to recover the transitions of a perturbation process,
known as the forward process, which is another Markov chain
gradually perturbing the data and converting it to a different
distribution (e.g., a Gaussian). Formally, and borrowing
notation from Ho et al. (2020), the forward process is defined
on x0∼ pX by progressively adding Gaussian noise to x0, i.e.,





b b= -

=

- -

=
-

( ∣ ) ( )

( ∣ ) ( ∣ ) ( )

x x x x I

x x x x

q

q q

; 1 ,

, 14

t t t t t t

T
t

T

t t

1 1

1: 0
1

1

where the variance βt ä (0, 1) is increasing constantly from
10−4 to 0.02. For large enough T the image xT is approximately
pure isotropic Gaussian noise. Since estimating q(xt−1|xt)
requires all of the data distribution, it is practically intractable,
and a neural network is used to approximate it. Then, the

Figure 3. Generation of synthetic images from the label image. (a) The label image resulting from the PSO process (see Figure 2) and given to the image synthesis
processes. (b) Output of the Pix2Pix model. (c) Output of the diffusion model.
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reverse process is defined as





m S

=

=

q q

q q q

=
-

- -

( ) ( ) ( ∣ )

( ∣ ) ( ( ) ( )) ( )

x x x x

x x x x x
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p t t; , , , . 15

T T
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0:
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The initial image in the reverse process ~ ( )Ix 0,T . For each
time step t the network tries to predict the mean μθ(xt, t) and
the covariance matrix Σθ(xt, t). In practice, the covariance
matrix Σθ(xt, t) is set to a constant using βt, which gradually
decreases over the course of the reverse process. The mean
μθ(xt, t) is determined using a neural network that predicts the
noise òt added at time step t. Then, the training objective is to
minimize a mean-squared error loss:

   = - q[ ( ) ] ( ) x t, . 16xt t tsimple , ,
2

t0

In order to condition the reverse process on the label images
generated from the synthetic oversampled GMMs, the training
process takes a label image y generated from a magnetogram
x0. Then, the forward process is applied to x0 only as described
above, and for the reverse process x0 and y are stacked over the
channel axis and the network is trained to predict pθ(xt−1|xt, y).
Then, the loss can be reformulated as

   = - q[ ( ) ] ( ) x yt, , . 17x yt t tsimple , , ,
2

t0

Examples of outputs of the image-to-image process are
presented in Figure 3.

4. Results

With the pipeline for generating synthetic training data fully
defined, we tested its effect on solar flare forecasting using one
selected neural model predictor from the prior art (Huang et al.
2018), though we emphasize that using such synthetic data is
not limited to any specific data-driven prediction method. The
neural architecture we selected integrates two convolutional
layers, each succeeded by ReLU activation and pooling layers
and followed by three fully connected layers. The network
takes in input images sized at 100× 100, accommodating
variations in magnetogram resolutions through bilinear inter-
polation during preprocessing. The model yields two output

values, representing the probabilities associated with the two
classes—flare and no flare. For the optimization process we
used stochastic gradient descent with cross-entropy loss. To
facilitate this experimental evaluation, we independently
trained the network multiple times, each time endowing the
training data with a different number of synthetic images. The
synthetic images were added at each training session while
being drawn randomly from a larger pool of synthetic images
that we created offline. The validation set and the test set did
not consist of synthetic images, as the goal was to explore the
effect of synthetic training data on the classification accuracy of
real data. Moreover, the strategy of progressively adding
synthetic data was applied several times with different
(random) sets of such images, and results report both mean
performance and standard deviation.
To evaluate the binary classification model, we express the

confusion matrix in terms of the four raw measurements TP,
FP, TN, and FN, namely the total number of true positives,
false positives, true negatives, and false negatives, respectively.
Two widely used performance metrics based on these raw
measures are recall and precision. The recall,

=
+

( )recall
TP

TP FN
, 18

measures the model’s capability to accurately identify all true
flaring events, while precision describes the accuracy of the
positive predictions generated by the model:

=
+

( )precision
TP

TP FP
. 19

The results obtained by the prediction model are presented in
Figure 4 and highlight the impact of using synthetic images in
the training process, emphasizing, in particular, the relationship
between the number of synthetic images and the model’s
performance. Figure 4(a) demonstrates that as the number of
synthetic images increases, the recall metric of the model also
improves, first rapidly and then more mildly until saturation, an
indication of better identification of true positive samples and
higher sensitivity. Note that this happens with either of the
image-to-image generative components tested. At the same
time, as depicted in Figure 4(b), the precision with no synthetic
data is virtually zero but exhibits an initial improvement with

