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Abstract

We investigate the weight distribution of random binary linear codes.
For 0 < λ < 1 and n→∞ pick uniformly at random λn vectors in Fn2 and let
C ≤ Fn2 be the orthogonal complement of their span. Given 0 < γ < 1/2 with
0 < λ < h(γ) let X be the random variable that counts the number of words
in C of Hamming weight γn. In this paper we determine the asymptotics of
the moments of X of all orders o( n

logn).

1 Introduction
Random linear codes play a major role in the theory of error correcting codes, and
are also important in other areas such as information theory, theoretical computer
science and cryptography [8, 12, 2, 1]. Nevertheless, not much seems to be known
about their properties. As already demonstrated in Shannon’s foundational paper
[13], random linear codes occupy a particularly prominent position in coding the-
ory. This is arguably the simplest construction to achieve channel capacity in the
binary symmetric channel, as well as the Gilbert-Varshamov bound for minimal
distance. The present paper is motivated by the contrast between the importance
of random codes and the lack of our understanding. Our main aim is to improve
our comprehension of the weight distribution of random binary linear codes.

The two most basic parameters of a code C ⊆ Fn2 are its rate R = log2 ∣C∣
n and

its relative distance δ = min{∥x−y∥ ∣ x,y∈C x≠y}
n , where ∥ ⋅ ∥ is the Hamming norm.

Clearly, the rate of a D-dimensional linear code C ⊆ Fn2 is Dn , and its relative
distance is min{∥w∥ ∣ w∈C w≠0}

n .
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It is a major challenge to understand the trade-off between rate and distance
for linear as well as general codes. Concretely, given 0 < δ < 1

2 , we wish to know
the value of lim supR(C) where the the lim sup is taken over all binary codes
of relative distance at least δ. The Gilbert-Varshamov (GV) lower bound (e.g.,
[7], lec. 2) states that R ≥ 1 − h(δ) is achievable, where h is the binary entropy
function. Despite many attempts, this bound has not been improved, nor shown
to be tight, through over 60 years of intense investigations. The best known upper
bound, from 1977 (MRRW), is due to McEliece, Rodemich, Rumsey and Welch
[9]. An alternative proof of this bound, using harmonic analysis on Fn2 , was given
in 2007 by Navon and Samorodnitsky [10]. Note that this is an upper bound on
all codes.

Curiously, neither bound, GV and MRRW, exhibits any distinction between
linear and nonlinear codes. Of course, the realm of nonlinear codes is much richer
than the linear one, but whether or not nonlinear codes perform better than linear
ones remains a mystery. One would thus expect that both the lower bounds and
the upper bounds for nonlinear codes be higher than for linear codes, but neither
one is the case at present. Since both GV and MRRW are several decades old, it
is of interest to find any key ways in which linear and nonlinear codes differ. As
this paper shows, the weight distribution of random linear codes is very different
from that of random nonlinear codes.

This paper concerns the weight distribution of random linear codes. Con-
cretely, fix two rational numbers 0 < γ < 1

2 and 0 < λ < h(γ), and let n ∈ N be
such that λn is an integer and γn is an even integer1. Let C = Cn,λ be a random
subspace of Fn2 that is defined via C ∶= {x ∈ Fn2 ∣Kx = 0} where K is a uniformly
random λn×n binary matrix. Clearly dimC ≥ (1−λ)n, and with very high prob-
ability equality holds. Denote L = Ln,γ = {x ∈ Fn2 ∣ ∥x∥ = γn}. We investigate
the distribution of the random variable X = Xn,γ,λ = ∣C ∩ L∣ for fixed γ and λ
when n →∞. Clearly E(X) = N−λ( n

γn
) = Nh(γ)−λ+o(1), where N = 2n. This fol-

lows since every x ∈ Ln,γ belongs to a random Cn,λ with probability N−λ. Also,
limn→∞E(X) =∞, since, by assumption λ < h(γ).

It is instructive to compare what happens if rather than a random linear code
C, we consider a uniformly random subset C ′ ⊂ Fn2 , where every vector in Fn2
independently belongs to C ′ with probability N−λ. In analogy, we define X ′ =
∣C ′ ∩ L∣, and the distribution of X ′ is clearly approximately normal. It would
not be unreasonable to guess that X behaves similarly, and in particular that its
limit distribution, as n → ∞ is normal. However, as we show, the code’s linear
structure has a rather strong effect. Indeed X does not converge to a normal
random variable, and moreover, only a few of its central moments are bounded.

1For other ranges of the problem - See our Discussion.
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1.1 Rough outline of how we compute the moments
We seek to approximate the central k-th moments of X for all k ≤ o( n

logn). In
Section 2 we reduce this question to an enumeration problem that we describe
next. We say that a linear subspace U ≤ Fk2 is robust if every system of linear
equations that defines it involves all k coordinates. Given a subspace U ≤ Fk2, let
TU be the set of all k ×n binary matrices where every column is a vector in U and
every row has weight γn and let ∣TU ∣ denote the cardinality of this set. We show
that

E ((X −E(X))k) = Θ

⎛
⎜⎜⎜⎜⎜
⎝

k−1

∑
D=0

N−λD ∑
V ≤Fk2

dim(V )=D
V robust

∣TV ∣

⎞
⎟⎟⎟⎟⎟
⎠

, (1)

The main challenge is to estimate the internal sum, but understanding the interac-
tion with the outer sum is nontrivial either. The reason that we can resolve this
problem is that the main contributors to the internal sum are fairly easy to de-
scribe. As it turns out, this yields a satisfactory answer even though we provide a
rather crude upper bound on all the other terms.

A key player in this story is the space of even-weight vectors V = Vk ≤ Fk2.
In Section 3 we solve this enumeration problem for this space, and show that
∣TVk ∣ ≈ NF (k,γ) up to a factor that is polynomial in n and exponential in k. Here
F (k, γ) is the entropy of a certain entropy maximizing probability distribution on
Vk. In our proof, we generate a k × n matrix A with i.i.d. columns sampled from
this distribution, and compute the probability that A ∈ TVk . The function F has
the explicit description

F (k, γ) = min
1>x>0

log2 ((1 + x)k + (1 − x)k) − kγ log2 x − 1

and its asymptotic behavior for large k is:

F (k, γ) = kh(γ) − 1 +O((1 − 2γ)k).

In Section 4 we use the result of Section 3 to bound ∣TU ∣ for a general robust
U ≤ Fk2. Consider a robust space U ≤ Fk2 of the form ⊕c

i=1 Vmi , where ∑mi =
k. Clearly, ∣TU ∣ = ∏c

i=1 ∣TVmi ∣ ≈ N∑ci=1 F (mi,γ). Hence, finding a space of this
form of given dimension that maximizes ∣TU ∣ translates into a question about the
dependence of F (m,γ) on m. We show (Lemma 25) that this function is convex,
so that the optimum is attained at m1 = k − 2c + 2 and m2 =m3 = . . . =mc = 2.

