Consensus number proofs for registers and FIFO queues

December 7, 2017

The proofs provided herein are taken from the book "Distributed Computing”, by Hagit Attiya and Jennifer Welch, with some changes, including terminology/notation adaptation.

1 Consensus from read/write registers

In this section we prove that wait-free consensus for 2 processes or more cannot be implemented from (multi-reader/multi-writer) registers. We actually prove that even the more restricted binary consensus object cannot be implemented in a wait-free manner from registers. In all the discussion that follows we assume that 2 or more processes share the consensus object.

Definition 1.1 The valency of a configuration C is the set of all values that are decided in some execution that starts from C. We say that C is bivalent if its valency is $\{0, 1\}$. We say that it is 0-valent (respectively 1-valent) if it contains only 0 (respectively 1).

Let us recall the following definition which we saw on lecture 2.

Definition 1.2 Configurations C and C' are indistinguishable to a set of processes P, denoted $C \overset{P}{\sim} C'$, if each process in P has the same state in C as in C' and the values of all registers are the same in both configurations.
Lemma 1 Let C_1 and C_2 be two univalent configurations. If $C_1 \overset{p_i}{\sim} C_2$ holds for some process p_i, then C_1 is v-valent if and only if C_2 is v-valent, for $v = 0, 1$.

Proof: Suppose C_1 is v-valent. Then, from wait-freedom, if p_i runs by itself starting from C_1 it will decide. As C_1 is v-valent, it must decide v. The same argument can be applied to C_2. As $C_1 \overset{p_i}{\sim} C_2$ holds, it follows that C_2 is also v-valent.

Lemma 2 There exists a bivalent initial configuration.

Proof: Let I_0 be the initial configuration in which all processes start with 0, and let I_1 be the initial configuration in which all processes start with 1. From the validity requirements, I_0 is 0-valent and I_1 is 1-valent. Let I_{01} be the initial configuration in which p_0 starts with 0 and the remaining processes start with 1. Since $I_{01} \overset{p_0}{\sim} I_0$, we get from Lemma 1 that I_{01} cannot be 1-valent. Since $I_{01} \overset{p_0}{\sim} I_1$, I_{01} cannot be 0-valent. Thus it must be bivalent.

Definition 1.3 We say that process p is critical in configuration C if C is bivalent but Ce is univalent, where s is the step enabled by p at C.

Lemma 3 If C is a bivalent configuration then there is at least one process that is not critical in C.

Proof: To obtain a contradiction, assume that all processes are critical in C. It follows that there are two processes p_i and p_j with enabled steps s_i and s_j, respectively, such that Cs_i is 0-valent and Cs_j is 1-valent. We consider the following possibilities.

- Steps s_i and s_j access distinct registers or read the same register. In this case we have $Cs_i s_j \not\overset{p}{\sim} Cs_j s_i$. Thus, from Lemma 1, $Cs_i s_j$ and $Cs_j s_i$ cannot have different valencies. This contradicts our assumption that Cs_i is 0-valent and Cs_j is 1-valent.

- Step s_i writes to some register r and step s_j reads r. Clearly $Cs_i \overset{p_i}{\sim} Cs_j s_i$ holds. However, Cs_i is 0-valent whereas $Cs_j s_i$ is 1-valent. This contradicts Lemma 1.
• Steps s_i, s_j write to the same register. Clearly $C s_j \sim_{p_i} C s_i s_j$ holds. However, $C s_j$ is 1-valent whereas $C s_i$ is 0-valent. Again, this is a contradiction to Lemma 1.

The result follows.

Theorem 4 There is no wait-free implementation of the consensus object, shared by two or more processes, from registers.

Proof: We inductively construct an execution of infinite length such that all the configurations reached by it are bivalent; thus no process can decide in this execution.

The base case is established by Lemma 2. Assume C is a bivalent configuration reached after an execution of length k. From Lemma 3, there is a non-critical process in C. We extend the execution by letting this process apply its step. We thus reach a bivalent configuration after an execution of length $k + 1$.

2 Consensus from FIFO queue

Theorem 5 There is no wait-free implementation of consensus, shared by three or more processes, from FIFO queues and read/write registers.

Proof: Assume, in contradiction, that there is such an algorithm for 3 processes, p_0, p_1 and p_2. From Lemma 2, there is an initial bivalent configuration B. We let the three processes take steps until we reach a critical configuration C, such that C is bivalent, but all of $C s_0, C s_1$ and $C s_2$ are univalent, where s_i is the step of process p_i enabled at C, for $i = 0, 1, 2$. From definition 1.1, it cannot be that all of $C s_0, C s_1$ and $C s_2$ have the same valency. WLOG, assume that $C s_0$ is 0-valent and $C s_1$ is 1-valent.

We now consider the operations applied by s_0 and $e p_1$. If both steps access different objects, or both access read/write registers then, by using arguments similar to those used in Theorem 4, we
obtain a contradiction. We therefore need only consider the case where both these steps access the same fifo queue Q.

The following possibilities exist.

1. Both s_0 and s_1 are dequeue operations on Q. In this case, $Cs_0 \sim p_0 Cs_1$ holds. From Lemma 1, this implies in turn that Cs_0 and Cs_1 cannot have the same uni-valency. This is a contradiction to our assumption that Cs_0 is 0-valent and Cs_1 is 1-valent.

2. s_0 is an enqueue operation on Q and s_1 is a dequeue operation on Q (or vice versa). If Q is non-empty, then $Cs_0s_1 \sim p_0 Cs_1s_0$ holds. This yields a contradiction by the argument used in the previous case. Assume, then, that Q is empty. In this case, $Cs_0 \sim p_0 Cs_1e_0$ holds, a contradiction.

3. Both s_0 and s_1 are enqueue operations on Q. Let a and b be the values enqueued by s_0 and s_1, respectively. Let $k-1$ be the number of items in Q in C. Thus, in Cs_0, a is the k’th item in Q. Similarly, b is the k’th item in Q in Cs_1.

Since Cs_0 is 0-valent and from wait-freedom, starting from Cs_0s_1 there exists an execution σ by p_0 in which it decides 0. We claim that in σ, p_0 must dequeue the k’th item of Q. Assume otherwise to obtain a contradiction. Then, in σ, p_0 does fewer than k dequeue operations and does not dequeue a. Hence p_0 decides 0 also in $Cs_1s_0\sigma$, a contradiction. It follows that, in σ, p_0 does at least k dequeue operations on Q. Let σ' be the longest prefix of σ that does not include p_0’s kth dequeue operation.

Starting from $Cs_0s_1\sigma'$, there exists an execution by p_1, τ, in which p_1 decides 0. We claim that p_1 must perform at least one dequeue operation on Q in τ. Assume otherwise, then p_1 decides 0 also in $Cs_1s_0\sigma'\tau$, which contradicts our assumption that Cs_1 is 1-valent. Let τ' be the longest prefix of τ that does not include p_1’s dequeue on Q.

Consider two extensions from C. First, consider the execution in which, after $Cs_0s_1\sigma'$, p_0 dequeues a from Q, then p_1 executes τ', then p_1 dequeues b from Q. Let D_0 be the resulting
configuration.

Second, consider the execution in which, after $Cs_1s_0\sigma'$, p_0 dequeues b from Q, then p_1 executes τ', then p_1 dequeues a from Q. Let D_1 be the resulting configuration. Clearly, $D_0 \leq D_1$, thus, from Lemma 1, D_1 and D_2 must have the same uni-valency. This is a contradiction.