Theorem 1.1 (Nonsingularity of SDD Matrices)

Strictly diagonally dominant matrices are always nonsingular.

Proof

Suppose that matrix \(A_{nn} \) is SDD and singular, then there exists a \(u \in u_n \) such that \(Au = b \) where \(b \) is the 0 vector while \(u \neq 0 \) (Definition NM[67]).

\[
A = \begin{bmatrix}
A_{11} & A_{12} & \ldots & A_{1n} \\
A_{21} & A_{22} & \ldots & A_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{n1} & A_{n2} & \ldots & A_{nn}
\end{bmatrix}
\quad u = \begin{bmatrix}
u_1 \\
v_2 \\
\vdots \\
u_n
\end{bmatrix}
\quad b = 0
\]

In the vector \(u \) there is a "dominant element" in position \(u_i \) where its absolute value is either equal to or larger than the absolute value any other element in \(u \). Let's call this maximum value \(\alpha \).

Every element in \(u \) cannot be \(\alpha \). If this were the case then row \(i \) multiplied by \(u \) would not result in a 0 element for \(b \) which is needed in order for \(b \) to be the 0 vector.

(1) \(|u_1| = |u_2| = \ldots = |u_n| = \alpha \) \hspace{1cm} (premise)

(2) \(A_{i1}u_1 + A_{i2}u_2 + \ldots + A_{in}u_n = 0 \) \hspace{1cm} (row, column multiplication)

(3) \(\pm A_{i1} \alpha + \pm A_{i2} \alpha + \ldots + \pm A_{in} \alpha = 0 \) \hspace{1cm} (substitution)

(4) \((\pm A_{i1} \pm A_{i2} \pm \ldots \pm A_{in}) = 0 \) \hspace{1cm} (distributivity)

(5) \(\pm A_{ij} \pm A_{ij} \pm \ldots \pm A_{ij} = 0 \) \hspace{1cm} (multiplicative inverse)

(6) \(|A_{ii}| = |A_{i2}| + \ldots + |A_{in}| \) \hspace{1cm} (check for SDD)

(6) contradicts the premise that \(A_{nn} \) is SDD thus every entry of \(u_n \) cannot be \(\alpha \).

In order for \(b_1 \) to equal 0 then \(\sum_{i=1}^{n} A_{ij}u_i = 0 \). Because \(|A_{11}| > \sum_{j \neq k} |A_{ij}| \), then position \(u_1 \) cannot be \(\alpha \). If \(u_1 \) cannot be \(\alpha \) then what about position \(u_2 \)? For the same reason \(u_1 \) cannot be \(\alpha \) due to the magnitude of \(A_{11} \) in row 1 of \(A \), \(u_2 \) cannot be \(\alpha \) due to the magnitude of \(A_{21} \) in row 2 of \(A \). This logic then continues from \(u_2 \) until \(u_n \). As a result no element in \(u \) can be the maximum element and all elements in \(u \) cannot be the maximum element. Therefore there is no vector \(u \) that we can create such that \(Au = 0 \).

If there is no \(u \) other than the 0 vector that can be created such that \(Au = 0 \), then \(A \) is nonsingular (Definition NM[67]), a contradiction to our premise.