We show that if U ≤ Fk2 is robust and not a product of Even spaces, then there
is some V of this form and of the same dimension with ∣TV ∣ ≥ ∣TU ∣. We reduce
the proof of this claim (Equation (23)) to the analysis of m × n matrices where
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every row weighs γn, the first δn columns have odd weight and the last (1 − δ)n
ones are even. A key step in the proof (Lemma 24) shows that the number of such
matrices decreases with δ.

Finally, in Section 5, the results of the previous sections are put together to
find the dominating terms of Equation (1), yielding the moments of X . For even
k, we show that the dominating terms are those corresponding to either D = k

2 or
D = k − 1, and respectively, to the subspaces⊕k/2

i=1 V2 or Vk. More precisely, there
exists some k0(γ, δ) such that the former dominates when k ≤ k0 and the latter
when k > k0. The behavior of odd order moments is similar, although slightly
more complicated to state.

Theorems 2 and 3 in Section 5, deal with even and odd order moments, respec-
tively. Theorem 1 gives the central moments of the normalized variable X√

Var(X) .

Theorem 1. Fix γ < 1
2 and 0 < λ < h(γ), let X =Xn,γ,λ, and let

k0 = min{m ∣ F (m,γ) − (m − 1)λ > m
2
(h(γ) − λ)} .

Then, for 2 ≤ k ≤ o( n
logn),

E((X −E(X))k)
Var(X) k2

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

o(1) if k is odd and < k0

(1 + o(1)) ⋅ k!! if k is even and < k0

NF (k,γ)− k
2
h(γ)−( k

2
−1)λ− k logn

4n
+O( k

n
) if k ≥ k0

We call the reader’s attention to the following interesting point on which we
elaborate below. For given γ and λ there is a bounded number of moments for
which our distribution behaves as if it were normal, but from that index k0, the
code’s linear structure starts to dominate the picture and the normalized moments
become unbounded as n→∞. (See Figure 1).

1.2 Preliminaries
General
- Unless stated otherwise, all logarithms here are to base 2.

- Our default is that an asymptotic statement refers to n → ∞, while the param-
eters γ and λ take fixed arbitrary values within their respective domains. Other
parameters such as k may or may not depend on n.

- We denote a binomial distribution with n trials of probability p by B(n, p).
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Figure 1: Illustration for Theorem 1. For k < k0 = k0(γ, λ) the k-th moment of
X is that of a normal distribution. The relevant range λ < h(γ) is below the solid
line. Note that k0 = 3 for much of the parameters range.

Entropy
- We use the standard notation h(t) = −t ⋅ log t − (1 − t) ⋅ log(1 − t). Entropy and

conditional entropy are always binary.

Linear algebra
- U ≤ V means that U is a linear subspace of the vector space V . The weight,
∥u∥ of a vector u ∈ Fn2 is the number of its 1 coordinates. Accordingly we call
u even or odd. Likewise, the weight ∥A∥ of a binary matrix A, is the number of
its 1 entries.

- The sets of even and odd vectors in Fn2 are denoted by Vn and Dn.

- The i-th row of a matrix A is denoted by Ai. If I ⊆ [k] then AI is the sub-matrix
consisting of the rows {Ai ∣ i ∈ I}. Also vI is the restriction of the vector v to
the coordinates in I .

- For a subspace U ≤ Fk2 and I ⊂ [k] we denote by UI the projection of U to the
coordinates in I , i.e., UI = {uI ∣ u ∈ U}, and we use the shorthand DI(U) =
dimUI , and D(U) = dimU .
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2 From moments to enumeration
To recap: C = Cn,λ is a random linear subspace of Fn2 , and L = Ln,γ is the γn-th
layer of Fn2 . We fix 0 < γ < 1, 0 < λ < h(γ), so that λn is an integer and γn is an
even integer, and we start to investigate the moments of X = ∣C ∩L∣, as n→∞.

The probability that C contains a given subset of Fn2 depends only on its linear
dimension:

Proposition 1. If Y ⊆ Fn2 has dimension dim(Y ) = D, then Pr(Y ⊆ C) = N−λD.

Proof. As mentioned, we think of C as the kernel of a uniform random λn × n
binary matrix K, so Y ⊆ C iff every row of K is orthogonal to Y . The probability
of this event is 2−D for a given row, and 2−λnD = N−λD for all rows together.

2.1 Interpreting the central moments of X
We turn to express X and its moments in terms of indicator random variables.

Definition 2. For a vector u ∈ Fn2 , let Yu be the indicator for the event that u ∈ C.
For a binary k × n matrix A we let YA be the indicator random variable for the
event that every row of A is in C.

Proposition 1 plainly yields the first two central moments of X .

E(X) = ∑
u∈L

E(Yu) = ∣L∣N−λ = ( n
γn

)N−λ = Nh(γ)−λ− logn
2n

+O( 1
n
).

Proposition 1 also implies that Cov(Yu, Yv) = 0 for every u ≠ v ∈ L. Hence,

Var(X) = ∑
u∈L

Var(Yu) = ( n
γn

)N−λ(1 −N−λ) = Nh(γ)−λ− logn
2n

+O( 1
n
).

In words, the first two moments of X are not affected by the linearity of C.
We now turn to higher order moments. Specifically we wish to compute the

k-th central moment of X for any 2 < k ≤ o( n
logn).

Definition 3. We denote by Wk = Wk,γ the set of binary k × n matrices in which
every row has weight γn.

Definition 4. For a subspace U ≤ Fk2 we denote

TU,n,γ = TU = {A ∈Wk ∣ ImA ⊆ U}

and
TU,n,γ = TU = {A ∈Wk ∣ ImA = U}.
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Let us expand the k-th central moment.

E ((X −E(X))k) = E
⎛
⎝
(∑
u∈L

Yu −∑
u∈L

E(Yu))
k⎞
⎠

= ∑
u1,...,uk∈L

∑
I⊆[k]

E(∏
i∈I
Yui) ∏

j∈[k]∖I
(−E (Yuj)) . (2)

If A is the matrix with rows u1, . . . , uk, then by Proposition 1 this equals

∑
A∈Wk

∑
I⊆[k]

(−1)k−∣I ∣ ⋅N−λ⋅(rankAI+k−∣I ∣).

We group the matrices A ∈Wk with the same image U and rewrite the above as

∑
U≤Fk2

∣TU ∣ ∑
I⊆[k]

(−1)k−∣I ∣ ⋅N−λ⋅(DI(U)+k−∣I ∣),

which we restate as

E ((X −E(X))k) = ∑
U≤Fk2

∣TU ∣RU , (3)

where for any U ≤ Fk2

RU = ∑
I⊆[k]

(−1)k−∣I ∣ ⋅N−λ⋅(DI(U)+k−∣I ∣). (4)

We proceed as follows:

1. We recall the notion of a robust linear subspace of Fk2, and bound RU sepa-
rately for robust and non-robust subspaces.

