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Abstract. We initiate the study of property testing problems concerning relations between permutations.

In such problems, the input is a tuple (σ1, . . . , σd) of permutations on {1, . . . , n}, and one wishes to determine

whether this tuple satisfies a certain system of relations E, or is far from every tuple that satisfies E. If this

computational problem can be solved by querying only a small number of entries of the given permutations,

we say that E is testable. For example, when d = 2 and E consists of the single relation XY = YX, this

corresponds to testing whether σ1σ2 = σ2σ1, where σ1σ2 and σ2σ1 denote composition of permutations.

We define a collection of graphs, naturally associated with the system E, that encodes all the information

relevant to the testability of E. We then prove two theorems that provide criteria for testability and non-

testability in terms of expansion properties of these graphs. By virtue of a deep connection with group

theory, both theorems are applicable to wide classes of systems of relations.

In addition, we formulate the well-studied group-theoretic notion of stability in permutations as a special

case of the testability notion above, interpret all previous works on stability as testability results, survey

previous results on stability from a computational perspective, and describe many directions for future

research on stability and testability.

1. Introduction

In this paper we study the testability of relations between permutations. We consider problems where

several permutations are given in a black box form (e.g., as circuits or oracles), and one wishes to determine

whether they satisfy a fixed system of relations E or are far from doing so. For example, suppose that

E consists of the single formal relation XY = YX. The computational problem corresponding to E is to

test whether two given permutations A and B, over the same finite set, commute. More precisely, the

problem is to distinguish between the following two cases (i) AB = BA, and (ii) A and B are ε-far in

the normalized Hamming metric (see (1.1) and Definition 1.5) from every pair of permutations A′, B′ that

satisfies A′B′ = B′A′.

Testing whether AB = BA was shown in [10] to be achievable by an algorithm whose query and time

complexities are both polynomial in 1
ε . In particular, we say that the system E = {XY = YX} is testable

since it has a testing algorithm whose query complexity depends only on ε, and not1 on the size n of the

domain {1, . . . , n} of A and B. Here, query complexity counts queries of the form “what is A(x)” or “what

is B(x)” for x in the domain of the permutations.

On the other hand, consider the system of relations E = {XZ = ZX,YZ = ZY}. Testing E amounts to

testing, for three given permutations A, B and C, whether C commutes with both A and B. Theorem 3

in the present paper, together with [25], imply that this system is not testable (see Example 2.4). In other

words, the query complexity of every testing algorithm for E must depend on n and not just on ε. Similarly,

the system E = {XY2 = Y2X} is also not testable (this is also discussed in Example 2.4), even though it is

superficially similar to the system {XY = YX}.
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In this work we go far beyond the systems of relations in the examples above. We establish a framework

and initiate a systematic study of the testability of systems of relations between permutations (also known as

equations in permutations). Given such a system E, we naturally associate with it a certain infinite family

of graphs GSolE (see Section 1.2), which contains both finite and infinite graphs. Our main results give

criteria for the testability and non-testability of E in terms of expansion properties of GSolE .

Definition 1.1 (Measures of expansion). Let G be a graph of bounded degree, with vertex set V . The

isoperimetric constant of G is

ρ(G) = inf

{
|E(X,V \X)|

|X|
| X ⊆ V is finite and nonempty

}
.

If G is finite, its Cheeger constant is

α(G) = inf

{
|E(X,V \X)|

|X|
| X ⊆ V and 1 ≤ |X| ≤ |V |

2

}
.

Here, E(X,Y ) denotes the set of edges between the sets X and Y .

Note that if G is finite then ρ(G) is trivially 0 since the set X = V has no expansion. However, some

infinite graphs, such as the d-regular tree (d ≥ 3), have a positive isoperimetric constant.

Our main positive theorem states that E is testable whenever GSolE is nonexpanding in the isoperimetric

sense.

Theorem 1 (Main positive theorem). If ρ(G) = 0 for every G ∈ GSolE then E is testable.

The notion of a testable system of relations is defined formally in Definition 1.6 in Section 1.1. The family

of graphs GSolE is defined in Section 1.2.

The aforementioned testability of {XY = YX} is a narrow special case2 of Theorem 1.

Our main negative theorem states that nonexpansion in the Cheeger sense is a necessary condition for

testability.

Theorem 2 (Main negative theorem). Let FGSolE denote the set of graphs in GSolE that are finite and

connected. If FGSolE is infinite and inf{α(G) | G ∈ FGSolE} > 0 then E is non-testable.

In Section 3 we will show how to associate a group3 Γ(E) with the system E. The expansion and

isoperimetric constants appearing in Theorems 1 and 2 have been studied extensively in the framework of

group theory, leading to numerous examples where the theorems are applicable, some of which are discussed

in Section 3 and Appendix A.

We note that, while Theorems 1 and 2 apply to many systems of relations, they do not provide a complete

classification. For example, the system consisting of the single relation XY2 = Y3X is known to satisfy neither

the hypothesis of Theorem 1 nor that of Theorem 2, and the question of its testability remains open (see

Problem 2.11). In the spirit of well-known classification theorems, such as those concerning constraint-

satisfaction problems [13, 43] and efficient testability of the H-freeness property of a graph [3], a prominent

objective of the present line of research is obtaining a complete characterization of testable systems of

relations. We elaborate on this goal in Section 2.2.1. We now turn to providing the necessary framework for

a precise statement of our results.

1.1. A framework for systems of relations between permutations. Fix a finite alphabet S =

{s1, . . . , sd} throughout the introduction. Let S− =
{
s−1

1 , . . . , s−1
d

}
be the set of formal inverses of the

letters in S, and write S± = S ∪ S−.

2For E = {XY = YX}, it is not hard to verify directly that ρ(G) = 0 for all G ∈ GSolE , but in fact it suffices to verify that

ρ(C) = 0, where C is the infinite grid in the plane. This suffices because C is the Cayley graph of the group Z2 (see Section 3).
3The family GSolE is in fact the family of graphs whose connected components are Schreier graphs of the group Γ(E).
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Definition 1.2. A relation is a formal equation of the form wi,1 = wi,2, where wi,j is a word over S±. A

system of relations is a finite set of relations.

Let Sym(n) denote the group of all permutations on [n] := {1 . . . , n}. Fix a system of relations E =

{wi,1 = wi,2}ri=1. We think of the letters in S as variables, and study the space of assignments s1 ← σ1, . . . , sd ← σd
that satisfy all of the relations in E, where each σi is a permutation in Sym(n). In other words, we study

the space of simultaneous solutions for E inside (Sym(n))
d
. More precisely, we are interested in testability

problems related to this space of solutions. As an example, to fit the relation XY = YX into this framework,

we set d = 2, S = {s1, s2}, r = 1, w1,1 = s1s2 and w1,2 = s2s1. Thus E = {s1s2 = s2s1} in this case. For

notational convenience we sometimes denote X = s1, Y = s2 and Z = s3.

Definition 1.3. For a word w over S± and a tuple σ = (σ1, . . . , σd) ∈ (Sym(n))
d
, n ∈ N, write w(σ) for the

permutation that results from applying the assignment sj ← σj to the word w.

Example 1.4. If S = {X,Y}, w = XYX−1Y−1 and σ = ((1 2 3), (1 2)) ∈ (Sym(3))
2

(where the permutations

are given in cycle notation), then w(σ) = (1 2 3)(1 2)(1 2 3)
−1

(1 2)
−1

= (1 3 2).

Let dH
n denote4 the normalized Hamming metric on Sym(n). That is,

(1.1) dH
n (σ, τ) = dH(σ, τ) =

1

n
|{x ∈ [n] | σ(x) 6= τ(x)}| ∀σ, τ ∈ Sym(n) .

Definition 1.5. Let n ∈ N. We say that σ ∈ (Sym(n))
d

is a solution for E in (Sym(n))
d

(or that σ satisfies

E) if wi,1(σ) = wi,2(σ) for each 1 ≤ i ≤ r, and write SolE(n) for the set of solutions for E in (Sym(n))
d
. For

ε ≥ 0, let

Sol≥εE (n) =

(σ1, . . . , σd) ∈ (Sym(n))
d |

d∑
j=1

dH(σj , τj) ≥ ε ∀(τ1, . . . , τd) ∈ SolE(n)

 .

In the example where S = {X,Y} and E = {XY = YX}, the space SolE(n) is the set of pairs (A,B) ∈
(Sym(n))

2
such that AB = BA, and the space Sol≥εE (n) is the set of all pairs (A,B) ∈ (Sym(n))

2
that satisfy

dH(A,A′) + dH(B,B′) ≥ ε whenever (A′, B′) ∈ (Sym(n))
2

is a commuting pair.

The following is the main novel definition of this paper:

Definition 1.6 (Testable system of relations). An algorithm M that takes n ∈ N and a tuple σ =

(σ1, . . . , σd) ∈ (Sym(n))
d

as input is an (ε, q)-tester for E if it satisfies the following conditions:

• Completeness: if σ ∈ SolE(n), the algorithm accepts with probability at least 0.99.

• ε-soundness: if σ ∈ Sol≥εE (n), the algorithm rejects with probability at least 0.99.

• Query efficiency: the algorithm is only allowed to query q entries of σ1, . . . , σd and their inverses.

If for every ε > 0 there are q = q(ε) ∈ N and an (ε, q)-tester Mε for E = {wi,1 = wi,2}ri=1 then we say that

E is q(ε)-testable (or just testable) and that ε 7→ Mε is a family of testers for E.

Note that in Definition 1.6 we allow the algorithm to have oracle access both to the entries of the given

permutations and to the entries of their inverses. Oracle access to inverses of permutations is in fact not

always necessary. Appendix B explains what can be done to circumvent the need to sample inverses.

In the sequel, it will be convenient to work with sets of relators rather than systems of relations, as

explained below. A word w over the alphabet S± is reduced if it does not contain any subword of the form

sis
−1
i or s−1

i si, 1 ≤ i ≤ d. Write FS for the set of reduced words over S± (in Appendix C we recall that

FS has a natural group structure, making it the free group on S). Every word w over S± is equivalent

to a unique reduced word, obtained from w by repeatedly removing subwords of the form sis
−1
i or s−1

i si,

1 ≤ i ≤ d.

4We shall omit the subscript n when it is clear from the context.
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Let w be a word over S±. Write w = se1i1 · · · s
e`
i`

, where ` ≥ 0, ej ∈ {+1,−1} and 1 ≤ ij ≤ d for all

1 ≤ j ≤ `. Then w has a formal inverse w−1 := s−e`i`
· · · s−e1i1

.

A system of relations E = {wi,1 = wi,2}ri=1 gives rise to a subset RE of FS , defined to be the set of

reduced words equivalent to w−1
1,2w1,1, . . . , w

−1
r,2wr,1. We say that RE is the set of relators corresponding

to E (in general, a set of relators is just a subset of FS). For example, if E = {XZ = ZX,YZ = ZY} then

RE = {X−1Z−1XZ,Y−1Z−1YZ}. Clearly, the system of relations E is equivalent to the system of relations

E′ = {w = 1 | w ∈ RE}. Indeed, SolE(n) = SolE′(n) and Sol≥εE (n) = Sol≥εE′ (n) for all n ≥ 1 and ε > 0. It is

generally more convenient to work with RE rather than directly with E.

1.2. A graph-theoretic view. It will be beneficial to encode a tuple of permutations as an S-graph, defined

below.

Definition 1.7. An S-graph is an edge-labelled directed (not necessarily finite) graph5, where each directed

edge is labelled by an element of S, and each vertex has exactly one outgoing and one incoming edge labelled

s for each s ∈ S.

Given n ∈ N, write GS(n) for the set of S-graphs on the vertex set [n]. In particular, GS(n) consists solely

of finite S-graphs.

When referring to the connected components of an S-graph G, or to whether or not G is connected, we

disregard edge orientation and labels, and treat G as an undirected graph.

Let G be an S-graph. For s ∈ S and a vertex x, we write sGx = y for the unique vertex y such that x
s−→y

is an edge in G. We also define s−1
G y = x. When there is no ambiguity about the graph in context, we write

sx for sGx (for s ∈ S±). For a word w = wt · · ·w1 (wi ∈ S±) we recursively define wGx = wt(wt−1 . . . w1x)

whenever t > 1. That is, wGx (or just wx) is the final vertex in the path that starts at x and follows t edges

labelled according to w.

We next show how to encode a tuple σ = (σ1, . . . , σd) ∈ (Sym(n))
d

as an S-graph Gσ. Let Gσ ∈ GS(n)

denote the S-graph with vertex set [n] and edge set
{
x
si−→σix | x ∈ [n], 1 ≤ i ≤ d

}
. Clearly, the map σ 7→

Gσ : (Sym(n))
d → GS(n) is a bijection.

Let E = {wi,1 = wi,2}ri=1 be a system of relations over S±. An S-graph G is said to belong to the class

GSolE if (wi,1)Gx = (wi,2)Gx for every 1 ≤ i ≤ r and vertex x. Equivalently, G ∈ GSolE if wGx = x holds

for all w ∈ RE and every vertex x. In this case, we say that G satisfies E.

Example 1.8. Let S = {X,Y} and E = {XY = YX}. Let m,n ≥ 1, and let G be the graph on the vertex set

V = {0, . . . ,m − 1} × {0, . . . , n − 1}, with the following edges: for each v = (a, b) ∈ V , the X-labelled edge

originating from v terminates at (a+ 1, b), and the Y-labelled edge originating from v terminates at (a, b+ 1)

(where the addition is taken modulo m and n, respectively). Then G belongs to GSolE (note that G can be

embedded on a torus).

Denote GSolE(n) = GSolE ∩GS(n). Given σ ∈ (Sym(n))
d
, note that σ ∈ SolE(n) if and only Gσ ∈

GSolE(n). In other words, Gσ satisfies E if and only if σ does the same. Importantly, the inclusion⋃
n∈N GSolE(n) ⊂ GSolE is strict since the latter set contains infinite S-graphs.

At this point, all notions in the statements of Theorems 1 and 2 have been fully defined. As these theorems

demonstrate, the power of the correspondence SolE(n) → GSolE(n), n ∈ N, manifests in a connection

between the testability of E and the geometry of the (finite and infinite) graphs in GSolE .

5S-graphs are allowed to have self-loops and multiple edges, but as follows from the definition, two different edges directed

from vertex x to vertex y must have distinct labels.
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As we will be working extensively with the graph encoding of a tuple of permutations, it will be convenient

to think of a tester as an algorithm whose input lies in GS(n), rather than (Sym(n))
d
. We naturally define6

(1.2) dH(G,G′) =
∑
s∈S

1

n
|{x ∈ [n] | sGx 6= sG′x}| ∀G,G′ ∈ GS(n)

and

GSol≥εE (n) =
{
G ∈ GS(n) | dH(G,G′) ≥ ε ∀G′ ∈ GSolE(n)

}
.

Note that

dH(Gσ, Gτ ) =

d∑
i=1

dH(σi, τi)

for σ = (σ1, . . . , σd) and τ = (τ1, . . . , τd) in (Sym(n))
d
, and that

GSol≥εE (n) =
{
Gσ | σ ∈ Sol≥εE (n)

}
.

We can now restate Definition 1.6 in terms of S-graphs.

Definition 1.9 (Testable system of relations in terms of S-graphs). An algorithm M that takes n ∈ N
and an S-graph G ∈ GS(n) as input is an (ε, q)-tester for E = {wi,1 = wi,2}ri=1 if it satisfies the following

conditions:

• Completeness: if G ∈ GSolE(n), the algorithm accepts with probability at least 0.99.

• ε-soundness: if G ∈ GSol≥εE (n), the algorithm rejects with probability at least 0.99.

• Query efficiency: the algorithm is only allowed to make q queries, where each query is of the form

“what is sGx?”, x ∈ [n], s ∈ S±.

If for every ε > 0 there are q = q(ε) ∈ N and an (ε, q)-tester Mε for E then we say that E is q(ε)-testable

(or just testable) and that ε 7→ Mε is a family of testers for E.

1.3. The Sample and Substitute algorithm, a first attempt at defining a tester. We turn to dis-

cussing algorithms for testing a given system of relations. Fix a system of relations E. The Sample and

Substitute algorithm with repetition factor k (denoted SASEk ), defined below, is arguably the most natural

candidate for an algorithm that tests whether an S-graph G lies in GSolE .

Algorithm 1 Sample and Substitute for E with repetition factor k

Input: n ∈ N and G ∈ GS(n)

1: Sample (w1, x1), . . . , (wk, xk) uniformly and independently from RE × [n].

2: if wjxj = xj in the graph G for all 1 ≤ j ≤ k then

3: Accept.

4: else

5: Reject.

