Numerical Analysis: Interpolation – Part 2

Computer Science, Ben-Gurion University

(slides based mostly on Prof. Ben-Shahar’s notes)

2018/2019, Fall Semester
Optimal Placement of the Roots
We saw

\[E_n(x) \triangleq f(x) - P_n(x) = \frac{f^{(n+1)}(\xi)}{(n + 1)!} \prod_{i=0}^{n} (x - x_i) \]

In the product, \(\prod_{i=0}^{n} (x - x_i) \), both \(n \) and the locations of the nodes play a role. Thus, for a fixed \(n \), a smart choice of the locations can greatly influence the maximal error.

If we define

\[Q(x) = \prod_{i=0}^{n} (x - x_i) \]

then, for a fixed \(n \), the optimal choice of \((x_i)_{i=0}^{n} \) is the one that will minimize the maximum of \(|Q(x)| \):

\[\max_{x \in [a,b]} |Q(x)| \Rightarrow \text{minimum} \]
So here is the plan.

We will build a certain polynomial, of degree n, and will get an analytic expression for its roots.

As it will turn out, these roots will minimize $\max_{x \in [a,b]} |Q(x)|$.

This method is due to Chebysehv.

The derivation in the next slides is based on Burden and Faires’ textbook.
We will start by assuming our interval is $[-1, 1]$. This will be generalized later.

Define, for any nonnegative integer n,

$$T_n : [-1, 1] \rightarrow \mathbb{R} \quad T_n : x \mapsto \cos(n \arccos(x)) \quad n \geq 0$$

It is not obvious, but $T_n(x)$ is in fact a polynomial in x, as we now show.
Optimal Placement of the Roots

\[T_n(x) = \cos(n \arccos(x)) \]

First, \[T_0(x) = \cos(0 \arccos(x)) = \cos(0) = 1 \].
Thus, \(T_0(x) \) is a zeroth-order polynomial.

Second, \[T_1(x) = \cos(1 \arccos(x)) = \cos(\arccos(x)) = x \].
Thus, \(T_1(x) \) is a first-order polynomial.

So only need to show \(T_n \) is a polynomial for the case \(n > 1 \).
Optimal Placement of the Roots

\[T_n(x) = \cos(n \arccos(x)) \]

- Let
 \[\theta \triangleq \arccos(x) \]
- Thus,
 \[\cos(\theta) = x \]
- The expression becomes
 \[\hat{T}_n(\theta) \triangleq T_n(\cos(\theta)) = \cos(n \arccos(\cos(\theta))) = \cos(n\theta) \quad \theta \in [0, \pi] \]
- Observe:
 \[
 \hat{T}_{n+1}(\theta) = \cos((n + 1)\theta) = \cos(\theta) \cos(n\theta) - \sin(\theta) \sin(n\theta) \\
 \hat{T}_{n-1}(\theta) = \cos((n - 1)\theta) = \cos(\theta) \cos(n\theta) + \sin(\theta) \sin(n\theta)
 \]
 Adding
 \[\Rightarrow \hat{T}_{n+1}(\theta) = 2 \cos(\theta) \cos(n\theta) - \hat{T}_{n-1}(\theta) \]
 or
 \[T_{n+1}(x) = 2x \cos(n \arccos(x)) - T_{n-1}(x) \]
 \[\Rightarrow T_{n+1}(x) = 2x T_n(x) - T_{n-1}(x) \]
Just saw:

\[
\begin{align*}
T_0(x) &= 1 \\
T_1(x) &= x \\
T_{n+1}(x) &= 2xT_n(x) - T_{n-1}(x) \quad n > 1
\end{align*}
\]

It follows that \(T_n(x) \) is a polynomial of order \(n \).

These polynomials are called **Chebysehv polynomials**.
The recurrence also implies that $T_n(x)$ is a polynomial of degree n whose leading coefficient is 2^{n-1}.
Roots of $T_n(x)$

Theorem

The Chebyshev polynomial $T_n(x)$ of degree $n \geq 1$ has n simple roots in $[1, 1]$ at

$$\bar{x}_k = \cos \left(\frac{2k - 1}{2n} \pi \right) \quad \text{for each } k = 1, 2, \ldots, n.$$
Proof.