2. Using Möbius inversion, we restate Equation (3) in terms of ∣TU ∣ rather than
∣TU ∣.

2.1.1 Computing RU

It is revealing to consider our treatment of X alongside a proof of the Central
Limit Theorem (CLT) based on the moments method (e.g., [5]). In that proof, the
k-th moment of a sum of random variables of expectation zero is expressed as a
sum of expectations of degree-k monomials, just as in our Equation (2). These
monomials are then grouped according to the relations between their factors. In
the CLT proof, it is assumed that each tuple’s non-repeating factors are indepen-
dent, so monomials are grouped according to their degree sequence. Here, and
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specifically in Equation (3), we need a more refined analysis that accounts for the
linear matroid that is defined by the monomial’s factors.

In the proof the the CLT there holds E(M) = 0 for every monomial M that
contains a degree-1 factor Y . This follows, since E(Y ) = 0 and the rest of the
monomial is independent of Y . Something similar happens here too. If u does not
participate in any linear relation with the other factors in its monomial, then Yu
can play a role analogous to that of Y . This intuition is captured by the following
definition and proposition.

Definition 5. Let U ≤ Fk2 be a linear subspace. We say that its i-th coordinate is
sensitive if D[k]∖{i}(U) = D(U)− 1. We denote by Sen(U) the set of U ’s sensitive
coordinates. Also, if Sen(U) = ∅, we say that U is robust.

It is not hard to see that equivalently, robustness means that every 1-co-dimensional
coordinate-wise projection of U has the same dimension as U . Yet another de-
scription is that every system of linear equations that defines U must involve all
coordinates.

Proposition 6. For U ≤ Fk2 it holds that

1. If U is robust then RU = Θ (N−D(U)λ).

2. If U is not robust then RU = 0.

Proof. We use here the shorthand D = D(U) and DI = DI(U).
We start with the case of a robust U . Note that for every I ⊊ [k] there holds

DI ≥ D − k + ∣I ∣ + 1. For let us carry out the projection as k − ∣I ∣ steps of 1-co-
dimensional projections. At each step the dimension either stays or goes down by
one. But since U is robust, in the first step the dimension stays.

We claim that in the expression for RU in Equation (4), the term N−λD that
corresponds to I = [k] dominates the rest of the sum. Indeed, each of the other
2k − 1 summands is ±Θ(N−λ(D+1)). Consequently, RU = Θ(N−λD).

Let us consider next a non-robust U . Let j be a sensitive coordinate of U . If
I ⊆ [k] ∖ {j}, then DI∪{j} = DI + 1. Consequently:

RU = ∑
I⊆[k]∖{j}

((−1)k−∣I ∣N−λ(DI+k−∣I ∣) + (−1)k−∣I ∣−1N−λ(DI∪{j}+k−∣I ∣−1))

= ∑
I⊆[k]∖{j}

((−1)k−∣I ∣N−λ(DI+k−∣I ∣) + (−1)k−∣I ∣−1N−λ(DI+k−∣I ∣)) = 0
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2.1.2 From ∣TU ∣ to ∣TU ∣

In order for Equation (3) to be expressed in terms of ∣TU ∣ rather than ∣TU ∣ we can
appeal to the Möbius inversion formula for vector spaces over a finite field (e.g.,
[14], Ch 3.10).

E ((X −E(X))k) = ∑
U≤Fk2

RU ∑
V ≤U

(−1)D(U)−D(V ) ⋅ 2(D(U)−D(V )
2

)∣TV ∣

= ∑
V ≤Fk2

∣TV ∣ ∑
V ≤U≤Fk2

RU(−1)D(U)−D(V ) ⋅ 2(D(U)−D(V )
2

).

Grouping the U ’s by their dimension i = D(U), we express the above as

∑
V ≤Fk2

∣TV ∣(−1)D(V )
k

∑
i=D(V )

(−1)i ⋅ 2(i−D(V )
2

) ∑
V ≤U≤Fk2
D(U)=i

RU .

By Proposition 6, this sum can be further rewritten as

Θ
⎛
⎝ ∑V ≤Fk2

∣TV ∣(−1)D(V )
k

∑
i=D(V )

(−1)i ⋅ 2(i−D(V )
2

) ⋅N−λi ⋅Zi,V
⎞
⎠

where
Zi,V = ∣{U ∣ V ≤ U ≤ Fk2 ∧ D(U) = i ∧ U is robust}∣.

Note that if V is non-robust then every U ≥ V is also non-robust. Hence, the
outer sum terms corresponding to non-robust V ’s vanish. If V is robust, we claim
that the inner sum is dominated by the term i = D(V ) and that consequently

E ((X −E(X))k) = Θ

⎛
⎜⎜
⎝
∑
V ≤Fk2
V robust

∣TV ∣ ⋅N−λD(V )
⎞
⎟⎟
⎠
. (5)

Indeed, the number of i-dimensional subspaces containing V is given by the
Gaussian binomial coefficient

( k

i −D(V ))2

=
∏k
j=k+1−(i−D(V ))(2j − 1)
∏i−D(V )
j=1 (2j − 1)

≤ 4 ⋅
∏k
j=k+1−(i−D(V )) 2j

∏i−D(V )
j=1 2j

= 22+(i−D(V ))(k−i),

so the absolute value of the inner sum’s i-term is at most

2(i−D(V )
2

)−λni+2+(i−D(V ))(k−i) = 22+(i−D(V ))(k− i+D(V )+1
2

)−iλn ≤ 2−i(λn+1−k)+2.

In order to proceed we need to estimate the cardinalities ∣TV ∣. As we show in
Sections 3 and 4, at least for large enough k, Equation (5) is dominated by the
term V = Vk, the subspace of even-weight vectors.
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3 The intersection of Vk and the γn-th layer
In this section we give tight estimates for ∣T ∣ = ∣TVk,n,γ ∣. As usual we assume that
0 < γ < 1

2 and γn is an even integer. We need the following terminology:

Definition 7. Let Ak×n be a binary matrix.

• A row of A is said to satisfy the row condition if it weighs γn. If this holds
for every row of A, we say that A satisfies the row condition.

• The column condition for A is that every column be of even weight.

• Recall that TVk,n,γ is the set of k ×n binary matrices satisfying both the row
and the column conditions.

Our estimation of ∣T ∣ is based on an entropy argument (see [11] for a survey
on the use of entropy in enumeration). We define a certain probability measure
π = πk,n,γ on binary k × n matrices. We then show that the elements of T are
highly typical for the distribution π, in the following sense: For every A ∈ T , a
random matrix sampled from π is equal to A with probability exactly 2−h(π). In
particular, the restriction of π to T is uniform. Consequently,

∣T ∣ = PrA∼π(A ∈ T )
π(A) = Pr

A∼π
(A ∈ T ) ⋅ 2h(π).

We then compute reasonably tight bounds on PrA∼π(A ∈ T ), yielding an estima-
tion for ∣T ∣ in terms of h(π).