For example, when S = {X,Y} and E = {XY = YX} (and so RE =
{
X−1Y−1XY

}
), the algorithm SASEk

randomly samples k vertices x1, . . . , xk from [n]. It then substitutes each xj into the permutation of [n]

defined by X−1Y−1XY and checks whether the result is xj . In other words, for each 1 ≤ j ≤ k, the algorithm

checks whether walking from xj along the edge labelled Y and then the edge labelled X, and then in the

reverse direction along the edge labelled Y and then the edge labelled X, leads back to xj . The algorithm

accepts if and only if this check succeeds for all 1 ≤ j ≤ k. For this specific system of relations, the query

complexity is 4k, since, to compute X−1Y−1XYxj , the algorithm first needs to query the vertex Yxi, then the

vertex X(Yxj), and so on, for a total of 4 queries. In terms of tuples of permutations (rather than graphs),

6In words, dH(G,G′) counts (with a 1
n

normalization factor) pairs consisting of a vertex x and letter s, such that the

respective s-labelled edges originating from x, in the graphs G and G′, disagree on their target vertex.
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the input is (σ1, σ2) ∈ (Sym(n))
2
, and the run of the algorithm is equivalent to sampling x1, . . . , xk uniformly

and independently from [n] and accepting if and only if σ−1
1 σ−1

2 σ1σ2xj = xj (equivalently, σ1σ2xj = σ2σ1xj)

for all 1 ≤ j ≤ k.

For a general system of relations E, the query complexity of SASEk is OE(k) since, generalizing from the

case E = {XY = YX}, the algorithm requires |wj | queries in order to compute (wj)Gxj , where we write |w|
for the length of a reduced word w. In particular, if k is independent of n then so is the query complexity.

If E admits a family of testers consisting of SASEk algorithms, we say that E is stable. This is formalized in

the following definition, which is stated in combinatorial terms in [22, Definition 1] and in group-theoretic

terms in [6, Theorem 4.2] and [25, Definition 1.1]. Here the definition is given in computational terms:

Definition 1.10. The system of relations E is stable if there is a function k : R>0 → N such that ε 7→ SASEk(ε)

is a family of testers for E. In this case we also say that E is k(ε)-stable.

In particular, every stable system of relations is testable.

Note that for every k ∈ N, the algorithm SASEk has perfect completeness, namely, when G ∈ GSolE(n),

the algorithm always accepts. Thus, the question of whether a system E is stable is equivalent to the question

of whether there is a function ε 7→ k(ε) such that SASEk(ε) is ε-sound for all ε > 0.

The question of which systems of relations are stable has recently received a lot of attention (see Sec-

tion 2.1), yielding both positive and negative results. For example, the aforementioned testability of

E = {XY = YX} follows from the following stability result:

Example 1.11 ({XY = YX} is stable). Consider the system E = {XY = YX}. The main theorem of [6]

implies that there is a function k : R>0 → N such that ε 7→ SASXY=YX
k(ε) is a family of testers for XY = YX.

A later work [10] improved upon the result of [6] by showing that we may take k(ε) =
(

1
ε

)O(1)
, where

the implied constant is absolute, and by providing a constructive7 proof. Thus, not only is E testable by

Sample and Substitute, but moreover, this testing can be done efficiently.

One natural question from the testing perspective is whether Sample and Substitute is universal,

namely, does every testable system of relations have a family of Sample and Substitute testers? In other

words, are testability and stability equivalent? As we shall see, Theorem 1 can be used to provide a negative

answer to this question. In Section 3.1 we give a concrete example of a system of relations which is testable

but not stable (see also Appendix A.1).

Fortunately, however, it turns out that a universal tester does exist. We turn now to describing this tester,

which we name Local Statistics Matcher8.

1.4. Local Statistics Matcher, a universal tester for relations between permutations. The idea

behind Local Statistics Matcher is as follows: Let G be a finite S-graph. For a vertex x of G and r ≥ 1, we

consider the isomorphism class of the closed ball9 BG(x, r) of radius r centered at x as a rooted directed

edge-labelled graph (the root is x and the orientations and edge labels are inherited from G, but the relevant

notion of a graph isomorphism ignores vertex labels). The graph G gives rise to a probability distribution

on the set of such isomorphism classes: Write NG,r for the distribution of the isomorphism class of BG(x, r),

where x is sampled uniformly from the set of vertices of G.

Given a graph G ∈ GS(n), Local Statistics Matcher computes an approximation of the distribution NG,r
(for a large enough r, independent of n), which we denote by NEmpirical

G,r . The algorithm accepts if and only

if there exists G′ ∈ GSolE(n) such that the distributions NEmpirical
G,r and NG′,r are at most δ-far from each

7That is, the proof in [10] provides an explicit algorithm that, given a graph G ∈ GS(n) that is accepted by SASXY=YX
k(ε) with

high probability, produces a graph G′ ∈ GSolE(n) close to G.
8Readers familiar with Benjamini–Schramm convergence will recognize a close connection between

Local Statistics Matcher and the Benjamini–Schramm metric.
9This ball is the graph whose vertex set V consists of all vertices wx of G, where w is a word of length at most r over S±,

and whose edge set consists of all the edges of G that start and end in V .
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other (for a small enough δ > 0, independent of n). In other words, Local Statistics Matcher accepts with

high probability if and only if G and G′ are close together under the Benjamini–Schramm metric [2, 12].

More precisely, Local Statistics Matcher is a parameterized family of algorithms, i.e., for k, P and δ (see

below) we have a Local Statistics Matcher algorithm LSME
k,P,δ. As we shall see in Theorem 3, Local Statistics

Matcher is universal in the following sense: the system E is testable if and only if for every ε > 0 there are

k, P and δ such that LSME
k,P,δ is an (ε, q)-tester for E, for some q which depends only on ε.

Rather than working with isomorphism classes of balls, it is more convenient (and essentially equivalent)

to consider stabilizers:

Definition 1.12. For a vertex x of an S-graph G, let

StabG(x) = {w ∈ FS | wGx = x} .

For P ⊂ FS , write NG,P for the distribution (over the set of subsets of P ) of StabG(x)∩P when x is sampled

uniformly from the set of vertices of G.

If P = {w ∈ FS | |w| ≤ r}, r ≥ 1, then StabG(x) ∩ P determines the isomorphism class, as a rooted

directed edge-labelled graph, of the closed ball BG(x, r/2) of radius r/2 centered at x in the graph G.

Indeed, StabG(x) ∩ P determines the set

(1.3) {(w1, w2) ∈ FS × FS | |w1|, |w2| ≤ r/2, w1x = w2x} .

because w1x = w2x if and only if the reduced word equivalent to w−1
2 w1 is in StabG(x)∩P (when |w1|, |w2| ≤

r/2). The set (1.3) encodes the isomorphism class of BG(x, r/2).

Before formulating the algorithm we need some notation. Given a set A, we denote its power set by

Subsets(A), and write FinSubsets(A) for the set of finite subsets of A. When A is finite, we write U(A) for

the uniform distribution over A.

Denote the total-variation distance between two distributions θ1, θ2 over a finite set Ω by

dTV(θ1, θ2) :=
1

2

∑
x∈Ω

|θ1(x)− θ2(x)| .

The Local Statistics Matcher algorithm for a system of relations E takes three parameters in addition

to E: a repetition factor k ∈ N; a finite word set P ∈ FinSubsets(FS); and a proximity parameter δ > 0.

The algorithm, denoted LSMk,P,δ, is defined as follows.

Algorithm 2 Local Statistics Matcher for E with with repetition factor k, word set P ⊂ FS and proximity

parameter δ

Input: n ∈ N and G ∈ GS(n)

1: Sample x1, . . . , xk uniformly and independently from [n].

2: For each 1 ≤ j ≤ k, compute the set StabG(xj) ∩ P by querying G.

3: Let NEmpirical
G,P be the distribution of StabG(xj) ∩ P where j is sampled uniformly from [k].

4: if

(1.4) min
{
dTV

(
NEmpirical
G,P , NH,P

)
| H ∈ GSolE(n)

}
≤ δ

then

5: Accept.

6: else

7: Reject.

In our proof of the universaility of Local Statistics Matcher, we only make use of sets P of the form

P = {w ∈ FS | |w| ≤ r}, r ≥ 1. This restriction does not hurt the universality of the algorithm. For sets P

of this form, the algorithm can essentially be seen as sampling balls of radius r
2 .
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The query complexity of LSME
k,P,δ is O

(
k
∑
w∈P |w|

)
, and in particular it is independent of n whenever

the same is true for k, P and δ. Indeed, to determine StabG(xj)∩P , 1 ≤ j ≤ k, it suffices to compute wGxj
for each w ∈ P , and this can be done in |w| queries for any given w.

In contrast to Sample and Substitute, the Local Statistics Matcher algorithm is not necessarily

perfectly complete. Namely, for some systems of relations E, the algorithm may reject (with some small

probability) even if G ∈ GSolE(n). This can happen in a run of Local Statistics Matcher only if

NEmpirical
G,P is not a good approximation of NG,P .

Remark 1.13. In a naive implementation of LSME
k,P,δ, the algorithm explicitly enumerates the elements of

GSolE(n) in order to compute the set of distributions {NH,P | H ∈ GSolE(n)}. This results in running time

exponential in n. While the present work focuses on query complexity, we discuss possible significant time

complexity improvements in Section 2.2.4.

1.4.1. Statistical distinguishability and the universality of Local Statistics Matcher. To prove the uni-

versality of Local Statistics Matcher, we introduce the notion of a statistically distinguishable system

of relations (Definition 1.14). We then show (Theorem 3) that for a system of relations E, the following

implications hold:

E is testable =⇒ E is statistically distinguishable =⇒ E is testable by Local Statistics Matcher,

and thus the three statements are equivalent.

Definition 1.14. The system of relations E is statistically distinguishable if for every ε > 0 there exist

P (ε) ∈ FinSubsets(FS) and δ(ε) > 0 such that dTV

(
NG,P (ε), NH,P (ε)

)
≥ δ(ε) for every n ∈ N, G ∈ GSolE(n)

and H ∈ GSol≥εE (n). In this case we also say that E is (P (ε), δ(ε))-statistically-distinguishable.

Remark 1.15. Given graphs G,H ∈ GS(n), we sometimes refer to dH(G,H) as their global distance, and to

dTV(NG,P , NH,P ) (where P ∈ FinSubsets(FS)) as their P -local distance. Thus, E is statistically distinguish-

able if whenever H is ε-far from GSolE(n) in the global metric, it is also δ-far from GSolE(n) in the P -local

metric, where δ and P may depend on ε.

Theorem 3. Fix a system of relations E over an alphabet S±. The following conditions are equivalent:

(1) E is testable.

(2) There exist functions k : R>0 → N, P : R>0 → FinSubsets(FS) and δ : R> → R>0 such that ε 7→
LSME

k(ε),P (ε),δ(ε) is a family of testers for E.

(3) E is statistically distinguishable.

We prove Theorem 3 in Section 7. Note that, in addition to implying the universality of Local Statistics

Matcher, Theorem 3 reduces the question of testability to the notion of statistical distinguishability. The

latter is graph theoretic and geometric, rather than algorithmic. Our proofs of Theorems 1 and 2 rely on

this reduction.

1.5. Overview. Section 2 contains a survey of previous work, and discusses directions for future research.

Section 3 explains the powerful relationship between testability and group theory: each system of relations

E gives rise to a group Γ(E), and the foundational Proposition 3.2 says that the testability of E depends

only on Γ(E). Section 3 also reviews the relevant group-theoretic notions in a combinatorial language.

In Section 4 we prove Theorem 2 by a direct use of expansion in graphs. In Section 5 we prove Theorem 1

using deep results such as the Newman–Sohler Theorem [36] (see also [20]) and the Ornstein–Weiss Theorem

[14,38]. In Section 6 we prove Proposition 3.2.

The proofs of Theorems 1 and 2 and Proposition 3.2 use the reduction from testability to the geometry

of graphs, as afforded by Theorem 3, which is proved in Section 7.

Appendix A.1 uses Theorem 1 to provide an example of a testable instable system of relations. Appendix

A.2 gives an example of a system satisfying the hypothesis of Theorem 2.
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2. A survey of previous work and directions for further research

2.1. A survey of previous work on stability. The notion of testability of relations and the computational

perspective on stability are new concepts, introduced in this paper. Nevertheless, there is a lot of recent

research of stability in permutations from group-theoretic and combinatorial points of view. Most of the

existing literature on stability relies on the relation to group theory as explained in Section 3. We formulate

these results in the graph-theoretic language developed in Section 1.2.

2.1.1. The combinatorial definition of stability. Stability, as in Definition 1.10, has several equivalent defini-

tions (see [22, Definition 1], [6, Theorem 4.2], [25, Definition 1.1]). Below we recall one of them and prove

the equivalence.

Definition 2.1 (Combinatorial definition of stability). [22, Definition 1] Let E be a system of relations over

S±, and let G ∈ GS(n). The local defect of G with respect to E is

LE(G) :=
∑
w∈RE

Pr
x∼U([n])

[wGx 6= x].

We say that E is stable if

inf
{
LE(G) | G ∈ GSol≥εE (n), n ∈ N

}
> 0 ∀ε > 0 .

Remark 2.2. We use the notion of local defect in the proof of Proposition 3.2 (see Section 6).

For G ∈ GS(n), we have G ∈ GSolE(n) if and only if LE(G) = 0. Another way to state Definition 2.1

is: The system E is stable if and only if for every ε > 0 there is δ > 0 such that G /∈ GSol≥εE (n) whenever

n ∈ N, G ∈ GS(n) and LE(G) < δ. That is (informally), E is stable if every graph which approximately

satisfies E is close to a graph which fully satisfies E.

For G ∈ GS(n), it is easy to see that the probability that SASE1 rejects G is 1
|E|LE(G), and that SASEk can

be implemented by running SASE1 for k independent iterations and accepting if all iterations accept. These

observations are used in the proof of the following claim.

Claim 2.3. A system of relations E is stable in the sense of Definition 2.1 if and only if it is stable in the

sense of Definition 1.10.

Proof. Suppose that E is stable in the sense of Definition 2.1. For ε > 0, write

δ(ε) =
1

|E|
inf
{
LE(G) | G ∈ GSol≥εE (n), n ∈ N

}
> 0

and

k(ε) =
⌈
log1−δ(ε) 0.01

⌉
.

We claim that ε 7→ SASEk(ε) is a family of testers for E. Let n ∈ N and G ∈ GSol≥εE (n). Then SASE1 rejects

G with probability 1
|E|LE(G) ≥ δ(ε). Thus, the probability that SASEk accepts G is at most

(1− δ(ε))k ≤ (1− δ(ε))log1−δ(ε) 0.01
= 0.01 .

Conversely, suppose that E is stable in the sense of Definition 1.10, and let ε 7→ SASEk(ε) be a family of

testers for E, k : R>0 → N. Take G ∈ GSol≥εE (n). Write p1 (resp. pk(ε)) for the probability that SASE1 (resp.

SASEk(ε)) rejects G. On one hand, p1 = 1
|E|LE(G) and pk(ε) ≥ 0.99. On the other hand, pk(ε) ≤ k(ε) · p1 by

the union bound, and thus LE(G) ≥ 0.99|E|
k(ε) . Hence

inf
{
LE(G) | G ∈ GSol≥εE (n), n ∈ N

}
≥ 0.99|E|

k(ε)
> 0 .

�
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2.1.2. Stability under the hypothesis of Theorem 1. Let E be a system of relations satisfying the hypothesis

of Theorem 1. That is, ρ(G) = 0 for every G ∈ GSolE . Theorem 1 says that E is testable. However, E

is not necessarily stable. In fact, there is a group-theoretic criterion that determines whether a system E,

satisfying the hypothesis of Theorem 1, is stable (see Theorem [9, Theorem 1.3(ii)]10). See Section 3.1 and

Appendix A.1 for an explicit example of a stable non-testable system.

Example 2.4 (Baumslag–Solitar relations). Fix m,n ∈ Z, and consider the system Em,n = {XYm = YnX},
consisting of a single relation. Then Em,n is stable if and only if |m| ≤ 1 or |n| ≤ 1. Indeed:

• The case m = n = 0 is clear.

• If m = 0 and n 6= 0 then Em,n is stable by [22, Theorem 2].

• If |m| = 1 or |n| = 1 then Em,n is stable by [9, Theorem 1.2(ii)].

• If |m|, |n| ≥ 2 and |m| 6= |n| then Em,n is not stable by [6, Example 7.3] (see also [9, Theorem

1.3(i)]).

• If |m|, |n| ≥ 2 and |m| = |n| then Em,n is not stable by [25, Corollary B(3)].

As for the testability of Em,n, the stable cases are clearly testable. Testability in the case |m|, |n| ≥ 2 and

|m| 6= |n| is an interesting open question (see Section 2.2.1).