Let
\[\bar{x}_k = \cos \left(\frac{2k - 1}{2n} \pi \right) \]
for each \(k = 1, 2, \ldots, n \).

Then,
\[
T_n(\bar{x}_k) = \cos \left(n \arccos(\bar{x}_k) \right) = \cos \left(n \arccos \left(\cos \left(\frac{2k - 1}{2n} \pi \right) \right) \right)
\]
\[= \cos \left(n \frac{2k - 1}{2n} \pi \right) = \cos \left(\frac{2k - 1}{2} \pi \right) = 0 \]
(since we get \(\frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \ldots \))

So we got \(n \) such roots. Since these roots are distinct, and \(T_n \) is of degree \(n \), these are all its roots.
Optimal Placement of the Roots

Extreme Points of $T_n(x)$

Theorem

The Chebyshev polynomial $T_n(x)$ of degree $n \geq 1$ assumes its absolute extrema at

$$\bar{x}_k' = \cos \left(\frac{k\pi}{n} \right) \quad \text{with} \quad T_n(\bar{x}_k') = (-1)^k \quad \text{for each} \quad k = 0, 1, \ldots, n.$$
Proof.

\[
\frac{d}{dx} T_n(x) = \frac{d}{dx} \left(\cos(n \arccos(x)) \right) = -\sin(n \arccos(x)) \frac{d}{dx} \left(n \arccos(x) \right)
\]

\[
= -n \sin(n \arccos(x)) \frac{d}{dx} \left(\arccos(x) \right)
\]

\[
= -n \sin(n \arccos(x)) \left(-\frac{1}{\sqrt{1-x^2}} \right) = \frac{n \sin(n \arccos(x))}{\sqrt{1-x^2}}
\]

For \(k = 1, 2, \ldots, n - 1 \):

\[
\frac{d}{dx} T_n(\bar{x}'_k) = \frac{n \sin(n \arccos(\cos(k\pi/n)))}{\sqrt{1-\left(\cos\left(\frac{k\pi}{n}\right) \right)^2}} = \frac{n \sin(k\pi)}{\sin\left(\frac{k\pi}{n}\right)} = 0
\]

\(T_n \) is a polynomial of degree \(n \) ⇒ \(\frac{d}{dx} T_n \) is a polynomial of degree \(n - 1 \). And we just found \(n - 1 \) distinct roots of the latter, so it has no others. The only other extrema of \(T_n \) can occur at the endpoints, \{±1\}. And these coincide with \(\bar{x}'_0 = -1 \) and \(\bar{x}'_n = 1 \). Finally, for \(k = 0, 1, \ldots, n \),

\[
T_n(\bar{x}_k) = \cos \left(n \arccos \left(\cos \left(\frac{k\pi}{n} \right) \right) \right) = \cos(k\pi) = (-1)^k.
\]
The Monic Chebysehv Polynomials

The Monic (polynomials whose leading coefficient is 1) Polynomials, denoted by \tilde{T}_n, derived from the Chebysehv Polynomials, T_n, by dividing the latter by 2^{n-1}:

$$\tilde{T}_0 \equiv 1 \quad \text{and} \quad \tilde{T}_n(x) = \frac{1}{2^{n-1}} T_n(x) \quad \text{for each } n \geq 1.$$

It follows that

$$\tilde{T}_2(x) = x\tilde{T}_1(x) - \frac{1}{2} \tilde{T}_0(x) \quad \text{and}$$

$$\tilde{T}_{n+1}(x) = x\tilde{T}_n(x) - \frac{1}{4} \tilde{T}_{n-1}(x) \quad \text{for each } n \geq 2.$$
Since \tilde{T}_n is just a multiple of T_n, the zeros of \tilde{T}_n (for $n \geq 1$, occur at

$$\bar{x}_k = \cos \left(\frac{2k - 1}{2n} \pi \right) \quad \text{for each } k = 1, 2, \ldots, n,$$

and its extreme values, for $n \geq 1$, occur at

$$\bar{x}'_k = \cos \left(\frac{k}{n} \pi \right) \quad \text{for each } k = 1, 2, \ldots, n,$$

with

$$\tilde{T}_n(\bar{x}'_k) = \frac{(-1)^k}{2^{n-1}}.$$
Let $\tilde{\Pi}_n$ denote the set of all monic polynomials of degree n on $[-1, 1]$.