In this distribution π, columns are chosen independently according to a distri-
bution P = Pk,γ that is supported on Vk, and is invariant to permutations of the k
coordinates. Naturally, we choose P so that for every i:

Pr
u∼P

(ui = 1) = γ. (6)

Out of all distributions over Vk satisfying Equation (6), we seek one with maximal
entropy, thus making our P as general as possible, in a sense. The theory of
exponential families (E.g., [15] Chapter 3) provides a framework to describe and
study maximum entropy distributions. However, we do not explicitly rely on this
theory so that this paper remains self-contained.

Concretely, for some 1 > α > 0 and for every u ∈ Vk we define

P (u) = α
∥u∥

Z
(7)
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Here Z = Z(k,α) = ∑u∈Vk α
∥u∥. We claim that there is a unique 1 > α > 0 for

which Condition (6) holds. First, note that

Z = ∑
w is even

(k
w
)αw = (1 + α)k + (1 − α)k

2
.

Also,

Pr
u∼P

(ui = 1) = ∑
w is even

(k−1
w−1

)αw
Z

= α(1 + α)k−1 − (1 − α)k−1

(1 + α)k + (1 − α)k

so that Equation (6) becomes

α
(1 + α)k−1 − (1 − α)k−1

(1 + α)k + (1 − α)k = γ. (8)

Denote the left side of this expression by γ(k,α).

Proposition 8. Let k ≥ 2. In the range 0 < α < 1 the function γ(k,α) increases
from 0 to 1

2 .

Proof. In the following, the sums are over even i, j and t:

∂γ(k,α)
∂α

=
(∑i i(k−1

i−1
)αi−1) (∑j (kj)αj) − (∑i (k−1

i−1
)αi) (∑j j(kj)αj−1)

Z2
.

Denoting t = j + i, the above equals

∑tα
t∑i(2i − t)(k−1

i−1
)( k
t−i)

αZ2
= ∑tα

t∑i(2i − t)i(ki)(
k
t−i)

kαZ2
.

Grouping the i and t − i terms of the inner sum yields

∑tα
t∑i(2i − t)2(k

i
)( k
t−i)

2kαZ2
,

which is clearly positive.

It follows that the function γ = γ(k,α) has an inverse with respect to α, which
we denote by α = α(k, γ).

We summarize the new definitions pertaining to the distribution π.

Definition 9. Let k,n ∈ N.

11



• For 0 < α < 1, we define

Z(k,α) = ∑
u∈Vk

α∥u∥ = (1 + α)k + (1 − α)k
2

and

γ(α, k) = ∑
u∈Vk
u1=1

α∥u∥

Z(k,α) = α(1 + α)k−1 − (1 − α)k−1

(1 + α)k + (1 − α)k .

• If x ∈ (0, 1
2), then α(x, k) ∈ (0,1) is the unique solution for γ(α(x, k), k) =

x.

• Pk,γ is the distribution on Vk defined by

P (u) = α∥u∥

Z(k,α) ,

where α = α(γ, k).

• πk,n,γ is the distribution on binary k × n matrices in which the columns are
sampled independently from the distribution Pk,γ .

Proposition 10.
α(k, γ) = γ

1 − γ +O((1 − 2γ)k)

for every fixed γ ∈ (0, 1
2) and k →∞.

Proof. The proposition follows from the following inequality:

γ (k, γ0

1 − γ0

) ≤ γ0 ≤ γ (k, γ0 + ε
1 − γ0

)

where ε = 2γ0 ⋅ (1−2γ0)k−1
1−(1−2γ0)k−1 .

The lower bound is easily verified, since

γ (k, γ0

1 − γ0

) = γ0 ⋅
1 − (1 − 2γ0)k−1

1 + (1 − 2γ0)k
.

For the upper bound, our claim,

γ (k, γ0 + ε
1 − γ0

) = (γ0 + ε)
(1 + ε)k−1 − (1 − 2γ0 − ε)k−1

(1 + ε)k + (1 − 2γ0 − ε)k
≥ γ0,

is equivalent by simple algebraic manipulation to

(1 + ε)k−1ε ≥ (2γ0 + ε)(1 − 2γ0 − ε)k−1.

To see that this last inequality holds, note that the l.h.s. is ≥ ε, and the r.h.s. is
≤ (2γ0 + ε)(1 − 2γ0)k−1. Finally, the latter two expressions are identical due to the
definition of ε.
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We next compute the entropies of the distributions we have just defined:

h(π) = nh(P )

where

h(P ) = − ∑
u∈Vk

α∥u∥

Z
log

α∥u∥

Z
= logZ ⋅ ∑

u∈Vk

α∥u∥

Z
− ∑
u∈Vk

∥u∥α∥u∥

Z
logα

= logZ −Eu∼P (∥u∥) logα = logZ − k Pr
u∼P

(u1 = 1) logα = logZ − kγ logα.

To sum up:
h(π) = n(logZ − kγ logα).

Definition 11. For k ∈ N and γ ∈ (0, 1
2), we denote

F (k, γ) = h(π)
n

= logZ − kγ logα = log((1 + α)k + (1 − α)k) − kγ logα − 1.

We next evaluate π(A) for a matrix A ∈ T . Let u1, . . . , un be the columns of
A. Then

π(A) =
n

∏
i=0

P (ui) =
n

∏
i=1

α∥ui∥

Z
= α

∥A∥

Zn
= α

γkn

Zn
= 2−h(π).

Since π is constant on T , this yields an expression for ∣T ∣. Namely,

∣T ∣ = PrA∼π(A ∈ T )
π(A) = Pr

A∼π
(A ∈ T ) ⋅ 2h(π). (9)

This is complemented by the following Lemma.

Lemma 12. Fix γ ∈ (0, 1
2). Then, for every k ≥ 3 and n ∈ N, there holds

Pr
A∼πk,n,γ

(A ∈ T ) = n− k2 ⋅ 2±O(k).

We will prove Lemma 12 at the end of this section. Before doing so, we wish
to explore its implications. Together with Equation (9), Lemma 12 allows us to
conclude that

∣T ∣ = NF (k,γ)− k logn
2n

±O( k
n
) (10)

if k ≥ 3.
For k = 2, a matrix in ∣T ∣ is defined by its first row, so

∣T ∣ = ( n
γn

) = Nh(γ)− logn
2n

+O( 1
n
).

As we show later, F (k, γ) has a linear (in k) asymptote. Consequently, the ex-
ponents in Equation (10) are dominated by the F (k, γ) term. Thus, to understand
∣T ∣’s behavior we need to investigate F , which is what we do next.
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3.1 Basic properties of F (k, γ)
We start with several simple observations about F (k, γ).

Proposition 13. For γ ∈ (0, 1
2) there holds F (2, γ) = h(γ). Also, F (k, γ) ≤ k − 1

for all k ≥ 2.

Proof. For the first claim, note that γ(2, α) = α2

1+α2 so α(2, γ) = ( γ
1−γ)

1
2 . Hence

F (2, γ) = logZ − 2γ logα = log(1 + α2) − γ log(α2) = h(γ).