In the remaining case, |m|, |n| ≥ 2 and |m| = |n|, it turns out that Em,n is not testable. Indeed, by

[25, Theorem D] there are ε0 > 0 and finite S-graphs in GSol≥ε0Em,n
with local statistics approximating a

certain11 infinite vertex-transitive S-graph H arbitrarily well. On the other hand, it is well-known that there

are also finite S-graphs in GSolEm,n whose local statistics approximate the same infinite graph H arbitrarily

well12. Thus Em,n is not statistically distinguishable13, and hence it is not testable by Theorem 3. In fact,

Em,n is not even flexibly testable (see Section 2.1.3) because the argument above remains true even with a

flexible definition of GSol≥ε0Em,n
by [25, Theorem D].

By the above, the system of relations E2,2 = {XY2 = Y2X}, mentioned in the beginning of Section 1, is

not flexibly testable. By a similar argument, also based on [25, Theorem D] and Theorem 3, the system

{XY = ZX,YZ = ZY} is also not flexibly testable.

2.1.3. Flexible stability (and testability). A slightly weaker form of stability, called flexible stability [8, Section

4.4], has led to fascinating research. Here we define this notion in the language of the present paper. We

also introduce a new, more general, notion of flexible testability.

For G ∈ GS(n) and G′ ∈ GS(N), N ≥ n, let

dH(G,G′) = dH(G′, G) =
∑
s∈S

|{x ∈ [n] | sGx 6= sG′x}|+ (N − n)

N
.

Then dH is a metric on the disjoint union
∐
n∈N GS(n) [7, Lemma A.1], extending (1.2). Note that dH(G,G′) ∈

[0, |S|], and that if dH(G,G′) is close to 0 then n
N is close to 1 (indeed, 1− dH(G,G′)

|S| ≤ n
N ≤ 1). For a system

of relations E over S±, let

GSol≥ε,flex
E (n) =

{
G ∈ GS(n) | dH(G,G′) ≥ ε ∀G′ ∈

∐
m∈N

GSolE(m)

}
.

Definition 2.5 (Flexibly-testable system of relations). An algorithm M that takes n ∈ N and an S-graph

G ∈ GS(n) as input is an (ε, q)-flexible-tester for E if it satisfies the following conditions:

• Completeness: if G ∈ GSolE(n), the algorithm accepts with probability at least 0.99.

• ε-soundness: if G ∈ GSol≥ε,flex
E (n), the algorithm rejects with probability at least 0.99.

10Theorem 1.3(ii) of [9] characterizes stability among systems E for which the group Γ(E) is amenable (see Section 3)
11Namely, H is the Cayley graph of the Baumslag–Solitar group BS(m,n)
12This follows from the group BS(m,n) being residually finite when |m| = |n| [31, Proposition 2.6(3)]
13This argument is similar to the proof of Theorem 5 using Lemma 4.3 in Section 4
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• Query efficiency: the algorithm is only allowed to make q queries, where each query is of the form

“what is sGx?”, x ∈ [n], s ∈ S±.

If for every ε > 0 there are q = q(ε) ∈ N and an (ε, q)-flexible-tester Mε for E then we say that E is

q(ε)-flexibly-testable (or just flexibly testable, or testable under the flexible model) and that ε 7→ Mε is a

family of flexible testers for E.

Clearly, every testable system of relations is also flexibly testable. As shown in Example 2.4, not every

system of relations is flexibly testable.

Definition 2.6 (Flexibly-stable system of relations). We say that E is flexibly stable if there is a function

k : R>0 → N such that ε 7→ SASEk(ε) is a family of flexible testers for E.

Clearly, if E is stable then it is flexibly stable. The converse is still open:

Problem 2.7. Is there a flexibly-stable system of relations that is not stable?

An open problem similar to Problem 2.7, in the context of testability, is stated and discussed in Section

2.2.7.

Remark 2.8. We note that the sufficient condition for instability in [9, Theorem 1.3(i)] is in fact sufficient

for flexible instability (this follows directly from the proof given in [9] which was written before the notion

of flexible stability was defined formally).

The following deep result provides examples of flexibly-stable systems, none of which are known to be

stable.

Example 2.9. [27, Theorem 1.1] For g ≥ 2, the system Eg = {[s1, s2][s3, s4] · · · [s2g−1, s2g] = 1}, consisting

of a single relation, is flexibly stable. Here [a, b] := aba−1b−1.

More precisely, ε 7→ SAS
Eg
k(ε) is a family of flexible testers for Eg for k(ε) = O

(
1
ε log 1

ε

)
.

We refer the reader to [8, Section 4.4] and [25, Section 3] for further information regarding flexible stability.

2.1.4. Query efficiency. It is interesting to study the query complexity of a stable system of relations E in

terms of ε. That is, how small can k(ε) be such that ε 7→ SASEk(ε) is a family of testers for E.

When |S| = d, d ≥ 1, and

E = {ss′ = s′s | s, s′ ∈ S},
the main result of [10] (see Example 1.11) gives an upper bound on k(ε) which is polynomial in 1

ε . On the

other hand, [10, Theorem 1.17] shows that k(ε) ≥ Ω
((

1
ε

)d)
if d ≥ 2. As for a lower bound on k(ε) under

the flexible model, we know that k(ε) ≥ Ω
((

1
ε

)2)
if d ≥ 2 (stated without proof in [10, Section 6]). In

particular, the bound k(ε) ≤ O
(

1
ε log 1

ε

)
in Example 2.9 does not hold when g = 1.

2.1.5. Stability of an infinite system of relations. Our definition of a system of relations E requires E to be

finite. It is possible to define stability even when E is infinite: E is stable if ε 7→ SAS
E′(ε)
k(ε) is a family of

testers for E for some k : R>0 → N and E′ : R>0 → FinSubsets(E). Examples of stable infinite systems,

which are not equivalent to any finite system, are given in [42, Theorem 1.7], [29] and [30], using [9, Theorem

1.3(ii)].

2.1.6. Matrices instead of permutations. The general question of whether approximate solutions are close to

solutions, in various contexts, was suggested by Ulam [39, Chapter VI]. Definition 2.1 puts the notion of

stability in permutations into this framework, and follows the earlier notion of stability in matrices. The

classical question in the latter context is whether for all n× n matrices A and B such that ‖AB −BA‖ < δ

there are n×n matrices A′ and B′ such that A′B′ = B′A′ and ‖A−A′‖+‖B−B′‖ < ε, where ε = ε(δ)
δ→0−→ 0.

The answer depends on the type of matrices considered (self-adjoint, unitary, etc.) and the matrix norm

used. See the introduction of [6] for a short survey of stability of the relation XY = YX in matrices, and

[8, 15,16,19,21,24,32,35,37] for newer works that consider more general relations.
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2.2. Directions for further research. This work originated from the observation that stability, which

has been studied extensively in the context of group theory, admits a natural equivalent definition in the

language of property testing (Definition 1.10). This gave rise to the more general notion of testability of

relations between permutations (Definition 1.6).

We hope that the present paper will stimulate more work on testability of relations. While Theorems

1 and 2 generate large families of testable and non-testable relations, many fundamental questions remain

open. Below we present suggestions for further research (see Section 3 for several additional open problems).

2.2.1. A complete characterization of the testable systems of relations. The most direct goal of our line of

research is to classify every system of relations as either testable or non-testable. We do not know whether

this problem is computable, namely, it may be undecidable to determine, given a system of relations E as

input, whether E is testable. Regardless of this potential obstacle, we seek a natural characterization for

testability, and note that such a characterization need not necessarily be computable.

Problem 2.10. Obtain a natural geometric characterization for testable systems of relations (i.e., a char-

acterization in terms of properties of the graphs GSolE)

The present work advances us towards this goal via Theorems 1 and 2, which yield large natural sets

of positive and negative examples, and hint at a complete characterization in terms of the geometry of the

graph family GSolE .

A natural approach to Problem 2.10 is concentrating on systems of relations that have evaded our methods

so far. Perhaps the most prominent candidates are the Baumslag-Solitar systems of relations (see Example

2.4):

Problem 2.11. Let m,n ∈ Z. Is Em,n = {XY m = Y nX} testable? If not, is it flexibly testable?

The only open cases in Problem 2.11 are when |m| and |n| are distinct and larger than 1 (see Example

2.4). In all of these open cases, Em,n is not flexibly stable (see Example 2.4 and Remark 2.8).

2.2.2. Query efficiency. A testable system of relations E, as in Definition 1.6, is a system that admits an

(ε, q)-tester Mε for all ε > 0, where q depends only on ε and E (but not on the input size n). From a

computational perspective, it is desirable to derive explicit good upper bounds on q in terms of ε. Examples

1.11 and 2.9 establish results of this kind in the context of stability, as discussed in Section 2.1.4. It is

interesting to study the quantitative aspect in the broader context of testability. One natural question is

whether Theorem 1 can be extended to a quantitative statement.

Problem 2.12. Let E satisfy the hypothesis of Theorem 1. What is the minimum query complexity of a

tester for E?

See Section 3.3 for a conjecture about Problem 2.12.

In line with Examples 1.11 and 2.9, it is interesting to find additional families of poly(1/ε)-testable and

poly(1/ε)-stable systems of relations.

Problem 2.13. Which systems of relations are O
(
poly

(
1
ε

))
-testable?

The more refined question of the degree of polynomial stability or testability is also interesting. The

following is still open.

Problem 2.14. What is the minimal14 D such that E = {XY = YX} is O
((

1
ε

)D)
-stable?

14More precisely, we ask about the infimum of the set of all D such that E is O
((

1
ε

)D)
-stable (we do not know if the

minimum is attained).

12



As discussed in Section 2.1.4, the minimal D is at least 2. One can derive an explicit upper bound on D

by following the proof of [10, Theorem 1.16].

Another question is whether there are systems of relations that are stable, but where an algorithm different

than Sample and Substitute would yield better query complexity. For example:

Problem 2.15. Let D be minimal such that E = {XY = YX} is O
((

1
ε

)D)
-stable. Is there some D′ < D?

such that E is O
((

1
ε

)D′)
-testable?

In the context of lower bounds, the following is also still open.

Problem 2.16. Is there a system of relations E which is testable, but not O
((

1
ε

)D)
-testable for any D?

Similarly, is there E which is stable but not O
((

1
ε

)D)
-stable for any D?

2.2.3. Allowing the query complexity to depend on n. In this work, as in, e.g., [4,5,36], the query complexity

of a tester must not depend on the input size. In general, however, testers whose query complexity depends

on the input size in a sublinear fashion are widely studied (see, e.g., [23]). Allowing such testers raises many

interesting questions, such as the following.

Problem 2.17. Consider the system of relations E = E3, discussed in Section 3.2 and defined in Appendix

A.2. This system satisfies the hypothesis of Theorem 2 and thus it is not testable. Is there a probabilistic

algorithm that distinguishes between elements of GSolE3(n) and GSol≥εE3
(n), in the sense of Definition 1.6,

by making only q = q(ε, n) queries? Here q must be sublinear in n for a result to be interesting, and the

question is how small can q be in terms of n (the same question is open for every other system E that satisfies

the hypothesis of Theorem 2).

2.2.4. Running time efficiency. Another aspect that we do not pursue in this work is the time complexity

of our testers. In the case of the Sample and Substitute algorithm, the time complexity is easily seen to be

identical to the query complexity, so not much remains to be optimized.

On the other hand, as explained in Remark 1.13, a straightforward implementation of Local Statistics

Matcher requires time exponential in n to determine whether Condition (1.4) holds. However, when the

graphs in GSolE are “well behaved”, the set of distributions {NG,P | G ∈ GSolE(n)} may be structured

enough to allow this condition to be checked much more efficiently, perhaps even in time independent of n.

Problem 2.18. For which testable systems of relations E, having ε 7→ LSME
k(ε),P (ε),δ(ε) as a family of

testers, does there exist an implementation of LSME
k(ε),P (ε),δ(ε) that is time-efficient in terms on n (or better,

has running time independent of n)?

Additionally, despite the universality of Local Statistics Matcher (see Theorem 3), it may also be worthwhile

to seek other, more time-efficient, testing algorithms.

In the context of Problem 2.18, it is worth noting that for a k(ε)-stable system E, ε 7→ LSME
k(ε),RE ,0 is

a family of testers (here we plug RE itself into LSM in the role of the word-set parameter P ). Calculating

the left-hand side of (1.4) in LSME
k(ε),RE ,0 is trivial because NH,RE is the Dirac distribution concentrated on

RE for each H ∈ GSolE(n), n ∈ N. Thus, in this case the running time discussed in Problem 2.18 does not

depend on n. Problem 2.18 asks if there are also testable instable systems with this property, or at least

with running time depending weakly on n.

2.2.5. Uniform testability. Following [36, Definition 2.4], our notion of testability from Definition 1.6 is

nonuniform in ε, in the sense that it requires a family of testers, one for each ε. In the more standard notion

of testability, which we refer to as uniform testability (see [23, Definition 1.6]), there is just a single tester,

and it takes ε as input. To upgrade our testability to uniform testability, we need the function ε 7→ Mε,

that chooses the tester according to ε, to be computable.

We would like to understand which systems of relations are uniformly testable, and whether there is a

gap between the uniform and nonuniform notions. In particular,
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Problem 2.19. Can Theorem 1 be strengthened to prove uniform testability for some systems of relations?

This problem is further discussed in Section 3.4.

2.2.6. POT-testability and fixed-radius sampling. Proximity Oblivious Testability (POT) is a stronger form

of testability. A system of relations E is POT-testable if it can be tested by repeating the same random

boolean subroutine A for k(ε) independent iterations, and accepting if the number of iterations in which

A returns true is above a certain threshold. Notably, A itself must not depend on ε. See [23, Definition

1.7] for a precise definition of POT testability in a general context. A stable system of relations is POT-

testable because SASEk can be implemented by running SASE1 for k independent iterations, and accepting if

all iterations accept.

A related notion is that of fixed-radius sampling (FRS). We say that a system of relations E is FRS-testable

if it admits a family of testers ε 7→ Mε such thatMε, in its run on G ∈ GS(n), repeats the same subroutine

A for k(ε) independent iterations and accepts or rejects according to the results of these iterations. Again, A

must be independent of ε, but unlike the case of POT-testability, A does not have to be a boolean subroutine,

and Mε does not have to decide on its return value according to a threshold. The term fixed radius comes

from the fact that each iteration of A on its input G may only examine a constant (i.e., independent of ε)

number of vertices of the graph G. Without loss of generality, we may assume that it examines a constant

number of balls in this graph of some fixed radius r. Thus, the tester Mε has information about k(ε) balls

of radius r in the graph G.

Clearly, every POT-testable system of relations is also FRS-testable. In addition, if E is testable by the

family ε 7→ LSME
k(ε),P,δ(ε) where P is constant, k : R>0 → N and δ : R>0 → R>0, then E is FRS-testable.

We have thus established the hierarchy:

(2.1) stability =⇒ POT-testability =⇒ FRS-testability =⇒ testability .

As discussed earlier, there are systems of relations that are testable but are not stable (see Section 3.1).

Thus, the class of stable systems of relations is strictly contained in the class of testable systems of relations.

Problem 2.20. Determine which of the inclusions arising from (2.1), if any, are equalities.

2.2.7. The flexible model. Consider the flexible model of stability and testability as in Section 2.1.3. In line

with Problem 2.7, we ask:

Problem 2.21. Are there flexibly-testable systems of relations which are not testable?

We note that Theorem 2 provides non-testable (and thus also instable) systems in the strict model, as in

Definition 1.6, but the proof of Theorem 2 does not rule out flexible testability. Finding a flexibly-testable

system satisfying the hypothesis of Theorem 2 will solve Problem 2.21.

Another possible source for a positive answer to Problem 2.21 is Example 2.9, which provides systems

which are flexibly stable (and hence are flexibly testable). It is not known whether these systems are testable.

3. The connection to group theory

Most of the previous study of stability of relations between permutations has been done through a con-

nection between stability and group theory. This section reviews this connection, introduces the connection

between testability and group theory, and gives a brief introduction to the relevant group-theoretic notions.

Let E be a system of relations over S±. Then E gives rise to a finitely-presented group Γ(E) by means

of a group presentation. For example, the system E = {XY = YX} over S = {X,Y} gives rise to the group

Γ(E) = 〈X,Y | XY = YX〉 ∼= Z2. More generally, we define Γ(E) := 〈S | E〉 (this is the group generated by

S subject to the relations E; see Appendix C for a reminder about group presentations). The association

E 7→ Γ(E) is many-to-one. That is, different systems of relations may give rise to isomorphic groups. The

starting point of the group-theoretic approach to stability is the following observation from [6] (see also

[10, Proposition 1.11]).

14



Proposition 3.1. [6, Section 3] Let E1 and E2 be systems of relations (over possibly different sets of

variables) such that the groups Γ(E1) and Γ(E2) are isomorphic. Then E1 is stable if and only if E2 is

stable.

In Section 6 we lay the foundations for the study of testability via group theory by proving the following

analogue of Proposition 3.1.

Proposition 3.2. Let E1 and E2 be systems of relations (over possibly different sets of variables) such that

the groups Γ(E1) and Γ(E2) are isomorphic. Then E1 is testable if and only if E2 is testable.