Figure 4. Evaluation of the prediction model varies depending on the number of synthetic images used during the training process. (a) The recall increases when
adding more synthetic images to the training. (b) The precision improves with a small addition of synthetic images.
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some synthetic images while remaining relatively stable
thereafter. Indeed, in the absence of synthetic data integrated
into the training set, while utilizing an operational data split, the
model struggles to generalize on the unseen magnetograms.
Moreover, it exhibited a bias toward the majority class, leading
to the prediction of all samples as negative. Despite the
relatively low precision owing to the high number of FP, the
false-alarm rate (FAR), defined as

=
+

( )FAR
FP

FP TN
, 20

is also low, achieving at max 0.04± 0.02. Besides the inherent
bias toward the majority class, this means that while the model
may occasionally generate FP, the overall rate at which it
incorrectly identifies negatives as positives is relatively
minimal, and adding synthetic positive samples does not
increase the FP significantly.

To seek better insights into the features learned by the neural
network, we explored visual explanations similar to Yi et al.
(2021). The Grad-CAM (Selvaraju et al. 2017) is a technique
that calculates the gradients of the output with respect to the
feature maps of the convolutional layers. Then, the output of
the derivations is projected onto the input image to create a
heatmap describing which regions in the image contributed to
the output. To test the effect of the synthetic magnetograms on
the CNN’s training, we examined the Grad-CAM heatmaps
created by passing positive samples to the CNNs and deriving
them with respect to the positive prediction. Since several
instances of the models were trained for each number of

synthetic images, the heatmaps created using these models
were averaged for each flaring magnetogram. It can be
observed from the example in Figure 5 that by adding synthetic
images the CNN directs its attention toward regions with
magnetic field concentrations near the PILs. Interestingly,
though, this effect is particularly pronounced when a small
number of synthetic images are used and becomes less
pronounced as more images are added. In order to quantify
this observation, we ought to examine the effect on the
classification of solar flares by features related to the PIL and
the sunspots it separates. To do so, we first filtered the image
with kernels of partial derivatives of a Gaussian. The resulting
smoothed directional edge maps were thresholded to isolate the
PILs. Then, we extracted several parameters from the resultant
maps, in particular (1) the total absolute magnetic flux of the
sunspots next to the largest PIL, (2) the maximum magnetic
flux value in the edge map, and (3) the integral (sum) of
magnetic activity in the edge map. Later we examined the
regions in the negative samples that contribute the most to the
negative prediction, and as can be seen in Figure 6, the CNN’s
attention in this case is concentrated at the quiet-Sun regions.
To get a better grasp on the quality of these parameters as

solar flare precursors, we used the same data split as mentioned
in Section 2, using the validation set to find the best classifier
and to tune its hyperparameters. In our experiments, we noticed
that the total absolute magnetic flux of the sunspots next to the
largest PIL does not contribute to the prediction, and the results
gained using a random forest algorithm with only three
parameters are 1.00, 0.04, and 0.05 for the recall, precision,
and FAR, respectively. As before, using these parameters as

Figure 5. Effects of synthetic images on CNN attention: adding synthetic images to the training process directs the model’s attention toward the sunspots next to the
PIL. (a) Example of HARP 4698 on 2014 October 26 at 02:24:00 TAI (left), and the heatmaps generated with 0, 300, and 1000 synthetic images added to the training
process. (b) The extent of overlap between Grad-CAM heatmaps and PILs was quantified in terms of intensity, represented as the percentage of PILs contained within
the heatmaps. (c) The maximum value of the element-wise product between Grad-CAM output and the convolution output may indicate the correlation between high
gradients in the AR and the CNN attention. (d) The extent of overlap between Grad-CAM heatmaps and the absolute total magnetic flux of sunspots near the PIL.
Panels (b), (c), and (d) exhibit a similar trend: an initial increase followed by a decrease as more synthetic images are added.
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flare precursors exhibits a relatively high number of FP. Yet the
FAR is low, and the model effectively identifies all positive
instances in the test set. Considering these results, the synthetic
images were created with emphasis on the total absolute
magnetic flux and the PIL length, as described in Section 3.3.
Then, the recall and precision were reevaluated by the
prediction model with the optimized synthetic images. The
results are presented in Figure 7, indicating that the use of
synthetic images improves the maximal values of both recall
and precision.

