Correctness proof for multi-reader single-writer simulation

November 25, 2017

The proofs provided herein are taken from the book "Distributed Computing", by Hagit Attiya and Jennifer Welch, with some minor changes.

Theorem 1 In any wait-free simulation of a single-writer multi-reader register, from any number of single-writer single-reader registers, at least one reader must write.

Proof: Suppose in contradiction there is such a simulation for a register R in which the readers never write. Let p_w be the writer, and let p_1, p_2 be two readers. Suppose the initial value of R is 0.

Since the base-objects used by the implementation are SRSW registers, they may be partitioned into two sets, S_1 and S_2, such that only reader p_1 reads the registers in S_1, and only reader p_2 reads those in S_2.

Let α be the execution of a high-level write of 1 to R, starting in an initial configuration. α consists of a sequence of reads and writes to base objects. Let w_1, \cdots, w_k be the series of low-level writes that appear in α, each of which writes to a register in either S_1 or S_2.

For $i = 1, 2$ and $j = 1, \cdots, k$, define an alternative execution α^i_j, obtained from α by inserting an execution of a high-level read operation by p_i right after the linearization point of w_j. Let v^i_j be the value returned by this high-level read.
Since the simulation guarantees linearizability, for each $i = 1, 2$, there exists j_i between 1 and k such that $v_{j_i}^i = 0$ for all $j < j_i$ and $v_{j_i}^i = 1$. That is, there is a single low-level write operation w_{j_1} that causes p_i to observe the simulated register as having changed its value from 0 to 1. Clearly, $j_1 \neq j_2$ holds. This is because w_{j_1} writes some register in S_1 and w_{j_2} writes some register in S_2, and these sets are disjoint.

W.l.o.g, assume $j_1 < j_2$ holds. Let α' be an execution obtained from α by inserting a (high-level) read by p_1 followed by a (high-level) read by p_2 right after w_{j_1}. Then p_1’s read returns 1 and p_2’s read returns 0 in α'. This contradicts linearizability, since p_1’s read sees the newer value, yet it precedes p_2’s read, which sees the older value.

The following lemma proves that the simulation algorithm for multi-reader-single-writer register, shown in the presentation, is linearizable. Let α be an execution of the simulation algorithm. α is linearized to a history π as follows. First, we put in π all the write operations, according to the order in which they occur in α. Next, we add the read operations to π. We consider the reads one by one, in the order of their responses in α. A read that returns a value with time-stamp T is place immediately before the write that follows (in π) the write operation that generated time-stamp T.

From construction, π is a legal history.

Lemma 2 Let op_1 and op_2 be two high-level operations in α such that op_1 ends before op_2 begins, then op_1 precedes op_2 in π.

Proof: The claim is clear for write operations.

Consider some read operation r by p_i that returns a value associated with time-stamp T. Consider a write w that follows r in α. Then w is associated with some time-stamp T' such that $T' > T$. It follows that r is placed before w in π.

Consider a write w that precedes r in α. Since r occurs after w, r reads from $Val[i]$ the value written by w or by a later write. Thus r returns a value whose associated time-stamp is generated by w or a later write. It follows that r is not placed before w in π.

2
Consider a read \(r' \) by \(p_j \) that follows \(r \) in \(\alpha \). By linearizability, \(p_j \) obtains a time-stamp from \(Report[i] \) during \(r' \) that is written during \(r \) or a later operation. Since time-stamps are ever increasing, and since \(r' \) associated its value with the maximum time-stamp it observed, the time-stamp associated with \(r' \) is not smaller than that associated with \(r \). Thus, as \(r' \) is considered after \(r \) while constructing \(\pi \), \(r' \) follows \(r \) in \(\pi \).