Propositions 3.1 and 3.2 suggest that one can study the stability and testability of the system E by

studying the group Γ(E). The following theorem is an example of this strategy.

Theorem 4. [6] If the group Γ(E) is abelian, then E is stable.

Furthermore [10, Theorem 1.16], in this case ε 7→ SASEk(ε) is a family of testers for E, where k(ε) ≤
C ·
(

1
ε

)D
. Here C depends on E, and D depends only on the isomorphism class of the group Γ(E).

Theorem 4 applies to the system of relations

(3.1) Edcomm := {sisj = sjsi | i, j ∈ [d]} ,

since Γ
(
Edcomm

) ∼= Zd is abelian. In particular, the theorem applies to E2
comm = {XY = YX}.

Classical group properties can also be used to prove instability. For example, the instability of E2,3 :={
XY2 = Y3X

}
[22, Theorem 2] follows from properties of the group BS(2, 3) := 〈X,Y | XY2 = Y3X〉 (more

preciesely, E2,3 is not stable because BS(2, 3) is sofic but not residually finite).

Our main theorems, namely, Theorems 1 and 2, can be formulated in group-theoretic terms, and these

formulations allow us to find many systems of relations to which the theorems apply. For this we need the

notions of amenability and property (τ) (the latter is a variant of the well-known Kazhdan property (T)).

One of the reasons for the wealth of examples and applications of these notions is that each of them has

many equivalent definitions. For groups of the form Γ(E), i.e., for finitely-presented groups, we give simple

definitions, using the isoperimetric quantities presented in the introduction, as follows15.

The group Γ(E) is amenable if and only if ρ(G) = 0 for every G ∈ GSolE . Thus Theorem 1 is equivalent

to the following theorem:

Theorem 1’ (Main positive theorem in group terms). If the group Γ(E) is amenable then E is testable.

It is worth noting that the Cayley graph C of the group Γ(E) belongs to GSolE , and that if ρ(C) = 0

then ρ(G) = 0 for each G ∈ GSolE . Thus the hypothesis of Theorem 1 can be reduced to an assumption

about the Cayley graph of Γ(E) only, rather than the family GSolE of graphs.

The group Γ(E) has property (τ) if and only if inf{α(G) | G ∈ FGSolE} > 0. Furthermore, FGSolE is

infinite if and only if the group Γ(E) has infinitely many finite quotients. Thus, Theorem 2 is equivalent to

the following theorem:

Theorem 2’ (Main negative theorem in group terms). If the group Γ(E) has property (τ) and infinitely

many finite quotients then E is non-testable.

The rest of this section discusses applications of Theorems 1 and 2 and other aspects of testability related

to the connection to group theory.

15The definitions given here of amenability and property (τ) for a group of the form Γ(E) refer to E itself. There are

equivalent definitions of amenability and property (τ) for a group ∆ that are intrinsic to the group and do not refer to a system

of relations E such that ∆ ∼= Γ(E). See [17, Chapter 18], [11] and [33] for more information on amenability, property (T) and

property (τ), respectively
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3.1. Theorem 1 yields testable instable systems of relations. The class of amenable groups is vast

and contains all solvable groups, and thus, by Theorem 1’, E is testable whenever Γ(E) is solvable. But even

in this case, E is not necessarily stable. Indeed, [9, Theorem 1.3(ii)] provides a group-theoretic condition (∗)
such that if Γ(E) is amenable then E is stable if and only if Γ(E) satisfies (∗). Using this characterization

of stability, [9, Theorem 1.2(iii)] provides an instable system of relations Ep, for each prime number p, such

that Γ(Ep) is solvable. But Ep is testable by Theorem 1’. Thus we have infinitely many examples of instable

testable systems of relations. An explicit description of Ep and Γ(Ep) is given in Appendix A.1.

3.2. Theorem 2 yields non-testable systems of relations. The class of finitely-presented groups with

property (τ) is also vast, and contains all finitely-presented groups that have property (T). For example,

the finitely-presented group SLm Z, m ≥ 3, has infinitely many finite quotients and has property (T), and

thus, by Theorem 2’, E is non-testable if Γ(E) ∼= SLm Z. In Appendix A.2 we describe a system Em such

that Γ(Em) ∼= SLm Z.

3.3. Query efficiency and group theory. Let E1 and E2 be systems of relations such that Γ(E1) ∼= Γ(E2).

Proposition 3.1 states that if E1 is stable then so is E2. Furthermore, [10, Proposition 1.11] strengthens

Proposition 3.1 by showing that if E1 is q(ε)-stable then E2 is cq(ε)-stable for a constant c = c(E1, E2)

(except for in the trivial case where GSolE1(n) = GS(n) for all n ∈ N).

Assuming that E1 is testable (and thus, so is E2), Proposition 6.1 describes a quantitative relationship

between the statistical-distinguishability parameters of E1 and E2. It would be interesting to find an explicit

quantitative relationship between the query complexities required to test these systems of relations. Such a

result may be relevant to the problems discussed in Section 2.2.2.

In the context of Problem 2.12, it is worthwhile to mention the Følner function [40] of the group Γ(E)

with respect to S. Informally, assuming that E satisfies the hypothesis of Theorem 1, the Følner function

measures “how quickly” E does so. We conjecture that E as above is q(ε)-testable for some function q(ε),

given in terms of |S|,
∑
w∈RE |w| and the Følner function.

3.4. Uniform testability and group theory. For systems E1 and E2 such that Γ(E1) ∼= Γ(E2), if E1

is uniformly testable (see Section 2.2.5) then the same is true for E2. This follows from the method of

Section 6 (see the explicit bounds in Proposition 6.1). It is interesting to study which systems of relations

are uniformly testable. In particular, we would like to know if there is a uniform version of Theorem 1, as

asked in Problem 2.19. We suspect that if the Følner function of Γ(E) is computable then E is uniformly

testable.

4. Proof of Theorem 2

Here we prove Theorem 2, which is equivalent, in light of Theorem 3, to the following result.

Theorem 5. Fix a finite alphabet S. Let E be a system of relations over S± such that FGSolE is infinite

and

(4.1) inf{α(G) | G ∈ FGSolE} > 0.

Then E is not statistically distinguishable.

The rest of this section is devoted to proving Theorem 5. Our proof strengthens the argument of [8,

Theorem 1.4], which proves, under similar assumptions, that E is not stable.

We start with a proof sketch. Let E be as in Theorem 5. For every P ∈ FinSubsets(FS), we need to

produce a sequence of graphs (Gm)
∞
m=1, Gm ∈ GS(nm), nm ∈ N, such that

(4.2) dTV

(
NGm,P , NG′m,P

) m→∞−→ 0

for some G′m ∈ GSolE(nm), but

(4.3) dH(Gm, G
′′
m) ≥ ε0 ∀m ∈ N ∀G′′m ∈ GSolE(nm) ,
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where ε0 > 0 depends only on E. That is, Gm is close to some solution for E under the P -local metric, but

far from every solution under the global metric (see Remark 1.15).

To produce Gm, we take a connected graph G̃m ∈ GSolE(nm + 1), nm ∈ N, nm
m→∞−→ ∞, make a

local change such that nm + 1 becomes an isolated vertex, and then remove the vertex nm + 1 and obtain

Gm ∈ GS(nm). Then

(4.4) dTV

(
NGm,P , NG̃m,P

)
m→∞−→ 0 ,

but, as shown by Lemma 4.1 below,

(4.5) dH(Gm, G
′′
m) ≥ 1

2|S|
α(E) ∀G′′m ∈ GSolE(nm)

for all large enough m. Denote

α(E) = inf{α(G) | G ∈ FGSolE}.
Set ε0 = 1

2α(E). By (4.1), ε0 > 0, and thus (4.4) and (4.5) almost prove the desired (4.2) and (4.3), with

the caveat that G̃m ∈ GSolE(nm + 1), while we need this graph to be in GSolE(nm). Lemma 4.3 helps us

overcome this final difficulty. We now give a complete proof based on the proof sketch above.

For n ≥ 2, define a function resn : GS(n)→ GS(n− 1) by letting Ĝ = resn(G) be the graph on the vertex

set [n− 1] such that

sĜx =

{
sGx sGx 6= n

sGsGx sGx = n

for all x ∈ [n− 1] and s ∈ S. That is, the edge set of resn(G) consists of all edges of Ĝ that are not incident

to the vertex n, and all edges of the form s−1
G n

s−→sGn for all s ∈ S such that sGn 6= n.

The following lemma shows that resn(G) is far from GSolE(n− 1) whenever E satisfies (4.1). The lemma

and its proof can be seen as a combinatorial version of ideas from [8].

Lemma 4.1. Let E be a system of relations over S±. Take a connected graph G ∈ GSolE(n), n ≥ 2, and

denote Ĝ = resn(G). Then

dH
(
Ĝ,G′

)
≥ α(E)

|S|
− 1

n− 1
∀G′ ∈ GSolE(n− 1) .

Proof. Take G′ ∈ GSolE(n− 1). Consider the product S-graph G′ × G. This is the S-graph on the vertex

set [n− 1]× [n] such that

sG′×G(x, y) = (sG′x, sGy) .

Write X1, . . . , Xc for the connected components of G′×G, and let D = {(x, x) | x ∈ [n− 1]} ⊂ [n− 1]×[n].

We claim that

(4.6) |D ∩Xi| ≤
1

2
|Xi| ∀1 ≤ i ≤ c .

Let 1 ≤ i ≤ c. If D∩Xi = ∅ we are done. Otherwise, fix an arbitrary (x, x) ∈ Xi, x ∈ [n− 1]. The connected

component Y of x in G′ clearly has at most n − 1 vertices. On the other hand, the connected component

of x in G has exactly n vertices because G is connected. Accordingly, [FS : StabG′(x)] = |Y | ≤ n − 1 and

[FS : StabG(x)] = n by the Orbit–Stabilizer Theorem16, and so StabG′(x) is not contained in StabG(x).

Thus, the inclusion in

StabG′×G((x, x)) = StabG′(x) ∩ StabG(x) ⊂ StabG′(x)

is strict, and therefore m := [StabG′(x) : StabG′×G((x, x))] is at least 2. Using the Orbit–Stabilizer Theorem

again,

|Xi| = [FS : StabG′×G((x, x))] = m[FS : StabG′(x)] ≥ 2|Y | .

16The theorem says, in our terminology, that the index [FS : StabH(x)] of the subgroup StabH(x) of FS is equal to the

number of vertices of H for every connected S-graph H and vertex x of H.
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Thus (4.6) follows since |D ∩Xi| ≤ |Y | (because Y is image of Xi under the projection onto the first

coordinate [n− 1]× [n]→ [n− 1], and this projection is injective on D).

Since the graph Xi is a connected solution for E (namely, it is in FGSolE), (4.6) implies that∑
s∈S
|(sG′×G(D ∩Xi)) \ (D ∩Xi)| ≥ α(Xi)|D ∩Xi| ∀1 ≤ i ≤ c.

Thus ∑
s∈S
|(sG′×GD) \D| =

c∑
i=1

∑
s∈S
|(sG′×G(D ∩Xi)) \ (D ∩Xi)|

≥
c∑
i=1

α(Xi)|D ∩Xi| ≥ α(E) |D|︸︷︷︸
=n−1

,(4.7)

where the equality on the first line follows since X1, . . . , Xc are disjoint and sG′×GXi = Xi for all 1 ≤ i ≤ c.
On the other hand,∑

s∈S
|(sG′×GD) \D| =

∑
s∈S
|{x ∈ [n− 1] | sG′x 6= sGx}|

≤
∑
s∈S

∣∣{x ∈ [n− 1] | sG′x 6= sĜx or sĜx 6= sGx
}∣∣

≤
∑
s∈S

∣∣{x ∈ [n− 1] | sG′x 6= sĜx
}∣∣︸ ︷︷ ︸

=(n−1)dH(Ĝ,G′)

+
∣∣{x ∈ [n− 1] | sĜx 6= sGx

}∣∣︸ ︷︷ ︸
≤1


≤ |S|

(
(n− 1)dH

(
Ĝ,G′

)
+ 1
)

.(4.8)

The claim follows from (4.7) and (4.8). �

Let G ∈ GS(n), write Ĝ = resn(G), and take P ∈ FinSubsets(FS). Denote

C =
{
v−1
G n | v is a suffix of at least one w ∈ P

}
.

Then wGx = wĜx for each x ∈ [n− 1] \ C, and thus StabG(x) ∩ P = StabĜ(x) ∩ P . Since |C| ≤
(TotalSize(P ))

2
, one can easily deduce the following lemma.

Lemma 4.2. Let G ∈ GS(n), write Ĝ = resn(G), and take P ∈ FinSubsets(FS). Then

dTV

(
NG,P , NĜ,P

)
≤ OP

(
1

n

)
.

Let P ∈ FinSubsets(FS). For an S-graph G, we view NG,P as a vector in RSubsets(P ), belonging to

the compact set Prob(Subsets(P )) :=
{
f : Subsets(P )→ [0, 1] |

∑
Q∈Subsets(P ) f(Q) = 1

}
. For a sequence

of S-graphs (Gk)
∞
k=1, the sequence (NGk,P )

∞
k=1 is said to converge if it converges as a sequence of vectors

in RSubsets(P ). Intuitively, this means that the S-graphs (Gk)
∞
k=1 tend toward having the same P -local

statistics. This notion of convergence is used in the proof of Theorem 5 below. We use the fact that∏
P∈FinSubsets(FS) Prob(Subsets(P )) is compact17.

We also use the following lemma.

Lemma 4.3. [9, Lemma 7.6] Let E be system of relations over S±, and let (Gk)
∞
k=1, Gk ∈ GSolE(lk),

lk ∈ N, be a sequence of S-graphs such that the local statistics sequence (NGk,P )
∞
k=1 converges for each

P ∈ FinSubsets(FS). Take a sequence (mk)
∞
k=1 of integers such that mk

k→∞−→ ∞. Then there is a sequence

17This is equivalent to the fact that the space of S-graphs is compact under Benjamini–Schramm convergence, and to the

fact that the space IRS(FS) of invariant random subgroups is compact.

18



(Hk)
∞
k=1, Hk ∈ GSolE(mk), such that (NGk,P )

∞
k=1 and (NHk,P )

∞
k=1 converge to the same limit for each

P ∈ FinSubsets(FS).

Proof of Theorem 5. By our assumption that FGSolE is infinite (and thus contains graphs of unbounded

cardinality), and the compactness of
∏
P∈FinSubsets(FS) Prob(Subsets(P )), there is a sequence of connected S-

graphs (Gk)
∞
k=1, Gk ∈ GSolE(nk), nk

k→∞−→ ∞, such that (NGk,P )
∞
k=1 converges for each P ∈ FinSubsets(FS).

Let Ĝk = resnk(Gk). By Lemma 4.2,

lim
k→∞

NĜk,P = lim
k→∞

NGk,P .

Write α = α(E). By Lemma 4.1,

(4.9) Ĝk ∈ GSol
≥α/|S|−1/(nk−1)
E (nk − 1) ∀k ∈ N .

By applying Lemma 4.3 to the sequence (Gk)
∞
k=1, with mk = nk−1, we obtain a sequence of graphs (Hk)

∞
k=1

such that

(4.10) Hk ∈ GSolE(nk − 1)

and

(4.11) lim
k→∞

NHk,P = lim
k→∞

NGk,P ∀P ∈ FinSubsets(FS) .

Thus

(4.12) lim
k→∞

NHk,P = lim
k→∞

NĜk,P ∀P ∈ FinSubsets(FS) .

The system E is not statistically distinguishable by (4.9), (4.10) and (4.12). �

5. Proof of Theorem 1

Let S be a finite alphabet and let E be a system of relations over S±.

The proof of Theorem 1 relies on two deep results: The Ornstein–Weiss Theorem [38] (see also [14])

and the Newman–Sohler Theorem [36] (see also [20, Theorem 5]). These theorems are used together in

[9, Proposition 6.8] in a simple manner to prove the following theorem (stated here in the language of the

present paper).

Theorem 6. Assume that ρ(G) = 0 for every G ∈ GSolE. Then for every ε > 0 there are r ∈ N and δ > 0

such that dH(G,G′) < ε whenever n ∈ N, G ∈ GSolE(n), G′ ∈ GS(n) and dTV(NG,Br , NG′,Br ) < δ (where

Br = {w ∈ FS | |w| ≤ r}).

Theorem 1 follows immediately from Theorems 3 and 6.

Proof of Theorem 1. Assume that ρ(G) = 0 for every G ∈ GSolE . By Theorem 6, there are functions

r : R>0 → N and δ : R>0 → R>0 such that E is
(
Br(ε), δ(ε)

)
-statistically-distinguishable. Thus E is testable

by Theorem 3. �

6. Proof of Proposition 3.2

Fix finite alphabets S = {s1, . . . , sd1} and T = {t1, . . . , td2}, and consider two systems of relations E1 and

E2 over S± and T±, respectively, such that the groups Γ(E1) and Γ(E2) are isomorphic. By Theorem 3, in

order to prove Proposition 3.2, we need to prove that if E2 is statistically distinguishable then so is E1. This

is achieved by Proposition 6.1 below.