The second claim holds since F (k, γ) = h(P ) is the binary entropy of a dis-
tribution with support size 2k−1.

Next we develop an efficient method to calculate F to desirable accuracy. We
recall (e.g., [3], p. 26) the notion cross entropy of D,E, two discrete probability
distributions H(D,E) ∶= −∑iD(i) logE(i). Recall also that H(D,E) ≥ h(D)
with equality if and only if D = E. We apply this to P = Pk,γ , with α = α(k, γ)
and toQ, a distribution defined similarly according to Equation (7), but with some
x in place of α. Then

F (k, γ) = h(P ) ≤H(P,Q) = −∑
u

P (u) logQ(u) = −∑
u

P (u) log
x∥u∥

Z(k, x)
= logZ(k, x) −∑

u

P (u)∥u∥ ⋅ log(x) = logZ(k, x) −Eu∼P (∥u∥) ⋅ log(x)

= logZ(k, x) − γk log(x). (11)

Definition 14. We Denote the r.h.s. of Equation (11) by

g(k, γ, x) = logZ(k, x) − γk log(x).

It follows that for an integer k ≥ 2 and γ ∈ (0, 1
2),

F (k, γ) = min
x∈(0,1)

g(k, γ, x) = min
x∈(0,∞)

log ((1 + x)k + (1 − x)k)−γk log(x)−1. (12)

This minimum is attained at x = α(k, γ). Note that this expression allows us
to conveniently compute F to desirable accuracy (see Figure 2). Also, we take
Equation (12) as a definition for F (k, γ) for all real positive k.

Proposition 15. For an integer k > 1 and 0 < γ < 1
2 , it holds that

kh(γ) − 1 ≤ F (k, γ) ≤ kh(γ) + log(1 + (1 − 2γ)k) − 1,

so,
F (k, γ) = kh(γ) − 1 +O((1 − 2γ)k)

(see Figure 3).
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Figure 2: The function g(3, 1
5 , x) and

its minimum (see Equation (12)).
Figure 3: F (k, 1

5) − (k ⋅ h(1
5) − 1).

(See Proposition 15).

Proof. The upper bound follows from Equation (12) which yields

F (k, γ) ≤ g (k, γ, γ

1 − γ) = kh(γ) + log(1 + (1 − 2γ)k) − 1.

We turn to proving the lower bound. Clearly,

g(k, γ, x) ≥ log((1 + x)k) − γk log(x) − 1.

The r.h.s. expression attains its minimum at x = γ
1−γ and this minimum equals

kh(γ) − 1. Equation (12) implies that this is a lower bound on F (k, γ).

3.2 Proof of Lemma 12
We turn to prove Lemma 12. It will be useful to view a vector u ∼ P as being
generated in steps, with its i-th coordinate ui determined in the i-th step. The
following proposition describes the quantities involved in this process.

Proposition 16. For k ≥ 2 and 0 < γ < 1
2 , let u ∈ Fk2 be a random vector sampled

from P . For 0 ≤ i ≤ k, let wi denote the weight of the prefix vector (u1, . . . , ui).
Then:

1. The distribution of the bit ui conditioned on the prefix (u1, . . . , ui−1) de-
pends only on the parity of wi−1.

2.

Pr(ui = 1 ∣ wi−1 is even) = α ⋅ (1 + α)k−i − (1 − α)k−i
(1 + α)k−i+1 + (1 − α)k−i+1

(13)

and

Pr(ui = 1 ∣ wi−1 is odd) = α ⋅ (1 + α)k−i + (1 − α)k−i
(1 + α)k−i+1 − (1 − α)k−i+1

. (14)
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Proof. Fix a prefix (u1, . . . , ui−1) of weight wi−1. We sum over x = ∥u∥ −wi and
y = ∥u∥ −wi−1.

Pr (ui = 1 ∣ u1, . . . , ui−1) =
Pr (ui = 1 ∩ u1, . . . , ui−1)

Pr (u1, . . . , ui−1)
= ∑x≢wi−1 mod 2 (k−ix )αx+wi−1+1

Z

∑y≡wi−1 mod 2 (k−i+1
y

)αy+wi−1
Z

= α ∑x≢wi−1 mod 2(k−ix )αx

∑y≡wi−1 mod 2(k−i+1
y

)αy
,

yielding the claim.

We denote the r.h.s. of Equations (13) and (14) by p0→1,i = p0→1,i,k and p1→0,i =
p1→0,i,k, respectively. Also, for 0 ≤ i ≤ k, let

ei = ei,k = Pr
u∼P

(wi is odd).

Here are some useful facts about these terms. Equation (6) yields

γ = Pr
u∼P

(ui = 1) = p0→1,i ⋅ Pr
u∼P

(wi−1 is even) + p1→0,i ⋅ Pr
u∼P

(wi−1 is odd)

= p1→0,iei−1 + p0→1,i(1 − ei−1). (15)

By similar considerations, we have

ei = ei−1 ⋅ (1 − p1→0,i) + (1 − ei−1) ⋅ p0→1,i.

By combining these equations we find

p0→1,i ⋅ (1 − ei−1) =
γ + (ei − ei−1)

2
(16)

and

p1→0,i ⋅ ei−1 =
γ − (ei − ei−1)

2
. (17)

We need some further technical propositions.

Proposition 17. For every γ ∈ (0, 1
2) there exists some c = c(γ) > 0 such that if

k ≥ 3 then
ei,k , p0→1,i,k , p1→0,i,k ∈ [c,1 − c]

for every 1 ≤ i ≤ k − 1.

Proof. It is not hard to see that both p0→1,i,k and p1→0,i,k are monotone in i. There-
fore it suffices to check what happens for i = 1 and for i = k − 1. For i = k − 1 the
two terms equal α2

1+α2 and 1
2 respectively. Since α is bounded from 0 by Proposi-

tion 10, this yields the claim.
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For i = 1 we note that p0→1,1,k = γ.
It remains to consider p1→0,1,k. Denote x = 1−α

1+α and note that x is bounded away
from 1. This yields the bounds:

p1→0,1,k =
α

1 + α ⋅ 1 + xk−1

1 − xk ≥ α

1 + α ⋅ 1 − x
1 + x

and

1 − p1→0,1,k =
1

1 + α ⋅ 1 − xk−1

1 − xk ≥ 1

1 + α ⋅ 1 − x
1 + x

We turn to deal with ei,k. Denote a = 1+α, b = 1−α and r = k− i−1. A bound
on ei follows from Equations (15) and (8) since

ei =
γ − p0→t,i+1

p1→0,i+1 − p0→1,i+1

=
ak−1−bk−1
ak+bk − ar−1−br−1

ar+br
ar−1+br−1
ar−br − ar−1−br−1

ar+br
= (ar − br)(ak−r − bk−r)

2(ak + bk)

= (1 − xr)(1 − xk−r)
2(1 + xk) ≥ (1 − x)2

2(1 + x)

and likewise,

1 − ei =
(1 + xr)(1 + xk−r)

2(1 + xk) ≥ (1 − x)2

2(1 + x) .