Since the validation and the test sets are imbalanced as well,
these performance metrics might become highly biased by the
frequency of negative samples for all instances. A common
alternative under such conditions is the F1-score,

=
+ +

=
+

·
·
· · ( )

F1
2 TP

2 TP FP FN
2 Precision Recall

Precision Recall
, 21

which is the harmonic mean of the precision and the recall.
The F1-score ignores the TN, giving more attention to the
positive class and providing a better assessment of both
classes for an imbalanced data set. Another metric commonly
used for solar flare prediction is the Heidke skill score (HSS;

Bloomfield et al. 2012),

=
´ - ´

+ + + + +
[( ) ( ))

( )( ) ( )( )
( )

HSS
2 TP TN FP FN

TP FN FN TN TP FT FP TN
.

22

Even though the HSS considers all elements of the confusion
matrix, it converges to the F1-score when the TN approaches
infinity. Indeed, in our case, when the number of TN is
relatively large, the difference between the two metrics is
insignificant.
In our experimental evaluation, the neural network is trained

to explicitly maximize the F1-score by evaluating the model
after each epoch on the validation set and saving the weights
with the best performance. The results indicate that by using
the data created without the optimization, the more images
incorporated into the training process, the more confident the
model tends to be in its positive predictions, resulting in
improving the recall and decreasing the precision. By
considering the F1-score, which combines both precision and
recall metrics into a single score, the results show that using the
PSO optimization process leads to a better assessment of the
testing set.
Importantly, we evaluated the baseline performance of the

selected model (Huang et al. 2018) while training it without any
synthetic data. We then implemented several improvements,

Figure 7. Evaluation of the prediction model with optimization of the GMM parameters using PSO. (a) The recall increases when adding more synthetic images to the
training until saturated. (b) The precision improves with the incorporation of a small number of synthetic images but decreases as more synthetic images are
introduced.

Figure 6. Effects of synthetic images on CNN attention: examples of nonflaring magnetograms and their Grad-CAM outputs, with an emphasis on the negative
prediction. The regions with the largest contribution to the output are the quiet-Sun regions.
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including the use of class weights for the gradient descent
algorithm:

= -
+

= -
+

( )w w1
P

P N
, 1

N

P N
, 231 2

where w1 and w2 are the positive and the negative class
weights, respectively. Oversampling of the positive class is also
added with and without data augmentations. The augmentation
included rotation, horizontal flips, and vertical flips. We found
that none of these techniques had any impact on the model’s
performance.

Finally, we also implemented the true skill statistic (TSS)
measure, which quantifies the ability of a binary classification
system to forecast rare events by taking into account both recall
and FARs:

=
+

-
+

( )TSS
TP

TP FN

FP

FP TN
. 24

Since the number of TN is relatively large, the TSS is more
sensitive to the recall than to the false alarms. Figure 8
summarizes the F1-score and the TSS obtained in all of the
methods. Overall, the maximal F1-score observed was
0.43± 0.08 when employing 1000 perturbed synthetic images
in the training set. At the same time, the TSS reached 0.64± 0.10.

5. Conclusion

In this work, we proposed an approach to generate synthetic
positive data samples of LOS magnetograms to improve solar
flare prediction using machine-learning algorithms. This
method addresses the problem of imbalanced solar flare data
and uses a combination of (1) GMM representation of ARs, (2)
oversampling in the representation space, (3) global optim-
ization technique to obtain and preserve desired features such
as physical magnetic properties or flare precursors, and (4)
image-to-image mapping back to image space to generate the
synthetic data. Despite the supremacy of CNNs in various
tasks, our experiments show that they fail to generalize when
used under operational flare data splits, and that injecting the
synthetic data into the training process of the neural network
dramatically improves the results. In addition, our study has
demonstrated that incorporating features derived from the

interpretation of the CNNs into the synthetic data leads to
improved forecasting outcomes.
It is important to note that the proposed process comes with

certain limitations. One of the major challenges is that the use of
synthetic images may also limit the prediction task in terms of
flare class and preflare time window. In addition, despite the
features extracted from the interpretation of the CNNs, the
physical explainability of the predictions is still vague and the link
to the physical flaring mechanism is unclear. Additionally, the
generation of the data and the training of the models involved in
the process require a considerable amount of time and memory.
Changing the flaring prediction settings necessitates retraining of
the neural networks, the generative model, and the prediction
model, alongside the generation of a new pool of synthetic
images. The time of all combined may take several days, not to
mention the memory needed to store thousands of images. Indeed,
further research is needed to optimize the generation process and
explore more flare precursors and features to overcome these
limitations and improve the accuracy, reliability, and explain-
ability of solar flare prediction. However, with a proven synthesis
method for admissible flare data, such future research may
eventually yield completely practical and efficient space weather
prediction tools.
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