Given a finite set of words P , denote

TotalSize(P ) =
∑
x∈P
|x| .
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Proposition 6.1. If E2 is (P2(ε), δ2(ε))-statistically-distinguishable for P2 : R>0 → FinSubsets(FT ) and

δ2 : R>0 → R≥0, then E1 is (P1(ε), δ1(ε))-statistically-distinguishable for some P1 : R>0 → FinSubsets(FS)

and δ1 : R>0 → R≥0 such that

(6.1) TotalSize(P1(ε)) = OE1,E2
(TotalSize(P2(ε)))

and

(6.2) δ1(ε) = ΩE1,E2(min(δ2(ε), ε))

for every ε > 0.

Explicitly,

P1(ε) = λ2(P2(ε)) ∪RE1

and

δ1(ε) = min

(
δ2

(
ε

2C1

)
,
ε

2C2

)
,

for λ2 as defined below and positive constants C1 and C2 that depend on E1 and E2.

The rest of this section is devoted to proving Proposition 6.1.

6.1. A homomorphism view of GS(n). For n ∈ N, let HS(n) be the set of homomorphisms FS →
Sym(n). For the sake of proving Proposition 6.1, it will be convenient to encode an S-graph in GS(n) as a

homomorphism in HS(n), in a manner which we now describe.

ForG ∈ GS(n), let fG ∈ HS(n) be the FS → Sym(n) homomorphism that maps w ∈ FS to the permutation

i 7→ wGi. Note that the map G 7→ fG : GS(n)→ HS(n) is a bijection18

We translate some of the notions from the introduction to the language of homomorphisms. Given

f, g ∈ HS(n), define

dH
n (f, g) = dH(f, g) =

∑
s∈S

1

n
|{x ∈ [n] | f(s)x 6= g(s)x}| .

Let

HSolE(n) = {f ∈ HS(n) | f(w) = id ∀w ∈ RE} ,

HSol≥εE (n) =
{
f ∈ HS(n) | dH(f, f ′) ≥ ε ∀f ′ ∈ HSolE(n)

}
.

For x ∈ [n], let Stabf (x) = {w ∈ FS | f(w)x = x}. For P ∈ FinSubsets(FS), let Nf,P be the distribu-

tion of Stabf (x) ∩ P , where x is sampled uniformly from [n]. Then HSolE(n) = {fG | G ∈ GSolE(n)},
HSol≥εE (n) =

{
fG | G ∈ GSol≥εE (n)

}
, StabfG(x) = StabG(x) and NfG,P = NG,P for G ∈ GS(n). We also

denote HSol<εE (n) := HS(n) \HSol≥εE (n).

6.2. The maps λ∗1 and λ∗2. To prove Proposition 6.1 we define two maps, λ∗1 : HT (n) → HS(n) and

λ∗2 : HS(n) → HT (n), that behave nicely (see Section 6.3) with respect to the spaces HSolE1
(n) and

HSolE2(n), and also with respect to HSol<εE1
(n) and HSol<εE2

(n), ε > 0.

We begin with the definitions of λ∗1 and λ∗2. Write π1 : FS � Γ(E1) and π2 : FT � Γ(E2) for the quotient

maps (see Appendix C), and fix an isomorphism θ : Γ(E1) → Γ(E2). We “lift” the group isomorphisms

θ : Γ(E1)→ Γ(E2) and θ−1 : Γ(E2)→ Γ(E1) to group homomorphisms

λ1 : FS → FT and λ2 : FT → FS .

18This can be seen easily using the universal property of the free group FS , which amounts to a bijection (Sym(n))d →HS(n),

as recalled in Appendix C, and the bijection σ 7→ Gσ : (Sym(n))d → GS(n) defined in Section 1.2.
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More precisely, we fix homomorphisms λ1 and λ2 such that each of the two squares in the following diagram

commutes (i.e., π2 ◦ λ1 = θ ◦ π1 and π1 ◦ λ2 = θ−1 ◦ π2):

(6.3) FS
λ1 //

π1

��

FT
λ2 //

π2

��

FS

π1

��
Γ(E1)

θ // Γ(E2)
θ−1

// Γ(E1)

.

Such maps λ1 and λ2 exist (but are generally not unique). Indeed, for 1 ≤ i ≤ d1 we set λ1(si) ∈ FT
to be an arbitrary word such that π2(λ1(si)) = θ(π1(si)), and note that λ1 extends uniquely to a group

homomorphism. We construct λ2 similarly.

The maps λ1 and λ2 are not mutual inverses in general, but they enjoy inverse-like properties. By the

commutativity of the diagram, π1◦λ2◦λ1 = θ−1◦π2◦λ1 = θ−1◦θ◦π1 = π1. In particular, (λ2 ◦ λ1)(si) ∈ FS
and si ∈ FS belong to the same left coset of 〈〈RE1

〉〉 in FS for each 1 ≤ i ≤ d1. That is,

(6.4) (λ2 ◦ λ1)(si) = si

mi∏
j=1

vi,jr
εi,j
i,j v

−1
i,j ,

where mi ≥ 0, vi,j ∈ FS , ri,j ∈ RE1 and εi,j ∈ {±1}. Set Qi := {vi,j | 1 ≤ j ≤ mi}.
For n ∈ N, the homomorphisms λ1 : FS → FT and λ2 : FT → FS give rise to maps

λ∗1 : HT (n)→ HS(n) and

λ∗2 : HS(n)→ HT (n)

given by

λ∗1h = h ◦ λ1 ∀h ∈ HT (n) and

λ∗2f = f ◦ λ2 ∀f ∈ HS(n) .

Under the bijections HS(n)↔ GS(n) and ↔ HT (n)↔ GT (n) of Section 6.1, λ∗1 and λ∗2 give rise to maps

between GS(n) and GT (n). For this section, the homomorphism view suffices, but the reader may find it

instructive to spell out the definitions of λ∗1 and λ∗2 in terms of graphs.

6.3. Properties of λ∗1 and λ∗2. We analyze the behavior of λ∗1 and λ∗2 with regard to both the global

metric dH(f, g), and the P -local metrics dTV(Nf,P , Ng,P ), P ∈ FinSubsets(FS) (see Remark 1.15). Due to

symmetry, the claims in this section remain true if we swap the roles of S,E1, λ1 and T,E2, λ2.

6.3.1. The global metric.

Definition 6.2. Given f ∈ HS(n), let BadE1
(f) = {x ∈ [n] | ∃w ∈ RE1

f(w)x 6= x} .

Remark 6.3. For f ∈ HSolE1
(n), the probability distribution NF,RE1

over Subsets(RE1
) assigns probability

1 to RE1
. Thus,

dTV

(
Nf,RE1

, Ng,RE1

)
= Pr
x∼U([n])

(Stabg(x) ∩RE1
6= RE1

) =
|BadE1

(g)|
n

for all g ∈ HS(n).

The following lemma shows that λ∗1 and λ∗2 enjoy inverse-like properties. More precisely, the lemma gives

a tool for bounding the distance between f and λ∗1λ
∗
2f for f ∈ HS(n).

Lemma 6.4. Let f ∈ HS(n). Then (λ∗1λ
∗
2f)(si)x = f(si)x for every 1 ≤ i ≤ d1 and x ∈ [n] such that

x /∈
⋃
v∈Qi(f(v) BadE1

(f)).
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Proof. For 1 ≤ i ≤ d1 and x ∈ [n],

(λ∗1λ
∗
2f)(si)x = f((λ2 ◦ λ1)(si))x

= f(si)

mi∏
j=1

f(vi,j)f
(
r
εi,j
i,j

)
f
(
v−1
i,j

)x . by (6.4)

Thus, (λ∗1λ
∗
2f)(si)x = f(si)x if

f
(
r
εi,j
i,j

)
f
(
v−1
i,j

)
x = f

(
v−1
i,j

)
x ∀1 ≤ j ≤ mi .

The latter condition is equivalent to

f(ri,j)f
(
v−1
i,j

)
x = f

(
v−1
i,j

)
x ∀1 ≤ j ≤ mi .

This holds whenever f(v)
−1
x /∈ BadE1(f) for all v ∈ Qi, i.e., when x /∈

⋃
v∈Qi(f(v) BadE1(f)). �

We conclude the following.

Corollary 6.5. The image of HSolE1
(n) under λ∗2 is contained in HSolE2

(n). Furthermore, the restriction

of λ∗2 to HSolE1
(n) is a bijection λ∗2 |HSolE1

(n) : HSolE1
(n)→ HSolE2

(n) whose inverse is λ∗1 |HSolE2
(n).

Proof. Let f ∈ HSolE1
(n) and v ∈ RE2

. Then π1(λ2(v)) = θ−1(π2(v)) = θ−1
(
1Γ(E2)

)
= 1Γ(E1) by (6.3).

Thus λ2(v) ∈ kerπ1 = 〈〈E1〉〉, and so (λ∗2f)(v) = f(λ2(v)) = 1. Hence λ∗2f ∈ HSolE2(n). We proved that

λ∗2(HSolE1(n)) ⊆ HSolE2(n) .

Similarly,

λ∗1(HSolE2(n)) ⊂ HSolE1(n) .

Since f ∈ HSolE1
(n) we have BadE1

(f) = ∅. Consequently, Lemma 6.4 implies that λ∗1λ
∗
2f = f . Similarly,

λ∗2λ
∗
1h = h for h ∈ HSolE2

(n), and the claim follows. �

If f ∈ HS(n) is not necessarily a solution for E1, but the set BadE1
(f) is small, the following corollary

shows that λ∗1λ
∗
2f is close to f .

Corollary 6.6. For f ∈ HS(n),

dH(f, λ∗1λ
∗
2f) ≤

(
d1∑
i=1

|Qi|

)
|BadE1

(f)|
n

.

Proof.

dH(f, λ∗1λ
∗
2f) =

d1∑
i=1

dH(f(si), (λ
∗
1λ
∗
2f)(si))

≤
d1∑
i=1

1

n

∣∣∣∣∣∣
⋃
v∈Qi

(f(v) BadE1(f))

∣∣∣∣∣∣ by Lemma 6.4

≤
d1∑
i=1

∑
v∈Qi

1

n
|f(v) BadE1

(f)|

=

(
d1∑
i=1

|Qi|

)
|BadE1

(f)|
n

.

�

Next, we study the interaction between λ∗1 and the Hamming metric.

Lemma 6.7. Let h, h′ ∈ HT (n). Then dH(λ∗1h, λ
∗
1h
′) ≤ CdH(h, h′), where C =

(∑d1
i=1|λ1(si)|

)
.
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Proof. For w ∈ FT , let Aw = {x ∈ [n] | h(w)x = h′(w)x} and Dw = [n] \ Aw. Write suffj(w) for the suffix

of length j of w (e.g., suff2

(
ab−1c−1

)
= b−1c−1). Write lastj(w) for the j-th letter of w, counting from the

end (e.g., last2

(
ab−1c−1

)
= b−1).

For 1 ≤ i ≤ d1,

dH((λ∗1h)(si), (λ
∗
1h
′)(si))

=
1

n

∣∣Dλ1(si)

∣∣
≤ 1

n

∣∣∣∣∣∣
|λ1(si)|⋃
j=1

(
Asuffj−1(λ1(si)) ∩Dsuffj(λ1(si))

)∣∣∣∣∣∣
(since Dw ⊆

|w|⋃
j=1

Asuffj−1(w) ∩Dsuffj(w) for w ∈ FT )

≤ 1

n

|λ1(si)|∑
j=1

∣∣Asuffj−1(λ1(si)) ∩Dsuffj(λ1(si))

∣∣
=

1

n

|λ1(si)|∑
j=1

∣∣∣Asuffj−1(λ1(si)) ∩ h(suffj−1(λ1(si)))
−1
Dlastj(λ1(si))

∣∣∣
(since x ∈ Aw implies x ∈ Dsw ⇔ x ∈ h(w)−1Ds for w ∈ FT , s ∈ S±)

≤
|λ1(si)|∑
j=1

1

n

∣∣Dlastj(λ1(si))

∣∣︸ ︷︷ ︸
≤dH(h,h′)

≤|λ1(si)|dH(h, h′) .

Thus

dH(λ∗1h, λ
∗
1h
′) =

d1∑
i=1

dH((λ∗1h)(si), (λ
∗
1h
′)(si)) ≤

(
d1∑
i=1

|λ1(si)|

)
dH(h, h′) .

�

Lemma 6.8. For f ∈ HS(n) and h ∈ HT (n),

dH(f, λ∗1h) ≤ C1d
H(λ∗2f, h) + C2

|BadE1
(f)|

n
,

where C1 =
∑d1
i=1|λ1(si)| and C2 =

∑d1
i=1|Qi|.

Proof. By the triangle inequality, Corollary 6.6 and Lemma 6.7,

dH(f, λ∗1h) ≤ dH(f, λ∗1λ
∗
2f) + dH(λ∗1λ

∗
2f, λ

∗
1h)

≤

(
d1∑
i=1

|Qi|

)
|BadE1

(f)|
n

+

(
d1∑
i=1

|λ1(si)|

)
dH(λ∗2f, h) .

�

6.3.2. The P -local metric. For a probability distribution θ over a set Ω and a function ϕ : Ω→ Ω′, write ϕ∗θ

for the distribution of ϕ(x) when x ∼ θ.

Lemma 6.9. Let θ and θ′ be probability distributions over the finite sets Ω and Ω′, respectively, and take a

function ϕ : Ω→ Ω′. Then
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dTV(ϕ∗θ, ϕ∗θ
′) ≤ dTV(θ, θ′) .

Proof. By the triangle inequality,

dTV(ϕ∗θ, ϕ∗θ
′) =

1

2

∑
y∈Ω′

|ϕ∗θ(y)− ϕ∗θ′(y)| = 1

2

∑
y∈Ω′

∣∣∣∣∣∣∣∣
∑
x∈Ω
f(x)=y

θ(x)−
∑
x∈Ω
f(x)=y

θ′(x)

∣∣∣∣∣∣∣∣
≤ 1

2

∑
y∈Ω′

∑
x∈Ω
f(x)=y

|θ(x)− θ′(x)| = 1

2

∑
x∈Ω

|θ(x)− θ′(x)| = dTV(θ, θ′).

�

In the rest of the section we make frequent use of the notation NG,P (see Definition 1.12).

Corollary 6.10. Let S be a finite alphabet and take P, P ∗ ∈ FinSubsets(FS) such that P ∗ ⊆ P . Then

dTV(NG,P∗ , NG′,P∗) ≤ dTV(NG,P , NG′,P )

for all n ∈ N and G,G′ ∈ GS(n).

Proof. The claim follows from Lemma 6.9 becauseNG,P∗ = ϕ∗NG,P andNG′,P∗ = ϕ∗NG′,P for ϕ : Subsets(P )→
Subsets(P ∗) given by ϕ(M) = M ∩ P ∗. �

Lemma 6.11. Let P2 ∈ FinSubsets(FT ). Then

dTV

(
Nλ∗2f,P2

, Nλ∗2f ′,P2

)
≤ dTV

(
Nf,λ2(P2), Nf ′,λ2(P2)

)
for all f, f ′ ∈ HS(n).

Proof. Define ϕ : Subsets(λ2(P2))→ Subsets(P2) by

(6.5) ϕ(V ) = {w ∈ P2 | λ2(w) ∈ V } = λ−1
2 (V ) ∩ P2 ∀V ⊂ λ2(P2).

By Lemma 6.9, it suffices to show that Nλ∗2f,P2
= ϕ∗Nf,λ2(P2) and Nλ∗2f ′,P2

= ϕ∗Nf ′,λ2(P2). Thus, it is

enough to prove that Stabλ∗2h(x) ∩ P2 = ϕ(Stabh(x) ∩ λ2(P2)) for all h ∈ HS(n) and x ∈ [n].

First, Stabλ∗2h(x) = λ−1
2 (Stabh(x)) because (λ∗2h)(w)x = x ⇐⇒ h(λ2(w))x = x for w ∈ FT . Thus,

Stabλ∗2h(x) ∩ P2 = λ−1
2 (Stabh(x)) ∩ P2

= λ−1
2 (Stabh(x) ∩ λ2(P2)) ∩ P2

= ϕ(Stabh(x) ∩ λ2(P2)) .

�

6.4. Proof of Proposition 6.1. Suppose that E2 is (P2(ε), δ2(ε))-statistically-distinguishable. We claim

that E1 is (P1(ε), δ1(ε))-statistically-distinguishable, where

P1(ε) = λ2(P2(ε)) ∪RE1

and

δ1(ε) = min

(
δ2

(
ε

2C1

)
,
ε

2C2

)
,
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for C1 and C2 as in Lemma 6.8. First, note that

TotalSize(P1(ε)) =
∑

w∈P1(ε)

|w|

≤ TotalSize(RE1) +
∑

w∈P2(ε)

|λ2(w)|

≤ TotalSize(RE1) +
∑

w∈P2(ε)

max
t∈T
|λ2(t)|︸ ︷︷ ︸

=:C3

|w|

= TotalSize(RE1) + C3 · TotalSize(P2(ε)) .

