Mutual Exclusion Space Lower Bounds

November 1, 2017

The proofs provided herein are taken from the book "Distributed Computing", by Hagit Attiya and Jennifer Welch, with some terminology/notation adaptation.

1 Lower bound on the number of registers for mutual exclusion

Definition 1.1 A configuration is a vector $C = (q_0, \cdots, q_{n-1}, r_0, \cdots, r_{m-1})$, where q_i is a state of p_i and r_j is a value of register R_j.

Definition 1.2 A configuration of a mutual exclusion algorithm is quiescent if all processes are in the remainder section.

Definition 1.3 Configurations C and C' are indistinguishable to a set of processes P, denoted $C \overset{P}{\sim} C'$, if each process in P has the same state in C as in C' and the values of all registers are the same in both configurations.

Definition 1.4 Configuration C is P-quiescent, where P is a set of processes, if there exists a quiescent configuration D such that $C \overset{P}{\sim} D$.

Definition 1.5 A process covers a register in a configuration if it is about to write to it (according to its state in the configuration).
Definition 1.6 An execution is a sequence of steps. For configuration \(C \) and execution \(\sigma \) we denote by \(C\sigma \) the configuration that is reached when \(\sigma \) is executed starting from \(C \).

Lemma 1 Let \(C \) be a configuration that is \(p_i \)-quiescent for some process \(p_i \). Then there exists a \(p_i \)-only execution \(\sigma \) such that \(p_i \) is in the critical section in \(C\sigma \) and, during \(\sigma \), \(p_i \) writes to a register that is not covered by any other process in \(C \).

Proof: First we show that such an execution \(\sigma \) exists. As \(C \) is \(p_i \)-quiescent, there exists a quiescent configuration \(D \) such that \(C \xrightarrow[p_i]{} D \) holds. From deadlock-freedom, if \(p_i \) runs alone from \(D \) it eventually enters the critical section. Let \(\sigma \) denote this execution. Hence \(p_i \) will execute \(\sigma \) also after \(C \) and enter the critical section. We now show that during \(\sigma \), \(p_i \) must write to a register not covered by any other process in \(C \). Suppose not. Let \(P \) be a set of processes, not including \(p_i \), that cover some register in \(C \) and let \(W \) be the set of registers that are covered in \(C \) by some process in \(P \).

Starting at \(C \), let each process in \(P \) perform a single step. The result is that all the registers that were covered in \(W \) have been overwritten. Then extend the execution by letting every process that is not in its remainder section in \(C \) return to the remainder section. This is possible because of the deadlock-freedom assumption. Let \(\tau \) be the resulting execution and let \(Q = C\tau \) be the resulting configuration. Note that \(Q \) is quiescent.

Pick some process \(p_j \neq p_i \). From deadlock-freedom, there is a \(p_j \)-only execution, \(\pi \), such that \(p_j \) is in the critical section in \(C\tau\pi \).

Finally, observe that during \(\tau\pi \), the other processes cannot tell whether \(p_i \) has performed the steps of \(\sigma \) or not, since \(\tau \) overwrites any value that \(p_i \) may have written. Thus, \(p_j \) is in its critical section also in \(C\sigma\tau\pi \) together with \(p_i \). This violates mutual exclusion.

Lemma 2 For all \(k \), \(1 \leq k \leq n \), and for any quiescent configuration \(C \), there exists a configuration \(D \) reachable from \(C \) by a \(\{p_0, \ldots, p_{k-1}\} \)-only schedule such that \(p_0, \ldots, p_{k-1} \) cover \(k \) distinct registers in \(D \) and \(D \) is \(\{p_k, \ldots, p_{n-1}\} \)-quiescent.
Proof: By induction on k.