As we will see, the fact that the extreme values of Chebysehv’s monic polynomials, \tilde{T}_n (for $n \geq 1$), are

$$\pm \frac{1}{2^{n-1}},$$

will lead to an important minimization property that sets Chebysehv’s monic polynomials apart from other members of $\tilde{\Pi}_n$.
Theorem

The polynomials of the form \tilde{T}_n, when $n \geq 1$, satisfy the following property:

$$\frac{1}{2^{n-1}} = \max_{x \in [-1,1]} |\tilde{T}_n(x)| \leq \max_{x \in [-1,1]} |P_n(x)|, \quad \forall P_n \in \tilde{\Pi}_n.$$

Moreover, equality holds only if $P_n \equiv \tilde{T}_n$.
Proof.

Let $P_n \in \tilde{\Pi}_n$. Suppose that

$$\max_{x \in [-1,1]} |P_n(x)| \leq \frac{1}{2^{n-1}} = \max_{x \in [-1,1]} |\tilde{T}_n(x)|.$$

Let $Q = \tilde{T}_n - P_n$. Since \tilde{T}_n and P_n are monic polynomials, Q is a polynomial of degree $\leq n - 1$. At, \bar{x}'_k, the extreme points of \tilde{T}_n, we have

$$Q(\bar{x}'_k) = \tilde{T}_n(\bar{x}'_k) - P_n(\bar{x}'_k) = \frac{(-1)^k}{2^{n-1}} - P_n(\bar{x}'_k).$$

However, by assumption,

$$|P_n(\bar{x}'_k)| \leq \frac{1}{2^{n-1}} \quad \text{for each } k = 0, 1, \ldots, n.$$

So $Q(\bar{x}'_k) \leq 0$ when k is odd $Q(\bar{x}'_k) \geq 0$ when k is even. By continuity of Q, for each $j = 0, 1, \ldots, n - 1$, Q has at least one root between \bar{x}'_j and $\bar{x}'_{j+1} \Rightarrow Q$ has at least n roots in $[-1, 1]$. It follows that $Q \equiv 0$. \qed
Recall the quantity of interest is \(|Q(x)| = \prod_{i=0}^{n} |x - x_i| \)

\(Q(x) = \prod_{i=0}^{n} (x - x_i) \) is a monic polynomial of order \(n + 1 \).

Based on what we just saw, the maximal value of \(|Q(x)| \) is smallest when the \((x_k)_{k=0}^{n}\) are chosen to be roots of the Chebysehv polynomial, \(\tilde{T}_{n+1}(x) \); i.e., when

\[
\prod_{i=0}^{n} |x - x_i| = \tilde{T}_{n+1}(x)
\]

Hence we choose

\[
\bar{x}_{k+1} \cos \left(\frac{2k + 1}{2n} \pi \right) \quad \text{for each } k = 0, 1, \ldots, n.
\]
We also know that, since \(\max_{x \in [-1,1]} \tilde{T}_{n+1}(x) = 2^{-n} \),

\[
2^{-n} = \max_{x \in [-1,1]} \prod_{i=1}^{n+1} |x - \bar{x}_i| \leq \max_{x \in [-1,1]} \prod_{i=0}^{n} |x - x_i|
\]

for any choice of \((x_i)_{i=0}^{n} \subset [-1, 1] \).
Corollary

Let $P_n(x)$ be the interpolation polynomial of degree $\leq n$ with nodes at the roots of T_{n+1}. Then

$$\max_{x \in [-1,1]} |f(x) - P_n(x)| \leq \frac{1}{2^n(n + 1)!} \max_{x \in [-1,1]} |f^{(n+1)}(x)|$$

for every $f \in C^{(n+1)}([-1, 1])$.
Generalizing from $[-1,1]$ to $[a, b]$

Set

$$x \mapsto \frac{1}{2}[(b-a)x + a + b]$$

to transform the numbers \bar{x}_k from $[-1,1]$ to numbers in $[a,b]$.
Version Log

14/11/2018, ver 1.00.