Hence (6.1) and (6.2) are satisfied. Take ε > 0, f ∈ HS(n) and f ′ ∈ HSolE1
(n) such that

dTV

(
Nf,P1(ε), Nf ′,P1(ε)

)
< δ1(ε) .

It suffices to show that f ∈ HSol<εE1
(n). Let h be an element of HSolE2(n) that minimizes dH(λ∗2f, h). Then

λ∗1h ∈ HSolE1
(n) by Corollary 6.5, and thus it suffices to show that dH(f, λ∗1h) < ε.

Now, λ∗2f
′ ∈ HSolE2

(n) by Corollary 6.5. Furthermore,

dTV

(
Nλ∗2f,P2(ε), Nλ∗2f ′,P2(ε)

)
≤ dTV

(
Nf,λ2(P2(ε)), Nf ′,λ2(P2(ε))

)
by Lemma 6.11

≤ dTV

(
Nf,P1(ε), Nf ′,P1(ε)

)
by Corollary 6.10

< δ1(ε) ≤ δ2
(

ε

2C1

)
,

and thus λ∗2f ∈ HSol
< ε

2C1

E2
(n) since E2 is (P2(ε), δ2(ε))-statistically-distinguishable. In other words,

(6.6) dH(λ∗2f, h) <
ε

2C1
.

Now,

|BadE1
(f)|

n
= dTV

(
Nf,RE1

, Nf ′,RE1

)
by Remark 6.3

≤ dTV

(
Nf,P1(ε), Nf ′,P1(ε)

)
by Corollary 6.10

< δ1(ε) ≤ ε

2C2
.(6.7)

Hence,

dH(f, λ∗1h) ≤ C1d
H(λ∗2f, h) + C2

|BadE1
(f)|

n
by Lemma 6.8

< ε . by (6.6) and (6.7)

7. Analysis and universality of the LSM Algorithm

Let S = {s1, . . . , sd} be an alphabet, and fix a system of relations E over S±. The goal of this section is

to prove Theorem 3, which follows immediately from the following two propositions.

Proposition 7.1 (Statistical distinguishability implies testability). If E is (P, δ)-statistically-distinguishable

then ε 7→ LSME

k(ε),P (ε),
δ(ε)
2

is a family of testers for E, where k(ε) =
⌈

100·2|P (ε)|

δ(ε)2

⌉
.

In particular, by the query-complexity analysis in Section 1.4, Proposition 7.1 implies that E isO

(∑
w∈P (ε) |w|·2

|P |

δ(ε)2

)
-

testable.

Proposition 7.2 (Testability implies statistical distinguishability). Suppose that E is q(ε)-testable, q : R>0 →
N. Then, E is

(
B2q(ε) ∪ E, q(ε)−c·q(ε)

)
-statistically-distinguishable, where c > 0 is a universal constant.
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Here Bk denotes the ball of radius k in FS , namely,

Bk = {w ∈ FS | |w| ≤ k} .

7.1. Proof of Proposition 7.1. Assume that E is (P, δ)-statistically-distinguishable, P : R>0 → FinSubsets(FS),

δ : R>0 → R>0. Fix ε0 > 0 and denote P0 = P (ε0) and δ0 = δ(ε0). Let k =
⌈

100·2|P0|

δ02

⌉
. Fix G ∈ GS(n) such

that either G ∈ GSolE(n) or G ∈ GSol≥ε0E (n). We wish to show that LSME

k,P0,
δ0
2

returns a correct result in

its run on G with probability at least 0.99.

If G ∈ GSolE(n), set A0 = GSolE(n) and A1 = GSol≥ε0E (n), and otherwise set A0 = GSol≥ε0E (n) and

A1 = GSolE(n). Then

(7.1) dTV(NG,P0
, NG′,P0

) ≥ δ0 ∀G′ ∈ A1

because E is (P (ε), δ(ε))-statistically-distinguishable.

Let x1, . . . xk ∈ [n] denote the random variables sampled in Step 1 of a run of LSME

k,P0,
δ0
2

(see Algorithm

2) on G. Denote x = (x1, . . . , xk) ∈ [n]
k
, and let NEmpirical

x be the distribution, over Subsets(P0), of

StabG(xi)∩P0 where i ∼ U([k]). Recall that this run of LSME

k,P0,
δ0
2

accepts G if and only if Condition (1.4)

is satisfied, namely, if

(7.2) min
{
dTV

(
NEmpirical
x , NH,P0

)
| H ∈ GSolE(n)

}
≤ δ0

2
.

In particular, the run returns a correct result on G whenever

(7.3) dTV

(
NEmpirical
x , NG,P0

)
< δ0/2 .

Indeed, if G ∈ GSolE(n), then (7.2) holds by (7.3), and so the run is accepting. If G ∈ GSol≥ε0E (n) then

(7.2) does not hold by (7.1), (7.3) and the triangle inequality, and so the run is rejecting. Thus, it suffices

to show that

Pr
x∼U([n]k)

(
dTV

(
NEmpirical
x , NG,P0

)
< δ0/2

)
≥ 0.99 .

For a fixed Y ∈ Subsets(P ), the random variable k·NEmpirical
x (Y ) : [n]

k → Z≥0 (that is, “k timesNEmpirical
x (Y )”)

is distributed Binomial(k,NG,P0
(Y )) when x ∼ U

(
[n]

k
)

. In particular, Ex∼U([n]k)

[
k ·NEmpirical

x (Y )
]

=

kNG,P0(Y ). Hence,

Ex∼U([n]k)

(
‖NEmpirical

x −NG,Pε‖22
)

=
∑

Y ∈Subsets(P0)

Ex∼U([n]k)

((
NEmpirical
x (Y )−NG,P0

(Y )
)2
)

︸ ︷︷ ︸
= 1
k2

Var
x∼U([n]k)(kN

Empirical
x (Y ))

=
∑

Y ∈Subsets(P0)

NG,P0(Y )(1−NG,P0(Y ))

k

≤ 1

k

∑
Y ∈Subsets(P0)

NG,P0(Y )

=
1

k
.

By the Cauchy–Schwartz inequality,

dTV

(
NEmpirical
x , NG,P0

)
=

1

2
‖NEmpirical

x −NG,P0
‖1 ≤

1

2
|Subsets(P0)|

1
2 · ‖NEmpirical

x −NG,P0
‖2

=
1

2
· 2
|P0|
2 · ‖NEmpirical

x −NG,P0
‖2 .
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Thus,

Pr
x∼U([n]k)

(
dTV

(
NEmpirical
x , NG,P0

)
≥ δ0/2

)
≤ Pr
x∼U([n]k)

(
‖NEmpirical

x −NG,P0‖22 ≥ 2−|P0|δ2
0

)
≤ 2|P0|

kδ2
0

(by Markov’s inequality)

≤ 0.01 .

7.2. Testability implies statistical distinguishability. We prove Proposition 7.2 in Section 7.2.5 after

making the necessary preparations.

7.2.1. A minimax principle. The following lemma, a variant of Yao’s minimax inequality [41], enables us to

reduce Proposition 7.2 to a statement about deterministic, rather than randomized, algorithms.

Lemma 7.3. Fix ε > 0 and q ∈ N. The following conditions are equivalent:

(1) There exists an (ε, q)-tester for E.

(2) For every distribution D on
⋃
n∈N

(
GSolE(n) ∪GSol≥εE (n)

)
, there exists a deterministic algorithm

M, limited to making at most q queries of G, such that

Pr
G∼D

[M solves the input G correctly] ≥ 0.99 .

Proof. Let A denote the set of all deterministic algorithms, with input in
⋃
n∈N GS(n) and boolean output,

limited to making at most q queries in a run. Let B =
⋃
n∈N

(
GSolE(n) ∪GSol≥εE (n)

)
. Let DA (resp. DB)

denote the set of all probability distributions over A (resp. B). For M∈ A, G ∈ B, let

cM,G =

{
1 if M solves the input G correctly

0 otherwise
.

A randomized algorithm can be viewed as a distribution over A. Hence, the first condition in the statement

of the proposition is equivalent to

(7.4) max
D∈DA

min
G∈B

Pr
M∼D

[cM,G = 1] ≥ 0.99 ,

while the second condition can be written as

(7.5) min
D∈DB

max
M∈A

Pr
G∼D

[cM,G = 1] ≥ 0.99 .

Observe that the left-hand side of (7.4) is equal to

(7.6) max
D∈DA

min
D′∈DB

Pr
G∼D
M∼D′

[cM,G = 1] .

Indeed, Pr G∼D
M∼D′

[cM,G = 1] is linear in D′, and hence the minimum in (7.4) is obtained at a vertex of the

simplex DB . Similarly, the left-hand side of (7.5) is equal to

(7.7) min
D′∈DB

max
D∈DA

Pr
G∼D
M∼D′

[cM,G = 1] .

Finally, (7.6) and (7.7) are equal by the von Neumann Minimax Theorem [18, Thm. 1]. �
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7.2.2. The dTV metric. We recall the following standard facts about the dTV metric.

Fact 7.4 ([28, Prop. 4.2]). Let θ and θ′ be two distributions over the same finite base set Ω. Then

dTV(θ, θ′) = max
A⊂Ω
|θ(A)− θ′(A)| .

Fact 7.5 (Coupling Lemma [28, Prop. 4.7]). For any two distributions θ and θ′ over the same finite base

set Ω, there exists a distribution D over Ω× Ω such that:

(1) The marginal distributions of D are equal, respectively, to θ and θ′.

(2)

dTV(θ, θ′) = Pr
(x,y)∼D

[x 6= y] .

Fact 7.6 ([28, Ex. 4.4]). Let θ =
∏t
i=1 θi and θ′ =

∏t
i=1 θ

′
i be product measures. Then,

dTV(θ, θ′) ≤
t∑
i=1

dTV(θi, θ
′
i)

7.2.3. Partial S-graphs and runs of algorithms.

Definition 7.7 (Partial S-graph). Let S be a finite set. A partial S-graph is a directed graph H whose

edges are labelled by S, such that for every s ∈ S, every vertex of H has at most one outgoing edge labelled

s and at most one incoming edge labelled s.

We denote the vertex set of H by V (H), and E(H) will be the set of (S-labelled) edges in H. For vertices

x1, x2 ∈ V (H) and s ∈ S, we say that x1
s−1

−→x2 is an edge of H if the same is true for x2
s−→x1. When

computing the cardinality |E(H)| of E(H), the edges x2
s−→x1 and x1

s−1

−→x2 count as one edge.

We denote the set of all partial S-graphsH such that V (H) ⊂ [n] by PGS(n). GivenH ∈ PGS(n), we write

r(H) = |V (H)| − k, where k is the number of connected components of H. For example, r(H) = |V (H)| − 1

if H is connected, and r(H) = 0 if H has no edges.

Definition 7.8 (Paths in a partial S-graph). Let H be a partial S-graph, x ∈ V (H) and w ∈ FS . Suppose

that the reduced form of w is given by wk · · ·w1 (wi ∈ S± for each 1 ≤ i ≤ k). We write wHx = y, and

say that w is an H-path for x, if there exist x0, . . . , xk ∈ V (H) such that x0 = x, xk = y, and H contains a

wi-labelled edge xi−1−→xi for each 1 ≤ i ≤ k (in this case x0, . . . , xk are uniquely defined). If, in addition,

the vertices x0, . . . , xk are distinct, except for the possibility that x0 = xk, we say that w is a simple H-path

for x.

Let

PathsH(x) = {w ∈ FS | w is an H-path for x} ,

Simple-PathsH(x) = {w ∈ FS | w is a simple H-path for x} ,

BipathsH(x) =
{
w′−1 · w | w,w′ ∈ Simple-PathsH(x)

}
and

PStabH(x) = {w ∈ PathsH(x) ∩ BipathsH(x) | wHx = x} .

The definition of BipathsH(x) ensures that the set PStabH(x) contains all the information about simple

paths emerging from x and ending at the same vertex. Indeed, for w,w′ ∈ Simple-PathsH(x), we have

wHx = w′Hx if and only if w′−1w ∈ PStabH(x).

Definition 7.9 (Inclusion of a partial S-graph). Let G ∈ GS(n) and H ∈ PGS(n). Write H ⊂ G if G

contains all the labelled directed edges of H. Equivalently, H ⊂ G if wGx = wHx for all x ∈ V (H) and

w ∈ Simple-PathsH(x).

Remark 7.10. Crucially, in contrast to other common definitions of inclusion of graphs, here we care about

vertex labels. For example, if H ⊂ G and H has the edge 3
s−→8, then G must also have the edge 3

s−→8.
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Let M be a deterministic algorithm that makes exactly q queries on its input G ∈ GS(n). Let HM,G ∈
PGS(n) be the partial S-graph whose edge set is the set of edges of G queried by M in its run on

G, with vertex set consisting of the vertices incident to these edges. More formally, in graph-theoretic

terms each query of M is of the form: “what is the label of the vertex sGx?” for given s ∈ S± and

x ∈ [n]. We denote this query by (x, s). Denote the sequence of queries that M makes in its run on

G by
(
xM,G,1, sM,G,1

)
, . . . ,

(
xM,G,q, sM,G,q

)
. Then the vertex set of HM,G is

{
xM,G,1, . . . , xM,G,q

}
∪{

sM,G,1
G xM,G,1, . . . , sM,G,q

G xM,G,q
}

, and its edges are xM,G,i s
M,G,i

−→ sM,G,i
G xM,G,i, 1 ≤ i ≤ q.

Clearly HM,G ⊂ G. The key observation is that if an S-graph G′ ∈ GS(n) contains HM,G thenM has an

identical run on G and on G′. Indeed, since M is deterministic, it always starts with the same query. Since

both G and G′ contain the edge xM,G,1 sM,G,1

−→ sM,G,1
G xM,G,1, the answer to this query is the same in both

runs. Consequently, the second query of M is also the same, and so on.

We denote

RM(n) = {HM,G | G ∈ GS(n)}
and

(7.8) RM,r(n) = {H ∈ RM(n) | r(H) = r}

for r ≥ 0. For G ∈ GS(n), the partial S-graph H = HM,G is the unique H ∈ RM(n) such that H ⊂ G. If

HM,G = HM,G′ then M has identical runs on G and G′. In particular, these runs terminate with the same

result. We proved:

Lemma 7.11. Let M be a deterministic algorithm and let G,G′ ∈ GS(n). Suppose that HM,G = HM,G′ .

Then

M accepts G ⇐⇒ M accepts G′ .

7.2.4. Vertex relabelling of an S-graph.

Definition 7.12 (S-graph relabelling). Let G ∈ GS(n) and let π be a permutation over [n]. The vertex-

relabelled graph Gπ ∈ GS(n) is the graph with vertex set [n] and edge set
{
π−1x

s−→π−1(sGx) | x ∈ [n]
}

.

Remark 7.13. For each w ∈ FS , the following diagram commutes:

[n]
wGπ //

π

��

[n]

π

��
[n]

wG // [n]

.

In other words, w(Gπ)x = π−1(wGπx) for x ∈ V (Gπ).

We think of π as a relabelling function, in the sense that Gπ is obtained from G by changing the name of

each vertex π(x) ∈ V (G) to x.

Remark 7.14. Let G ∈ GS(n) and π ∈ Sym(n). It is straightforward to verify that G ∈ GSolE(n) implies

Gπ ∈ GSolE(n), and that G ∈ GSol≥εE (n) implies Gπ ∈ GSol≥εE (n) (ε > 0).

Remark 7.15. For each π ∈ Sym(n), the map G 7→ Gπ : GS(n)→ GS(n) defines a right action of Sym(n) on

GS(n). For G ∈ GS(n), the set {Gπ | π ∈ Sym(n)} is an orbit of this action. The distribution of Gπ when

π ∼ U(Sym(n)) is the uniform distribution on this orbit.

7.2.5. Proving Proposition 7.2 . We shall prove the following technical lemma.

Lemma 7.16. Fix two S-graphs G0, G1 ∈ GS(n). Fix q ∈ N with 1 ≤ q ≤ n 1
4 and let M be a deterministic

algorithm, limited to making at most q queries. Let θi, i ∈ {0, 1}, be the distribution (over RM(n)) of the

partial S-graph HM,Giπ, where π ∼ U(Sym(n)). Then

dTV(θ1, θ2) ≤ (2q)
q+2
(
dTV

(
NG0,B2q

, NG1,B2q

)
+ cn−

1
4

)
,
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where c > 0 is a universal constant.

Before proving Lemma 7.16, we show that it implies Proposition 7.2.