Basis: $k=1$. Fix a quiescent configuration C. Observe that before entering the critical section, a process must write to some register. Thus there exists a p_0-only execution σ starting from C such that p_0 performs at least one write in σ. Let σ' be the prefix of σ just before p_0 performs its first write, say to register x, and let $D = C \sigma'$. Clearly, p_0 covers x in D. Since no writes were done in σ' and since it is a p_0-only execution, D is $\{p_1, \cdots, p_{n-1}\}$-quiescent.

Induction: Assume the lemma is true for $k \geq 1$ and show it for $k+1$.

For purposes of explanation, assume for now that every application of the inductive hypothesis causes the same set W of k registers to be covered by p_0 through p_{k-1}.

By the induction hypothesis, we can get to a configuration C_1 that appears quiescent to p_k, \cdots, p_{n-1} in which p_0, \cdots, p_{k-1} cover W. We must now show how to cover an additional register, for a total of $k+1$ covered registers.

Lemma 1 implies that we can get p_k to cover an additional register, say x, by starting at C_1 and just having p_k execute steps. Call this execution π'. However, the resulting configuration does not necessarily appear quiescent to p_{k+1}, \cdots, p_{n-1} since p_k may have written to some (covered) registers.

From $C_1 \pi'$, we can get to a $\{p_{k+1}, \cdots, p_{n-1}\}$-quiescent configuration while still keeping x covered by p_k as follows. First, we overwrite all traces of p_k by having p_0, \cdots, p_{k-1} each execute its write step. Second, we use the deadlock-freedom assumption to cause p_0, \cdots, p_{k-1} to return to the remainder section. Call the resulting execution τ and let $D_1' = C_1 \pi' \tau$ be the resulting configuration.

Finally, we would like to invoke the induction hypothesis on D_1' to get to another configuration in which W is covered again and which appears quiescent to p_{k+1}, \cdots, p_{n-1}. But the inductive hypothesis requires that we start with a (totally) quiescent configuration, and D_1' is not quiescent since p_k is in its entry section. However, this problem can be solved by noting that applying τ to C_1 produces a configuration D_1 that is quiescent. Thus by the induction hypothesis, there is a $\{p_0, \cdots, p_{k-1}\}$-only schedule σ such that $C_2 = D_1 \sigma$ is $\{p_k, \cdots, p_{n-1}\}$-quiescent and W is
covered by \(p_0, \cdots, p_{k-1} \). Since \(D_1 \) is indistinguishable from \(D'_1 \) to \(p_0, \cdots, p_{k-1} \), \(D'_1 \sigma \) exists. Thus in \(C'_2 = D'_1 \sigma \), \(k + 1 \) registers are covered and \(C'_2 \) appears quiescent to \(p_{k+1}, \cdots, p_{n-1} \).

However, it is not necessarily the case that every application of the induction hypothesis causes the same set of \(k \) registers to be covered. But since there is only a finite number of registers used by the algorithm, there is only a finite number of \(k \)-tuples of registers that can be covered. Thus, we repeatedly apply the induction hypothesis, cycling between quiescent configurations \((D_1, D_2, \cdots) \) and \(\{p_k, \cdots, p_{n-1}\} \)-quiescent configurations in which \(k \) registers are covered \((C_1, C_2, \cdots) \). Eventually we will find two configurations \(C_i \) and \(C_j, j > i \), in which the same set of \(k \) registers is covered. We can then use essentially the same argument we did above with \(C_1 \) and \(C_2 \).

We now proceed with the details. Let \(C \) be a quiescent configuration. We now inductively define an infinite execution starting with \(C = D_0 \) and passing through configurations \(C_1, D_1, C_2, D_2, \ldots \).

Given configuration \(C_m, m > 0 \), define \(D_m \) as follows. First, let each of the processes \(p_0, \cdots, p_{k-1} \) perform their write step. This causes every register in \(W_m \) to be written. Now use the deadlock-freedom assumption in order to cause each of \(p_0, \cdots, p_{k-1} \) to get to the remainder section. Call this execution \(\tau_m \). Let \(D_m \) be the resulting configuration. \(D_m \) is clearly quiescent.