The following simple and technical proposition will come in handy in several
situations below. It speaks about an experiment where n balls fall randomly into
r bins. An outcome of such an experiment is an r-tuple of nonnegative integers
a1, . . . , ar with ∑ai = n, where ai is the number of balls at bin i at the end of the
experiment.

Proposition 18. Let r ≥ 2 be an integer 1
r ≥ c > 0, and p1, . . . , pr ≥ c with∑pi = 1.

We drop randomly and independently n balls into r bins with probability pi of
falling into bin i. The probability of every possible outcome is at most O (n− r−12 ),
where c, r are fixed and n grows.

Proof. It is well known (e.g., [4] p. 171) that the most likely outcome of the above
process (a1, . . . , ar), satisfies npi − 1 < ai for every i and its probability is

( n

a1, . . . , ar
)

r

∏
i=1

paii ≤ ( n

a1, . . . , ar
)

r

∏
i=1

(ai + 1

n
)
ai

= ( n

a1, . . . , ar
)

r

∏
i=1

(ai
n
)
ai

⋅ (1 + 1

ai
)
ai

≤ er ⋅ ( n

a1, . . . , ar
)

r

∏
i=1

(ai
n
)
ai

.
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By Stirling’s apprximation for the multinomial term, the above is at most

O (
√
n

∏r
i=1

√
ai

) ≤ O (
√
n

∏r
i=1

√
npi − 1

) ≤ O
⎛
⎝

√
n√

(cn − 1)r
⎞
⎠
≤ O (n− r−12 )

Proposition 19. Let a, c > 0 be real and n ∈ N . Consider a random variable
X ∼ B(n, p) where c ≤ p ≤ 1 − c. Let y be an integer such that ∣y − pn∣ ≤ a√n.
Then Pr(X = y) ≥ Ω (n− 1

2) for fixed a, c and n→∞.

Proof. Let q = 1 − p, and let us denote y = pn + x√n, where ∣x∣ ≤ a.

Pr(X = y) = (n
y
)pyqn−y = (n

y
)(y

n
)
y

(n − y
n

)
n−y

(1 − x
√
n

y
)
y

(1 + x
√
n

n − y)
n−y

Expand into Taylor Series, using the fact that ∣x∣ is bounded and y = Θ(n) to
derive the following inequalities:

(1 − x
√
n

y
)
y

≥ Ω (e−x
√
n) and (1 + x

√
n

n − y)
n−y

≥ Ω (ex
√
n) .

The proposition now follows from Stirling’s approximation, as

(n
y
)(y

n
)
y

(n − y
n

)
n−y

≥ Ω(n− 1
2 ).

We are now ready to prove the main lemma of this section.

Lemma 12. Fix γ ∈ (0, 1
2). Then, for every k ≥ 3 and n ∈ N, there holds

Pr
A∼πk,n,γ

(A ∈ T ) = n− k2 ⋅ 2±O(k).

Proof. Every binary k × n matrix A that is sampled from the distribution π satis-
fies the column condition, and we estimate the probability that the row condition
holds.

By Proposition 17, there is some c = c(γ) > 0 so that p0→1,i , p1→0,i , ei are in
[c,1 − c] for every 1 ≤ i ≤ k − 1.

We recall that A’s columns are sampled independently and view A as being
sampled row by row. Let bi be the vectorA1+. . .+Ai−1 mod 2. We want to observe
how the ordered pairs (∥bi∥, ∥Ai∥) evolve as i goes from 1 to k. By Proposition
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16, this evolution depends probabilistically on ∥bi−1∥ and only on it. Namely, let
si be the number of coordinates j where bi−1

j = 0 and Ai,j = 1. Likewise ti counts
the coordinates j for which bi−1

j = Ai,j = 1. It follows that ∥Ai∥ = si + ti, and
∥bi∥ = ∥bi−1∥ + si − ti, where si ∼ B(n − ∥bi−1∥, p0→1,i) and ti ∼ B(∥bi−1∥, p1→0,i)
are independent binomial random variables.

Clearly A ∈ T iff ⋀ki=1Di, where Di is the event that ∥Ai∥ = γn.
We seek next an upper bound on Pr(A ∈ T ).

Pr(A ∈ T ) = Pr(
k

⋀
i=1

Di) =
k

∏
i=1

Pr(Di ∣
i−1

⋀
j=1

Dj)

≤ (
k−3

∏
i=1

max
w

Pr(Di ∣ ∥bi−1∥ = w)) ⋅max
w

Pr(Dk−2 ∧Dk−1 ∧Dk ∣ ∥bk−3∥ = w).

The inequality follows, since conditioned on ∥bi−1∥, the event Di is independent
of D1, . . . ,Di−1. We proceed to bound these terms. For 1 ≤ i ≤ k − 3,

Pr(Di ∣ ∥bi−1∥ = w) = Pr(si + ti = γn ∣ ∥bi−1∥ = w).

If w ≥ n
2 , we condition on si and bound this expression from above by

max
x

Pr(ti = γn − x ∣ ∥bi−1∥ = w ∧ si = x),

namely, the probability that a B(w,p1→0,i) variable takes a certain value. By
Proposition 19 this is at mostO(w− 1

2 ) ≤ O(n− 1
2 ). When w < n

2 the same argument
applies with reversed roles for ti and si.

The last three rows of A require a separate treatment, since e.g., the last row is
completely determined by the first k − 1 rows. Let G be the matrix comprised of
A’s last three rows. Denote ε ∶= bk−3, and let w ∶= ∥ε∥. Again it suffices to consider
the case w ≥ n

2 , and similarly handle the complementary situation. If εj = 1, the j-
th column inGmust be one of the vectors (1,0,0)⊺, (0,1,0)⊺, (0,0,1)⊺, (1,1,1)⊺.
Let a1, a2, a3, a4 denote the number of occurrences of each of these vectors respec-
tively. There are n−w indices j with εj = 0, and a corresponding column ofGmust
be one of the four even-weight vectors of length 3. We condition on the entries of
these columns. Under this conditioning ai+a4 is determined by the row condition
applied to row k − 3 + i, and clearly also ∑4

1 ai = w. This system of four linearly
independent linear equations has at most one solution in nonnegative integers. To
estimate how likely it is that this unique solution is reached, we view it as a w-
balls and 4-bins experiment. The probability of each bin is a product of two terms
from among p0→1,i ,1 − p0→1,i , p1→0,i ,1 − p1→0,i where i ∈ {k − 2, k − 1}. Again,
these probabilities are bounded away from 0. By Proposition 18 the probability of
success is at most O(n− 3

2 ). Consequently, Pr(A ∈ T ) ≤ n− k2 ⋅ 2O(k).
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To prove a lower bound on Pr(A ∈ T ), again we consider the rows one at a
time. As before, it is easier to bound the probability of Di by first conditioning
on ∥bi−1∥. However, at present more care is needed, since letting the ∥bi∥’s take
arbitrary values is too crude. Firstly, as long as the row conditions hold, necessar-
ily ∥bi∥ is even. In addition, we monitor the deviation of ∥bi∥ from its expectation,
which is n ⋅ ei. Accordingly, we define the following sets:

For 1 ≤ i ≤ k − 2, let Si ∶= {0 ≤ w ≤ n ∣ ∣w − ei ⋅ n∣ ≤
√
n ∧ w is even}.