Proof of Proposition 7.2. By the hypothesis, E is q(ε)-testable. Fix ε > 0 and write qε = q(ε). Let P =

B2qε ∪E. Fix G0 ∈ GSolE(n) and G1 ∈ GSol≥εE (n), and denote δ = dTV(NG0,P , NG1,P ). Our goal is to show

that

δ ≥ q−O(qε)
ε ,

where the implied constant is universal. We first deal with the case

n < max

{
(2qε)

4qε+8 · c4

0.057
, q4
ε

}
.

where c is the constant from Lemma 7.16. We note that, since G0 ∈ GSolE(n), we have StabG0,E(x) = E for

every x ∈ [n]. However, the same is not true for StabG1,E(x) since G1 /∈ GSolE(n). Since E ⊆ P , Corollary

6.10 yields (for the leftmost inequality)

δ ≥ dTV(NG0,E , NG1,E) ≥ Pr
x∼U([n])

[StabG0,E(x) = E]− Pr
x∼U([n])

[StabG1,E(x) = E] ≥ 1

n
≥ q−O(qε)

ε .

We proceed, assuming that

(7.9) n ≥ max

{
(2qε)

4qε+8 · c4

0.057
, q4
ε

}
.

Let D be the distribution of the random S-graph Giπ, where i is the result of a fair coin flip, and π

is independently sampled from U(Sym(n)) uniformly. Applying Lemma 7.3 to D yields a deterministic

algorithm M, limited to making qε queries, such that

Pr
G∼D

[M solves the input G correctly] ≥ 0.99 .(7.10)

Let θi, i ∈ {0, 1}, be the distribution of the partial S-graph HM,Giπ, where π ∼ U(Sym(n)). We claim

that

(7.11) dTV(θ0, θ1) ≥ 0.49 .

Before proving (7.11), we show that it implies the proposition. Note that every H ∈ RM(n) has |E(H)| ≤
qε ≤ n

1
4 , where the rightmost inequality is due to (7.9). Hence,

dTV(θ0, θ1) ≤(2qε)
qε+2

(
dTV

(
NG0,B2q

, NG1,B2q

)
+ cn−

1
4

)
by Lemma 7.16

≤(2qε)
qε+2

(
δ + cn−

1
4

)
by Corollary 6.10

≤(2qε)
qε+2

δ + 0.0571/4 . by (7.9)

Together with (7.11), this yields

δ ≥ (2qε)
−qε−2

(
0.49− 0.0571/4︸ ︷︷ ︸

<0.49

)
≥ q−O(qε)

ε ,

and the proposition follows.

We turn to proving (7.11). Fact 7.5 yields a distribution Q over RM(n)×RM(n) with respective marginal

distributions θ0 and θ1, such that

Pr
(H0,H1)∼Q

[H0 6= H1] = dTV(θ0, θ1) .

Let Q be a distribution over (Sym(n))
2

which generates a pair of permutations (π0, π1) by first sam-

pling (H0, H1) ∼ Q, and then independently sampling π0 ∼ U({π ∈ Sym(n) | HM,G0π = H0}) and π1 ∼
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U({π ∼ Sym(n) | HM,G1π = H1}). Observe that both marginal distributions of Q are equal to the uniform

distribution on Sym(n). Indeed, for i ∈ {0, 1} and α ∈ Sym(n),

Pr
(π0,π1)∼Q

[πi = α] = Pr
(H0,H1)∼Q

[Hi = HM,Giα] · 1

|{π ∈ Sym(n) | HM,Giπ = HM,Giα}|

= Pr
Hi∼θi

[Hi = HM,Giα] · 1

|{π ∈ Sym(n) | HM,Giπ = HM,Giα}|

=
|{π ∈ Sym(n) | HM,Giπ = HM,Giα}|

|Sym(n)|
· 1

|{π ∈ Sym(n) | HM,Giπ = HM,Giα}|

=
1

|Sym(n)|
.

Furthermore,

Pr
(π0,π1)∼Q

[HM,G0π0
6= HM,G1π1

] = Pr
(H0,H1)∼Q

[H0 6= H1] = dTV(θ0, θ1) .

Then

0.99 ≤ Pr
G∼D

[M correctly solves the input G] by (7.10)

=
1

2

(
Pr

π0∼U(Sym(n))
[M correctly solves G0π0] + Pr

π1∼U(Sym(n))
[M correctly solves G1π1]

)
=

1

2

(
Pr

(π0,π1)∼Q
[M correctly solves G0π0] + Pr

(π0,π1)∼Q
[M correctly solves G1π1]

)

=
1

2
Pr

(π0,π1)∼Q
[M correctly solves exactly one of G0π0 and G1π1]

+ Pr
(π0,π1)∼Q

[M correctly solves both G0π0 and G1π1]

≤ 1

2
+ Pr

(π0,π1)∼Q
[M correctly solves both G0π0 and G1π1]

=
1

2
+ Pr

(π0,π1)∼Q
[M accepts G0π0 and rejects G1π1] by Remark 7.14

≤ 1

2
+ Pr

(π0,π1)∼Q
[M returns different results on G0π0 and G1π1]

≤ 1

2
+ Pr

(π0,π1)∼Q
[HM,G0π0

6= HM,G1π1
] by Lemma 7.11

=
1

2
+ dTV(θ0, θ1) ,

and (7.11) follows. �

The rest of this section is devoted to proving Lemma 7.16. The following lemma bounds the cardinality

of the set RM,r(n) (defined in (7.8)).

Lemma 7.17. LetM be a deterministic algorithm, limited to making at most q queries per run. Let n, r ∈ N.

Then

|RM,r(n)| ≤
(
q

r

)
nr(2q)

q−r
.

Proof. For G ∈ GS(n) and 0 ≤ i ≤ q, let HG
i be the partial S-graph such that the edges of HG

i are the

edges of G queried by M in the first i queries, and the vertices of HG
i are those that touch these edges.

In particular, HG
0 is the empty partial S-graph, and HG

q = HM,G. Note that the query
(
xM,G,i, sM,G,i

)
is

determined by HG
i−1. The answer to this query, for which there are at most n possibilities, depends on G.
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Clearly, r
(
HG

0

)
= 0 and r

(
HG
q

)
= r(HM,G). Furthermore, in each step, r(Hi) = r(Hi−1) + 1 or

r(Hi) = r(Hi−1). Respectively, we say that the i-th step is increasing or nonincreasing. If the i-th

step is nonincreasing then the vertex given as an answer to the i-th query is in
{
xM,G,j | 1 ≤ j ≤ i

}
∪{

sM,G,jxM,G,j | 1 ≤ j ≤ i− 1
}

. In particular, there are at most 2q possible answers to the query in a

nonincreasing step. Write RM,r′,i(n) =
{
HG
i | G ∈ GS(n) and r

(
HG
i

)
= r′

}
. By the above,

|RM,r′,i(n)| ≤ n|RM,r′−1,i−1(n)|+ 2q|RM,r′,i−1(n)| ∀1 ≤ i ≤ q ∀0 ≤ r′ ≤ r ,

and thus

|RM,r(n)| = |RM,r,q(n)| ≤
(
q

r

)
nr(2q)q−r .

�

The next lemma provides a condition equivalent to H ⊂ G when H is a connected partial S-graph.

Lemma 7.18 (An equivalent condition for inclusion of a partial S-graph). Fix G ∈ GS(n) and H ∈ PGS(n),

where H is connected and nonempty. Treating H as undirected, fix an undirected spanning tree T for it. Fix

some y0 ∈ V (H). For every y ∈ V (H), fix a word wy ∈ Simple-PathsH(y0) such that wyHy0 = y, and the

simple H-path from y0 to y, induced by wy, proceeds along edges of T . Then, H ⊂ G if and only if

(7.12) StabG(y0) ∩ BipathsH(y0) = PStabH(y0)

and

(7.13) wyGy0 = y ∀y ∈ V (H) .

Proof. Suppose that H ⊂ G. Then wGy0 = wHy0 for all w ∈ Simple-PathsH(y0), and (7.13) follows. The ⊃
inclusion in (7.12) is clear. To prove the ⊂ inclusion, let w ∈ StabG(y0)∩BipathsH(y0) and write w = v′−1v

where v, v′ ∈ Simple-PathsH(y0). Then y0 = wGy0 = v′−1
G vGy0, and thus v′Gy0 = vGy0. Hence v′Hy0 = vHy0,

and therefore w = v′−1v ∈ PStabH(y0).

Conversely, suppose that (7.12) and (7.13) hold, and take an edge y1
s−→y2 of H. Without loss of generality,

assume that y2 is not an internal vertex in the path, in T , from y0 to y1. Then, swy1 ∈ Simple-PathsH(y0), and

so (wy2)
−1
swy1 ∈ BipathsH(y0). Note that (swy1)Hy0 = y2 = wy2H y0. Thus, (wy2)

−1
swy1 ∈ PStabH(y0). By

(7.12), (swy1)Gy0 = wy2G y0. Consequently, (7.13) implies that sGy1 = y2, so G contains the edge y1
s−→y2. �

Next, for fixed G ∈ GS(n) and connected H ∈ PGS(n), we study

(7.14) Pr
π∼U(Sym(n))

(H ⊂ Gπ) .

We use Lemma 7.18. Fix some y0 ∈ V (H) and a set of words {wy}y∈V (H) as in the lemma. The probability

that

(7.15) StabGπ(y0) ∩ BipathsH(y0) = PStabH(y0)

is NG,BipathsH(y0)(PStabH(y0)), since π(y0) is distributed uniformly on [n]. Conditioned on the event (7.15),

the probability that

wyGπy0 = y ∀y ∈ V (H)

is approximately n−(V (H)−1). Lemma 7.19 below provides a more precise estimate of (7.14). Furthermore,

the lemma shows that (7.14) does not change by much if we condition on the event π |L= f for a small

subset L of [n] and an injective function f : L→ [n].
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Lemma 7.19. Fix G ∈ GS(n), H ∈ PGS(n), and suppose that H is connected and has at least one edge.

Let y0 be an arbitrary vertex of H. Then

(7.16) Pr
π∼U(Sym(n))

(H ⊂ Gπ) =
(n− |V (H)|)!

(n− 1)!
NG,BipathsH(y0)(PStabH(y0)) .

Moreover, let L ⊂ [n] \ V (H) and let f : L→ [n] be an injective function. Then

(7.17)

∣∣∣∣ Pr
π∼U(Sym(n))

(H ⊂ Gπ | π |L= f)− p
∣∣∣∣ ≤ (n− |L| − |V (H)|)!

(n− |L| − 1)!
· |L| · |V (H)|

n
,

where π|L denotes the restriction of π to the set L and

p =
(n− |V (H)| − |L|)!

(n− 1− |L|)!
·NG,BipathsH(y0)(PStabH(y0)) .

Remark 7.20. In the setting of Lemma 7.19, when L ≤ O(n1/4) and |V (H)| ≤ O(n1/4), (7.17) yields

Pr
π∼U(Sym(n))

(H ⊂ Gπ | π |L= f) = n−(V (H)−1) ·
(
NG,BipathsH(y0)(PStabH(y0))±O

(
n−

1
2

))
.

Proof of Lemma 7.19. Since (7.16) is a special case of (7.17), we only prove the latter. LetD = {π ∈ Sym(n) | π |L= f},
and note that the distribution of π ∼ U(Sym(n)), conditioned on the event π |L= f , is the uniform distri-

bution on D.

Fix y0 ∈ V (H) and write V (H) =
{
y0, y1, . . . , y|V (H)|−1

}
. For every 0 ≤ i ≤ |V (H)| − 1, fix a word

wyi ∈ Simple-PathsH(y0) such that wyiHy0 = yi. Let

A = {π ∈ Sym(n) | StabGπ(y0) ∩ BipathsH(y0) = PStabH(y0)} .

For 0 ≤ i ≤ |V (H)| − 1, let

Bi = {π ∈ Sym(n) | wyiGπy0 = yi} .

By Lemma 7.18,

(7.18) Pr
π∼U(D)

(H ⊂ Gπ) = Pr
π∼U(D)

π ∈ A ∩ |V (H)|−1⋂
i=0

Bi

 .

Let

A = {π ∈ A | wyiGπy0 /∈ L for all 1 ≤ i ≤ |V (H)| − 1} .

Observe that

A ∩
|V (H)|−1⋂

i=1

Bi ⊂ A .

Indeed, π ∈ Bi implies that wyiGπy0 = yi, and in particular wyiGπy0 /∈ L. Hence, since A ⊆ A,

(7.19) A ∩
|V (H)|−1⋂

i=1

Bi = A ∩
|V (H)|−1⋂

i=1

Bi .

Next, we show that A ⊂ B0. It always holds that wy0H (y0) = y0, so wy0 ∈ PStabH(y0). Consequently,

π ∈ A implies wy0 ∈ StabGπ(y0), which implies π ∈ B0. Therefore, by (7.18) and (7.19),

(7.20) Pr
π∼U(D)

(H ⊂ Gπ) = Pr
π∼U(D)

(
π ∈ A

)
·
|V (H)|−1∏

i=1

Pr
π∼U(D)

π ∈ Bi | π ∈ A ∩ i−1⋂
j=0

Bj

 .

We claim that

(7.21)

∣∣∣∣ Pr
π∼U(D)

(
π ∈ A

)
−NG,BipathsH(y0)(PStabH(y0))

∣∣∣∣ ≤ |L| · |V (H)|
n
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and

(7.22) Pr
π∼U(D)

π ∈ Bi | π ∈ A ∩ i−1⋂
j=0

Bj

 =
1

n− |L| − i
∀1 ≤ i ≤ |V (H)| − 1 ,

and thus (7.17) follows from (7.20).

To prove (7.21), let

W1 = {x ∈ [n] | StabG(x) ∩ BipathsH(y0) = PStabH(y0)}

and

W2 = {x ∈ [n] | wyiG x ∈ f(L) for some 1 ≤ i ≤ |V (H)| − 1} ,

and note that π ∈ A if and only if πy0 ∈ W1 \ W2. Also, observe that πy0 is distributed uniformly on

[n] \ f(L) when π ∼ U(D). Hence,∣∣∣∣ Pr
π∼U(D)

(
π ∈ A

)
− |W1 \W2|

n

∣∣∣∣ =

∣∣∣∣ Pr
x∼U([n]\f(L))

(x ∈W1 \W2)− |W1 \W2|
n

∣∣∣∣
=

∣∣∣∣ Pr
x∼U([n]\f(L))

(x ∈W1 \W2)− Pr
x∼U([n])

(x ∈W1 \W2)

∣∣∣∣
≤ dTV(U([n] \ f(L)),U([n])) by Fact 7.4

=
|L|
n

.(7.23)

Now,

|W1| = NG,BipathsH(y0)(PStabH(y0)) · n

and

0 ≤ |W2| ≤ (|V (H)| − 1) · |L| .

Thus ∣∣∣∣ |W1 \W2|
n

−NG,BipathsH(y0)(PStabH(y0))

∣∣∣∣ ≤ (|V (H)| − 1) · |L|
n

,

which implies (7.21) by virtue of (7.23) and the triangle inequality.

We turn to proving (7.22). First note that if π ∈ A then wy0Gπy0, w
y1
Gπy0, . . . , w

y|V (H)|−1

Gπ y0 are distinct.

Indeed, if wyiGπy0 = w
yj
Gπy0 then (wyj )

−1
wyi ∈ StabG(y0)∩BipathsH(y0), and thus (wyj )

−1
wyi ∈ PStabH(y0)

because π ∈ A. Consequently,

yj = w
yj
H y0 = wyiHy0 = yi ,

and so i = j since y0, . . . , y|V (H)|−1 are distinct.

In particular, for 1 ≤ i ≤ |V (H)| − 1, the event π ∈ A ∩
⋂i−1
j=0Bj implies that

π−1(wyiG (πy0)) = wyiGπy0 /∈ {y0, . . . , yi−1} ,

and so

(7.24) wyiG (πy0) /∈ {πy0, . . . , πyi−1} .

Observe that, since

π ∈ Bj ⇐⇒ w
yj
G (πy0) = πyj ,

the event π ∈ A ∩
⋂i−1
j=0Bj is determined solely by the restriction π|{y0,...,yi−1}. In other words, for a

permutation π ∈ D we have

(7.25) π ∈ A ∩
i−1⋂
j=0

Bj ⇐⇒ π|{y0,...,yi−1} ∈ K
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where

K =

g : {y0, . . . , yi−1} → [n] \ f(L) | g is injective and π|y0,...,yi−1
= g implies π ∈A ∩

i−1⋂
j=0

Bj

 .

Fix some g ∈ K, and consider a random permutation π ∼ U(D), conditioned on π|{y0,...,yi−1} = g. Note

that πyi is distributed uniformly on the set [n] \ (L ∪ {πy0, . . . , πyi−1}). Since π ∈ A, we have wyiG (πy0) /∈ L.

