Correctness proof for SRSW multi-valued register simulation

November 30, 2011

The proofs provided herein are taken from the book "Distributed Computing", by Hagit Attiya and Jennifer Welch, with some changes, including terminology/notation adaptation.

1 Multi-valued SRSW register from binary SRSW registers

The wait-freedom of the simulation is clear from the code. In this section, we prove that the algorithm shown in class for implementing a multi-valued SRSW register from binary SRSW registers is linearizable.

We call reads/writes from base objects low-level reads/writes. We call reads/writes from a simulated object high-level reads/writes. Let E be an execution. We say that a low-level read operation r of $B[v]$ reads from a low-level write operation w to $B[v]$, if w is the latest write to $B[v]$ that precedes r in the linearization of the operations on $B[v]$. We say that a high-level read R in E reads from a high-level write W, if R returns v and W contains the write to $B[v]$ that R’s last read of $B[v]$ reads from.

We linearize the operations in E by (1) placing all the high-level write operations in the order they were performed, and (2) placing any high-level read operation between the high-level write operation from which it read (or before all high-level write operations, if there was none) and
the following write operation (if any); when doing that, we consider the read operations in the order that they appear in E. Let the resulting linearization be π. From construction, π meets the sequential specification. We need to prove that π respects the partial order of high-level operations induced by E. The following cases need be considered.

1. The order between writes is clearly maintained.

2. If a read operation R precedes in E a write operation W then, clearly, R is linearized before W, as it cannot read in E a value written by W or by a later write operation.

3. We still need to prove that the order of read operations is maintained.

4. We need to prove that if a write operation W precedes in E a read operation R, then W also precedes it in π.

Lemma 1 Consider two values u and v, with $u < v$. If, in execution E, read operation R returns v written by write operation W and R reads 0 from $B[u]$ during its upward scan, written by some write operation $W_1 \neq W$, then W follows W_1.

Proof: Suppose in contradiction that W precedes W_1 and let v_1 be the value written by W_1. Since W_1 writes 1 to $B[v_1]$ and then does a downward scan, $v_1 > u$ holds. Also, $v_1 < v$, since otherwise W_1 would overwrite W’s write to v (before it is read by R), contradicting the fact that R reads from W.

Thus, in R’s upward scan, it reads $B[v_1]$ after $B[u]$ and before it reads $B[v]$. R must read a 0 from $B[v_1]$, since otherwise it would not return v. Consequently there must be another write W_2, that follows W_1, that writes 0 to $B[v_1]$ before R’s read of $B[v_1]$. Let v_2 be the value written by W_2. Note that $v_1 < v_2 < v$ must hold by the same reasoning as before. Similarly, W_2 must be followed by a write W_3 that writes v_3, with $v_1 < v_2 < v_3 < v$, and so on. Thus there exists an infinite increasing sequence of integers v_1, v_2, v_3, \cdots, all of which are smaller than v. This is a contradiction. \[\square\]
Lemma 2 Proof of case (4): suppose that Write operation W precedes a read R in execution E. Then W is put before R in π.

Proof: To obtain a contradiction, suppose that W is put after R in π. Then R reads from some Write operation W' that precedes W. Let W write v and W' write v'. Thus R returns v'.

Assume first that $v' \leq v$. Then W overwrites the write to $B[v']$ made by W' before R begins and R cannot read from W'.

Now consider the case $v' > v$. W writes 1 in $B[v]$. Since R does not see this 1 and stop at $B[v]$ during its upward scan, there must be a Write W'' after W containing a write of 0 to $B[v]$ that R's read of $B[v]$ reads from. From Lemma 1, the value returned by R was written by a Write operation that follows W'', hence the value returned by R is by a Write operation that follows W'. Thus R cannot read from W'. This is a contradiction.

Lemma 3 Proof of case (3): suppose that Read operation R_1 precedes Read operation R_2 in execution E. Then R_1 is put before R_2 in π.

Proof: To obtain a contradiction, suppose R_1 is put after R_2 in π, though it precedes R_2 in E. This implies that R_1 reads from a Write $W_1(v_1)$ that follows the Write $W_2(v_2)$ from which R_2 reads. We consider 3 cases.

- If $v_1 = v_2$, then when W_1 writes 1 to $B[v_1]$ it overwrites the 1 that W_2 wrote to $B[v_2]$ earlier. Thus R_2 cannot read from W_2, a contradiction.

- Assume $v_1 > v_2$. Since R_2 reads from W_2, no write to $B[v_2]$ is linearized between W_2’s write of 1 to $B[v_2]$ and R_2’s last read of $B[v_2]$. Since R_1 reads from W_1, W_1’s write of 1 to $B[v_1]$ precedes R_1’s last read of $B[v_1]$. So $B[v_2]$ has value 1 starting before R_1 does its last read of $B[v_1]$ and ending after R_2 does its last read of $B[v_2]$. But then R_1’s read of $B[v_2]$ during its downward scan would return 1, not 0, hence R_1 should return v_2 or a smaller value, a contradiction.
• Assume \(v_1 < v_2 \). Since \(R_1 \) reads from \(W_1 \), \(W_1 \)'s write of 1 to \(B[v_1] \) precedes \(R_1 \)'s last read of \(B[v_1] \). Since \(R_2 \) returns \(v_2 > v_1 \), \(R_2 \)'s first read of \(B[v_1] \) must return 0. So there must be another Write after \(W_1 \) containing a write of 0 to \(B[v_1] \) that \(R_2 \)'s read of \(B[v_1] \) reads from. Then, from Lemma 1, \(R_2 \) must return a value written by a Write operation that follows \(W_1 \). Thus it cannot return the value written by \(W_2 \).