Since the set of registers is finite, there exist \(i \) and \(j > i \) such that \(W_i = W'_j \). Recall that \(C_i \) is \(\{p_k, \cdots, p_{n-1}\} \)-quiescent. By Lemma 1, there is a \(p_k \)-only execution \(\pi \) such that \(p_k \) is in the critical section in \(C_i \pi \), and \(p_k \) writes to some register not in \(W_i \) during \(\pi \). Let \(\pi' \) be the prefix of \(\pi \) just before \(p_k \)'s first write to some register, say \(x \), not in \(W_i \). We can extend \(C_i \), by \(\pi' \tau_i \sigma_{i+1} \tau_{i+1} \cdots \sigma_j \), since \(\tau_i \) overwrites all the writes of \(p_k \) to \(W_i \) (if any) and the rest of the execution consists of steps by processes other than \(p_k \). Let \(C'_j \) be the resulting configuration.

We finish by showing that \(C'_j \) is the desired configuration \(D \). Since \(\pi' \) is \(p_k \)-only, the beginning of \(\tau_i \) writes to all registers in \(W_i \), and \(\tau_i \sigma_{i+1} \tau_{i+1} \cdots \sigma_j \) involves only \(p_0 \) through \(p_{k-1} \), it follows that \(C'_j P \sim C_j \), where \(P \) is the set of all processes except \(p_k \). Thus \(C'_j \) is \(\{p_{k+1}, \cdots, p_{n-1}\} \)-quiescent and, in \(C'_j, p_0, \cdots, p_{k-1} \) cover \(W_j \) and \(p_k \) covers \(x \). Since \(x \notin W_i \) and \(W_i = W_j \), \(k + 1 \) distinct registers are covered in \(C'_j \).
Instantiating Lemma 2 with $k = n$ and with an initial configuration C gives the following theorem.

Theorem 3 Any deadlock-free mutual exclusion algorithm that uses only read/write registers must use at least n registers, regardless of their size.

2 Lower bound on the number of bits for mutual exclusion

Definition 2.1 A mutual exclusion algorithm provides k-bounded waiting if, in every execution, no process enters the critical section more than k times while another process is waiting in the entry section.

Theorem 4 If a mutual exclusion algorithm provides k-bounded waiting (for some k), then the algorithm uses at least $\lceil \log_2 n \rceil$ bits.

Proof: Let C be an initial configuration. Clearly, C is quiescent. From deadlock freedom, there is a finite p_0-only execution, τ_0, after which p_0 is in the critical section. Let $C_0 = C\tau_0$. Inductively, construct for every $i \in \{1, \cdots, n - 1\}$ a p_i-only execution-fragment, τ_i, such that p_i is waiting in the entry section in $C_i = C_{i-1}\tau_i$ (p_i takes a bounded number of steps to go from the remainder, through the doorway, and start waiting in the entry section). Thus, p_0 is in the critical section and p_1, \cdots, p_{n-1} are waiting in the entry section at $C_{n-1} = C\tau_0, \cdots, \tau_{n-1}$.

To obtain a contradiction, assume the algorithm uses less than $\lceil \log_2 n \rceil$ shared bits. This implies that there are two configuration, C_i and C_j, $0 \leq i < j \leq n - 1$, such that all registers have the same values at C_i and C_j. Note that p_0, \cdots, p_i do not perform any steps in $\tau_{i+1}, \cdots, \tau_j$ and so $C_i \{p_0, \cdots, p_i\} \sim C_j$. Furthermore, in C_i (hence also in C_j), p_0 is in the critical section and p_1, \cdots, p_i are in the entry section.

It follows that, in a long enough execution fragment, ρ, in which only p_0, \cdots, p_i perform steps after C_i, some of these processes, p_l, enters the critical section more than k times. Since
$C_i \{p_0, \ldots, p_k\}

C_j$ holds, p_l enters the critical section more than k times also if ρ is executed after C_j, while p_j is waiting in the entry section. ■