Together with (7.24), it follows that

Pr
π∼U(D)

(
π ∈ Bi | π|{y0,...,yi−1} = g

)
= Pr
π∼U(D)

(
πyi = wyiG (πy0) | π|{y0,...,yi−1} = g

)
=

1

|[n] \ (L ∪ {πy0, . . . , πyi−1})|
=

1

n− L− i
.

Finally, (7.22) follows by virtue of (7.25). �

We next generalize Lemma 7.19 to the case in which H is not necessarily connected, provided that it does

not have too many edges.

Lemma 7.21. Fix G ∈ GS(n) and H ∈ PGS(n). Denote the connected components of H by C1, . . . , Ck, and

suppose that every connected component has at least one edge. Fix xi ∈ V (Ci) for each 1 ≤ i ≤ k. Suppose

that

(7.26) |E(H)| ≤ n 1
4 .

Then,

Pr
π∼U(Sym(n))

(H ⊂ Gπ) = n−r(H)
k∏
i=1

NG,BipathsH(xi)(PStabH(xi)) +O
(
n−r(H)− 1

4

)
,

where the implied constant is universal.

Proof. Clearly,

Pr
π∼U(Sym(n))

(H ⊂ Gπ) =

k∏
i=1

Pr
π∼U(Sym(n))

Ci ⊂ Gπ | i−1⋃
j=1

Cj ⊂ Gπ

 ,

where by Ci ⊂ Gπ we mean that Gπ contains every edge in the connected component Ci of H. To bound

the i-th term of this product, let Li =
⋃i−1
j=1 Cj , and note that the event

⋃i−1
j=1 Cj ⊂ Gπ is determined solely

by the restriction π|Li . Indeed, Gπ contains the edge a
s

−→b of Ci if and only if sG(πa) = πb. Hence there

exists a set Di of injective functions f : Li → [n], such that

i−1⋃
j=1

Cj ⊂ Gπ ⇐⇒ π|Li ∈ Di .

Thus, we can write

(7.27)

Pr
π∼U(Sym(n))

Ci ⊂ Gπ | i−1⋃
j=1

Cj ⊂ Gπ

 =
∑
f∈Di

Pr
π∼U(Sym(n))

(
π|Li = f | π|Li ∈ Di

)
· Pr
π∼U(Sym(n))

(
Ci ⊂ Gπ | π|Li = f

)
.

By Remark 7.20,

(7.28) Pr
π∼U(Sym(n))

(
Ci ⊂ Gπ | π|Li = f

)
= n−(|Ci|−1) ·

(
NG,BipathsH(xi)(PStabH(xi))±O

(
n−

1
2

))
,
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where we used (7.26), and the fact that both |Ci| and |Li| are bounded from above by 2|E(H)|. Now, (7.27)

and (7.28) yield

Pr
π∼U(Sym(n))

Ci ⊂ Gπ | i−1⋃
j=1

Cj ⊂ Gπ

 = n−(|Ci|−1) ·
(
NG,BipathsH(xi)(PStabH(xi))±O

(
n−

1
2

))
.

Since r(H) =
∑k
i=1(|Ci| − 1), and NG,P (Q) ≤ 1 for every P and Q, it follows that

Pr
π∼U(Sym(n))

(H ⊂ Gπ) =

k∏
i=1

Pr
π∼U(Sym(n))

Ci ⊂ Gπ | i−1⋃
j=1

Cj ⊂ Gπ


= n−r(H)

(
k∏
i=1

NG,BipathsH(xi)(PStabH(xi)) +O

(
k∑
i=1

(
k

i

)
· n− i

2

))
,

which yields the lemma since k ≤ |E(H)| ≤ n 1
4 . �

Corollary 7.22. Let G0, G1 ∈ GS(n), and take H ∈ PGS(n). Suppose that |E(H)| ≤ n
1
4 , and that every

connected component of H has at least one edge. Then,∣∣∣∣ Pr
π∼U(Sym(n))

(H ⊂ G0π)− Pr
π∼U(Sym(n))

(H ⊂ G1π)

∣∣∣∣ ≤ n−r(H)·|E(H)|·dTV

(
NG0,B2|E(H)| , NG1,B2|E(H)|

)
+cn−r(H)− 1

4 ,

for a universal constant c > 0.

Proof. Suppose that H has k connected components, and let x1, . . . , xk be representative vertices of these

components. For j ∈ {0, 1}, Lemma 7.21 yields

(7.29) Pr
π∼U(Sym(n))

(H ⊂ Gjπ) = n−r(H)
k∏
i=1

NGj ,BipathsH(xi)(PStabH(xi)) +O
(
n−r(H)− 1

4

)
.

Now,

∣∣∣∣∣
k∏
i=1

NG0,BipathsH(xi)(PStabH(xi))−
k∏
i=1

NG1,BipathsH(xi)(PStabH(xi))

∣∣∣∣∣
≤ dTV

(
k∏
i=1

NG0,BipathsH(xi),

k∏
i=1

NG1,BipathsH(xi)

)
by Fact 7.4

≤
k∑
i=1

dTV

(
NG0,BipathsH(xi), NG1,BipathsH(xi)

)
by Fact 7.6

≤ k · dTV

(
NG0,B2|E(H)| , NG1,B2|E(H)|

)
by Corollary 6.10

≤ |E(H)| · dTV

(
NG0,B2|E(H)| , NG1,B2|E(H)|

)
since k ≤ |E(H)|.(7.30)

The claim follows from (7.29) and (7.30). �

Lemma 7.16 now follows from Lemma 7.17 and Corollary 7.22.

Proof of Lemma 7.16. Denote δ = dTV

(
NG0,B2q

, NG1,B2q

)
. Then,
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dTV(θ0, θ1) =
1

2

∑
H∈RM(n)

∣∣∣∣ Pr
π∼U(Sym(n))

(HM,G0π = H)− Pr
π∼U(Sym(n))

(HM,G1π = H)

∣∣∣∣
=

1

2

∑
H∈RM(n)

∣∣∣∣ Pr
π∼U(Sym(n))

(H ⊂ G0π)− Pr
π∼U(Sym(n))

(H ⊂ G1π)

∣∣∣∣
≤ 1

2

∑
H∈RM(n)

(
n−r(H) · |E(H)| · dTV

(
NG0,B2|E(H)| , NG1,B2|E(H)|

)
+ cn−r(H)− 1

4

)
by Corollary 7.22

≤ 1

2

∑
H∈RM(n)

(
n−r(H) · |E(H)| · δ + cn−r(H)− 1

4

)
by Corollary 6.10

≤ 1

2

∑
H∈RM(n)

(
n−r(H) · q · δ + cn−r(H)− 1

4

)

≤ 1

2

q∑
r=0

|RM,r(n)| ·
(
n−r · q · δ + cn−r−

1
4

)
≤ 1

2

q∑
r=0

(
q

r

)
(2q)

q−r ·
(
qδ + cn−

1
4

)
by Lemma 7.17

≤ 1

2

q∑
r=0

(2q)
q
(
qδ + cn−

1
4

)
≤ (2q)

q+2
(
δ + cn−

1
4

)
.
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Appendix A. An explicit description of certain systems of relations

A.1. A system of relations which is testable but not stable. Here we describe instable testable

systems of relations using Theorem 1’, as discussed in Section 3.1. Fix a prime number p. Let

Sp = {d2, d3, s12, s13, s23, s24, s34} ,

and consider the following system of relations over the alphabet Sp:

Ep ={d2d3 = d3d2, s12s34 = s34s12}∪
{s23s12 = s12s23s13, s34s23 = s23s34s24}∪
{s13s12 = s12s13, s13s23 = s23s13, s24s23 = s23s24}∪
{s24s34 = s34s24, s13s24 = s24s13}∪
{s12d2 = d2s

p
12, s12d3 = d3s12}∪

{d2s23 = sp23d2, s23d3 = d3s
p
23}∪

{s34d2 = d2s34, d3s34 = sp34d3}.

As explained below, this system is testable by Theorem 1’, yet instable due to [9, Theorem 1.3(ii)].
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It was shown in [1] that 〈Sp | Ep〉 is a presentation of Abels’ group Ap, which is defined as follows:

Ap =




1 ∗ ∗ ∗
0 pm ∗ ∗
0 0 pn ∗
0 0 0 1

 ⊂ GL4 Z[1/p] | m,n ∈ Z

 .

Here Z[1/p] is the ring of rational number whose denominator is a power of p, and GL4 Z[1/p] is the group

of 4× 4 matrices with entries in Z[1/p] and determinant ±pl, l ∈ Z.

An isomorphism 〈Sp | Ep〉
∼−→ Ap is given by

d2 7→


1

p

1

1

, d3 7→


1

1

p

1


sij 7→ I + eij ,

where eij is the 4× 4 matrix with 1 on the (i, j)-entry and 0 elsewhere.

The group Ap is solvable because it is contained in the group of upper triangular matrices. Hence Ap is

amenable. In other words, Ep satisfies the hypothesis of Theorem 1’, and so it is testable.

On the other hand, [9, Theorem 1.3(ii)] characterizes the systems of relations that are stable, among those

that satisfy the hypothesis of Theorem 1’. By this characterization (which is given in terms of invariant

random subgroups and cosoficity), Ep is instable [9, Corollary 8.7].

A.2. A non-testable system of relations. Let m ≥ 3. Here, as discussed in Section 3.2, we use Theorem

2’ to provide a non-testable system of relations Em, over an alphabet S±m, such that Γ(Em) := 〈Sm | Em〉 ∼=
SLm Z:

Sm = {sij | i, j ∈ [m], i 6= j} ,

Em ={sijskl = sklsij | i, j, k, l ∈ [m], j 6= k, i 6= l}∪
{sijsjk = siksjksij | i, j, k ∈ [m], i 6= j, j 6= k, k 6= i}∪{(
s12s

−1
21 s12

)4
= 1
}

.

By [34, Corollary 10.3], 〈Sm | Em〉 is a presentation of the group SLm Z. The isomorphism given by

sij 7→ I + eij ,

where eij is the m×m matrix with 1 on the (i, j)-entry and 0 elsewhere. The group SLm Z is well known to

satisfy Property (T), and has infinitely many finite quotients. This means that Em satisfies the hypothesis

of Theorem 2’, and therefore, it is not testable.

Appendix B. A note on sampling inverses of permutations

For a given permutation σ ∈ Sym(n) and x ∈ [n], our model assumes that an algorithm M can read σx

by making a single query. We also allow M to read σ−1x with a single query. It is also natural to study

testability in a model that allows to read σx, but not σ−1x, with a single query. Here we describe how every

testable (resp. stable) system gives rise to a closely related system which is testable (resp. stable) even

under the model where sampling inverses is not allowed (see Definitions 1.6 and 1.10).

Let E be a system of equations over S±. We say the E is inverseless if all equations in E are over the

alphabet S, that is, letters from S−1 are not used. For example, Ecomm
2 = {XY = YX} is inverseless. Thus,

SAS
Ecomm

2

k , k ∈ N, can be implemented without sampling inverses (simply by checking whether XYxj = YXxj
rather than X−1Y−1XYxj = xj in Line 2 of Algorithm 1). Similarly, SASEk can be implemented without

sampling inverses whenever E is inverseless.

40



In general, E gives rise to an inverseless system of equations E′ as follows. Extend the alphabet by

defining S = {s1, . . . , sd} and S′ = S ∪ S. Define a system of equations Ẽ over S′ by starting from E and

replacing each occurrence of each s−1
i , 1 ≤ i ≤ d, by si. Finally, set E′ = Ẽ∪{sisi = 1 | 1 ≤ i ≤ d}︸ ︷︷ ︸

=:Einv

. Then E′

is an inverseless system of equations, i.e., it is a system of equations over S′ rather than (S′)
±

. Furthermore,

E is stable if and only if E′ is stable because the groups Γ(E) and Γ(E′) are isomorphic and by Proposition

3.1.

Moreover, by Proposition 3.2, E is testable if and only if E′ is. Additionally, the algorithm LSME
k,P,δ (see

Section 1.4) can be altered to avoid sampling inverses as follows: First run SASEinv

k′ for a large enough k′,

and reject if SASEinv

k′ rejects. Otherwise, run LSME
k,P,δ without sampling inverses by replacing each query of

s−1
i x by a query of six, and accept if LSME

k,P,δ accepts.

Appendix C. A review of free groups and group presentations

Here we give a brief introduction to free groups and their universal property, and to group presentations

(see [26]).

Let S = {s1, . . . , sd} be a set of letters. Write S−1 =
{
s−1

1 , . . . , s−1
d

}
for the set of formal inverses of the

letters in S, and let S± := S ∪ S−1. We define
(
s−1
i

)−1
:= si, and so s 7→ s−1 becomes an involution on S±.

Write w1 ∼ w2 for words w1 and w2 over S± if there is a sequence of words w1 = u0, . . . , un = w2 such that

ui+1 is obtained from ui by adding or removing a null subword, i.e., a subword of the form ss−1, s ∈ S±.

For example, s1s2s
−1
2 s1 ∼ s1s1s

−1
3 s3. A word w over the alphabet S± is reduced if it does not contain a null

subword as above. Every word w over S± is equivalent to a unique reduced word called the reduced form of

w. For words w1, w2, w
′
1, w

′
2 over S± such that w1 ∼ w′1 and w2 ∼ w′2, we have w1w2 ∼ w′1w′2. In particular,

the reduced forms of w1w2 and w′1w
′
2 are equal.

The free group FS over S is the set of reduced words over S±, endowed with the following multiplication

operation: for w1, w2 ∈ FS , w1 · w2 is the unique reduced word equivalent to the concatenation w1w2. We

sometimes abuse notation and view a word w over S±, not necessarily reduced, as an element of FS . We do

so only when making statements where only the equivalence class of w matters.

It is worth noting the following alternative way to define FS , although we are not using it in this paper.

One can realize the free group FS as the group of ∼-equivalence classes of (not necessarily reduced) of words

over S±, with the multiplication defined by [w1] · [w2] := [w1w2], where [w] denotes the ∼-equivalence class

of a word w. This point of view also makes it easy to define group presentations, i.e., to define the group

〈S | R〉 for a set of words R over S±: We define an equivalence class ∼R on the set of words over S± just as

we defined ∼, only that we consider all subwords of the form vr±1v−1 to be null subwords, for every word

v over S± and r ∈ R, in a addition to the null subwords ss−1, s ∈ S. We then let 〈S | R〉 be the group

of ∼R-equivalence classes, with the multiplication of classes defined as in FS above. We now go back to

thinking of FS as the set of reduced words and define 〈S | R〉 in a different, equivalent, way.

The free group FS has the following important property, known as the universal property of FS : for

every group Γ and function f : S → Γ, there is exactly one group homomorphism f̃ : FS → Γ such that

f̃(si) = f(si) for all 1 ≤ i ≤ d. The map f 7→ f̃ is a bijection from the set of functions S → Γ to the set of

homomorphisms FS → Γ.

In particular, for a group Γ generated by γ1, . . . , γd ∈ Γ, there is a unique homomorphism π : FS → Γ such

that π(si) = γi for each 1 ≤ i ≤ d. The map π is surjective because its image π(FS) contains a generating

set for Γ. That is, every group Γ generated by d elements is a quotient of FS . For example, Γ0 := Z2 is a

quotient of F{s1,s2} as exhibited by the unique homomorphism π0 : F{s1,s2} → Z2 sending s1 7→ (1, 0) and

s2 7→ (0, 1).

The kernel kerπ of π : FS → Γ is a normal subgroup of FS . It is often useful to have a subset R of kerπ

such that kerπ = 〈〈R〉〉. Here 〈〈R〉〉 denotes the normal closure of R in FS , that is, the smallest normal

subgroup of FS that contains R. Concretely, 〈〈R〉〉 consists of all elements of the form
∏m
i=1 vir

εi
i v
−1
i , where

41



m ≥ 0, vi ∈ FS , ri ∈ R and εi ∈ {±1}. In the cases of interest of this paper, kerπ = 〈〈R〉〉 where R is a finite

set. For π0 : F{s1,s2} → Z2 as in the example, it can be shown that kerπ0 = 〈〈R0〉〉 for R0 =
{
s−1

1 s−1
2 s1s2

}
.

The surjective homomorphism π : FS → Γ gives rise to an isomorphism FS/ kerπ
∼−→ Γ. If kerπ = 〈〈R〉〉

for R ⊂ kerπ, we write 〈S | R〉 for the quotient group FS/ kerπ and say that the group 〈S | R〉, which is

isomorphic to Γ, is a presentation of Γ. For a system of relations E, we write 〈S | E〉 for 〈S | RE〉 (where

RE is as in the introduction).

For example,

〈s1, s2 | s1s2 = s2s1〉 = 〈s1, s2 | s−1
1 s−1

2 s1s2〉 ∼= Z2 .

The group 〈S | R〉 is a finite presentation if S and E are finite sets. In this paper we also write Γ(E) for

〈S | E〉 when the set S is understood from the context.
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