Correctness proofs for renaming

December 20, 2012

The proofs provided herein are taken from the book "Distributed Computing", by Hagit Attiya and Jennifer Welch, with minor changes.

1 The wait-free algorithm

Lemma 1 No two processes decide on the same name.

Proof: To obtain a contradiction, assume that two processes \(p_i \) and \(p_j \) decide on the same name \(y \). Consider the \texttt{scan} operations they perform in line 4 of their last iteration of the while loop and assume WLOG that the \texttt{scan} operation by \(p_j \) is linearized after that of \(p_i \). Then, from the code and from the linearizability of the snapshot algorithm, \(p_j \) sees \(y \) as \(p_i \)'s suggested value, hence it cannot decide on \(y \).

Lemma 2 The new names are in the range \([1 \ldots 2n - 1]\).

Proof: The rank of a process is at most \(n \). Since a process sees at most \(n - 1 \) values as suggested by other processes, the claim follows.

Lemma 3 Any non-faulty process decides on a name after some finite number of steps.
Proof: To obtain a contradiction, assume the algorithm has an execution E in which some process takes an infinite number of steps and does not decide. We say that such a process is trying. Let $E = E_1E'$ such that, in E_1, all trying processes have already updated their value at least once in line 3 and all non-trying processes have either decided or fail-stopped. Let p_i be the trying process with the smallest original name. We prove that p_i decides in E', which is a contradiction.

Let NF ("not free") be the set of suggested names that appear in the snapshot object in the beginning of E' in the segments of non-trying processes. These names will remain taken all throughout E'. Let $F = [1 \ldots 2n - 1] \setminus NF$, and assume $F = \{z_1, z_2, \ldots\}$, where $z_1 < z_2 < \cdots$.

Let E'' be a suffix of E' in the beginning of which all trying processes have already written a suggestion in line 3 based on a view they received from a scan they have started in E'. Since no process performs line 3 for the first time in E', it follows that all these views contain the same set of original names. Hence, each process gets a unique rank in line 6. Let r be the rank of p_i’s original name in this view. Then r is the smallest rank among all trying processes.

Consider a trying process $p_j \neq p_i$. When p_j performs a scan in E', it sees every name in NF in use and possibly also some additional suggested names from F. Since p_j’s rank is bigger than r, it follows that, in E', p_j can only suggest names that are bigger than z_r. It follows that, in the view returned by the first complete scan performed by p_i in E'', none of the names z_1, \ldots, z_r is suggested. Hence p_i eventually decides on z_r in E'', a contradiction. ■