The intuition is that the event ∥bi∥ ∈ Si makes it likely that Di+1 holds, in which
case it is also likely that ∥bi+1∥ ∈ Si+1. This chain of probabilistic implication
yields our claim. To start, clearly ∥b0∥ ∈ S0 ∶= {0}.

Now,

Pr(A ∈ T ) = Pr(
k

⋀
i=1

Di) ≥ Pr(
k

⋀
i=1

Di ∧
k−2

⋀
i=1

∥bi∥ ∈ Si)

= (
k−2

∏
i=1

Pr((Di ∧ ∥bi∥ ∈ Si) ∣
i−1

⋀
j=1

(Dj ∧ ∥bj∥ ∈ Sj))) ⋅Pr((Dk−1 ∧Dk) ∣
k−2

⋀
j=1

(Dj ∧ ∥bj∥ ∈ Sj))

≥ (
k−2

∏
i=1

min
w∈Si−1

Pr((Di ∧ ∥bi∥ ∈ Si) ∣ ∥bi−1∥ = w)) ⋅ min
w∈Sk−2

Pr((Dk−1 ∧Dk) ∣ ∥bk−2∥ = w).

It is in estimating these last terms that the assumption ∥bi∥ ∈ Si becomes useful.
We proceed to bound these terms, and claim the following:

1. minw∈Si−1 Pr((Di∧∥bi∥ ∈ Si) ∣ ∥bi−1∥ = w) ≥ Ω( 1√
n
) for every 1 ≤ i ≤ k−2.

2. minw∈Sk−2 Pr((Dk−1 ∩Dk) ∣ ∥bk−2∥ = w) ≥ Ω( 1
n).

It is clear that the above inequalities imply that Pr(A ∈ T ) ≥ n k
2 ⋅ 2−O(k), which

proves the lemma.
Fix some 1 ≤ i ≤ k − 2 and let w ∈ Si−1, and assume that Di holds. Then

∥bi∥ − ∥bi−1∥ ≡ si − ti ≡ si + ti ≡ γn ≡ 0 mod 2,

so that ∥bi∥ satisfies Si’s parity condition. Therefore

Pr(Di ∧ ∥bi∥ ∈ Si ∣ ∥bi−1∥ = w) = Pr(Di ∧ ∣∥bi∥ −E(∥bi∥)∣ ≤
√
n ∣ ∥bi−1∥ = w)

Namely

Pr(Di ∧ ∥bi∥ ∈ Si ∣ ∥bi−1∥ = w)
= Pr(si + ti = γn ∧ ∣si − ti − ei ⋅ n +w∣ ≤

√
n ∣ ∥bi−1∥ = w). (18)
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We want to express this last condition in terms of x = si − ti, where clearly si =
γn+x

2 and ti = γn−x
2 . Equation (18) means that ei ⋅n−w −√

n ≤ x ≤ ei ⋅n−w +√
n

and x ≡ γn mod 2. Summing over all such x’s we have

Pr(Di ∧ ∥bi∥ ∈ Si ∣ ∥bi−1∥ = w) =∑
x

Pr(si =
γn + x

2
) ⋅Pr(ti =

γn − x
2

). (19)

Here si ∼ B(n − w,p0→1,i) and ti ∼ B(w,p1→0,i). We use Proposition 19 to give
lower bounds on a general term in Equation (19). To this end we show that γn+x

2

and γn−x
2 are close, respectively, to the means of si and ti.

Since w ∈ Si−1, we can write w = ei−1 ⋅n+ y where ∣y∣ ≤ √
n. The bounds on x

allow us to write x = (ei − ei−1)n − y + z for some ∣z∣ ≤ √
n. By Equation (16),

∣E(si) −
γn + x

2
∣ = ∣p0→1,i ⋅ (n −w) − γn + x

2
∣

= ∣p0→1,i ⋅ ((1 − ei−1)n − y) −
(γ + ei − ei−1)n − y + z

2
∣

= ∣γ + (ei − ei−1)
2

n − p0→1,i ⋅ y −
(γ + ei − ei−1)n − y + z

2
∣

= ∣y − z
2

− p0→1,i ⋅ y∣ ≤
√
n.

By Proposition 19, Pr(si = γn+x
2 ) ≥ Ω(n− 1

2 ). A similar proof, using Equation
(17), shows that Pr(ti = γn−x

2 ≥ Ω(n− 1
2 )). Thus, each of the Ω(√n), summands

in Equation (19) is at least Ω(n−1), so that

Pr(Di ∧ ∥bi∥ ∈ Si ∣ ∥bi−1∥ = w) ≥ Ω(n− 1
2 ).

We turn to proving a lower bound on minw∈Sk−2 Pr((Dk−1∧Dk) ∣ ∥bk−2∥ = w).
The column condition implies that Ak = bk−1. Thus, for w ∈ Sk−2,

Pr((Dk−1 ∧Dk) ∣ ∥bk−2∥ = w) = Pr(Dk−1 ∧ ∥bk−1∥ = γn ∣ ∥bk−1∥ = w)
= Pr(sk−1 + tk−1 = γn ∧ sk−1 − tk−1 +w = γn)

= Pr(sk−1 = γn −
w

2
) ⋅Pr(tk−1 =

w

2
) ,

where sk−1 ∼ B(n − w,p0→1,k−1) and tk−1 ∼ B(w,p1→0,k−1). Again, by applying
Proposition 19 to sk−1 and tk−1, we conclude that the above is at least Ω(n−1).

4 Bounding ∣TV ∣ in general
In this section we fix a robust subspace V ≤ Fk2 and bound its contribution to
Equation (5). Let us sample, uniformly at random a matrix Ak×n in TV . Since TV
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is invariant under column permutations, the columns of A are equally distributed.
We denote this distribution on Fk2 by QV , and note that

log ∣TV ∣ = h(A) ≤ n ⋅ h(QV ).

To bound h(QV ) we employ the following strategy. Express V as the kernel
of a (k − D(V )) × k binary matrix B in reduced row echelon form. Suppose
that Bi,j = 1. If Bi′,j = 0 for every i′ < i we say that the coordinate j is i-new.
Otherwise, j is said to be i-old. We denote the set of i-new coordinates by ∆i. We
have assumed that V is robust, so that ⋃k−Di=1 ∆i = [k], since j /∈ ⋃k−Di=1 ∆i means
that coordinate j is sensitive. Also B is in reduced row echelon form, so all ∆i

are nonempty.

Example. The following B3×7 corresponds to k = 7 and D(V ) = 4. In bold - the
i-new entries in row i for i = 1,2,3.

⎡⎢⎢⎢⎢⎢⎣

1 0 0 1 1 0 0
0 1 0 1 0 1 1
0 0 1 1 0 1 0

⎤⎥⎥⎥⎥⎥⎦
A vector v sampled from QV satisfies Bv = 0 and the expected value of each

of its coordinates is E(vi) = γ. Consider v as generated in stages, with the coor-
dinates in ∆i determined in the i-th stage. We express v’s entropy in this view:

h(QV ) = h(v) = h(v∆1) +
k−D(V )
∑
i=2

h(v∆i
∣ v⋃i−1

i′=1 ∆i′
). (20)

We begin with the first term. Since ∆1 is the support of B’s first row and
since Bv = 0, it follows that v∆1 has even weight. As we show in Lemma 23, the
distribution P from Section 3 has the largest possible entropy for a distribution
that is supported on even weight vectors with expectation γ per coordinate. Hence,

h(v∆1) ≤ h(P∣∆1∣,γ) = F (∣∆1∣, γ)

It takes more work to bound the other terms in Equation (20). Let 2 ≤ i ≤
k − D(V ). Before the i-th stage, v’s i-old coordinates are already determined.
Since the inner product ⟨Bi, v⟩ = 0, the i-new coordinates of v have the same
parity as its i-old coordinates. Hence ∥v∆i

∥’s parity is determined before this
stage. Let δi = Pr(∥v∆i

∥ is odd). Since conditioning reduces entropy

h(v∆i
∣ v⋃i−1

i′=1 ∆i′
) ≤ h(v∆i

∣ parity of ∥v∆i
∥) = h(v∆i

) − h(δi).

We have already mentioned that Lemma 23 characterizes the max-entropy
distribution on even-weight vectors with given per-coordinate expectation. We
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actually do more, and find a maximum entropy distribution P = Pm,γ,δ on Fm2
satisfying

Pr
u∼P

(ui = 1) = γ (21)

for every 1 ≤ i ≤m and
Pr
u∼P

(∥u∥ is odd) = δ. (22)

This distribution P = Pm,γ,δ extends something we did before, in that Pm,γ,0
coincides with Pm,γ from Section 3

Since v∣∆i∣ also satisfies these conditions, this yields the bound h(v∆i
∣ v⋃i−1

i′=1 ∆i′
) ≤

F (∣∆i∣, γ, δi), where:

Definition 20. For m ∈ N, γ ∈ (0, 1
2) and δ ∈ [0,1] we define

F (m,γ, δ) = h(Pm,γ,δ) − h(δ).

This generalizes Definition 11 since F (m,γ) = F (m,γ,0).

We conclude that

log ∣TV ∣ ≤ n ⋅ h(QV ) ≤ n ⋅
⎛
⎝
F (∣∆1∣, γ) +

k−D(V )
∑
i=2

F (∣∆i∣, γ, δi)
⎞
⎠
. (23)

We determine next the distribution Pm,γ,δ and then return to the analysis of Equa-
tion (23).

4.1 The function F (m,γ, δ)
As explained above we now find the max-entropy distribution satisfying Equa-
tions (21) and (22). The following proposition gives a necessary condition for the
existence of such a distribution.

Proposition 21. If there is a distribution satisfying conditions (21) and (22), then
γ ≥ γmin, where γmin = δ

m .

Proof. Let P be such a distribution and let u ∼ P . By Equation (21), E(∥u∥) =
γm. The lower bound on γ follows since each odd vector weighs at least 1 and
thus

δ = Pr(∥u∥ is odd) ≤ E(∥u∥).

Remark. As we show soon, the condition in Proposition 21 is also sufficient.
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Let m ≥ 2 and assume that m,γ, δ satisfy the strict inequalities 0 < δ < 1 and
γmin < γ. We define the distribution P = Pm,γ,δ on Fm2 as follows:

P (u) =
⎧⎪⎪⎨⎪⎪⎩

α∥u∥

Z if ∥u∥ is even
β⋅α∥u∥
Z if ∥u∥ is odd

(24)

where

Z = ∑
u∈Vm

α∥u∥ + β ∑
u∈Dm

α∥u∥ = (1 + β)(1 + α)m + (1 − β)(1 − α)m
2

.

As we show there exist unique positive reals α, β for which Equations (21) and
(22) hold. Note that

Pr
u∼P

(∥u∥ is odd) = β ((1 + α)m − (1 − α)m)
2Z

,

so Equation (22) is equivalent to

β = δ

1 − δ ⋅
(1 + α)m + (1 − α)m
(1 + α)m − (1 − α)m ,

showing in particular that α determines the value of β. Substituting the above into
Equation (21) gives

γ = Pr(ui = 1) = α(1 + β)(1 + α)m−1 + (1 − β)(1 − α)m−1

2Z

= α(1 − δ)(1 + α)
m−1 − (1 − α)m−1

(1 + α)m + (1 − α)m + αδ (1 + α)
m−1 + (1 − α)m−1

(1 + α)m − (1 − α)m .

Denote the right side of this expression by γ(m,α, δ). The following generalizes
Proposition 8.

Proposition 22. Let m ≥ 2. In the range 1 > α > 0 the function γ(m,α, δ)
increases from γmin to 1

2 .

Proof. Clearly, it is enough to prove the proposition for δ = 0,1. The case δ = 0
was dealt with in Proposition 8. The same argument works for δ = 1 as well, since

γ = α(1 + α)m−1 + (1 − α)m−1

(1 + α)m − (1 − α)m = ∑i odd (m−1
i−1

)αi

∑i odd (mi )αi
.
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Hence, γ(m,α, δ) has an inverse with respect to α, which we denote α(m,γ, δ).
The uniqueness of α and β follows.

We can also define P at the extreme values δ ∈ {0,1} and γ = γmin by taking
limits in Equation (24). The limit α → 0 corresponds to γ = γmin and β → 0 resp.
β →∞ to δ = 0 or δ =∞. We still require, however, that γ > 0. E.g., if γ = γmin,
P yields each weight 1 vector with probability δ

m and the weight 0 vector with
probability 1 − δ. Also, as already mentioned Pm,γ,0 coincides with Pm,γ from
Section 3.

We next compute P ’s entropy:

h(P ) = − ∑
u∈Vm

α∥u∥

Z
log

α∥u∥

Z
− ∑
u∈Dm

βα∥u∥

Z
log

βα∥u∥

Z

= logZ − δ logβ − γm logα

= h(δ) + (1 − δ) log((1 + α)m + (1 − α)m) + δ log((1 + α)m − (1 − α)m)
− γm logα − 1 (25)

and recall that F (m,γ, δ) = h(P ) − h(δ). Consistency for the boundary cases
δ ∈ {0,1} or γ = γmin follows by continuity and passage to the limit. In particular,
F (m,γ,0) = F (m,γ). Also, let F (m,γ, δ) = −∞ for γ < γmin.

For γmin < γ < 1
2 we also have the following generalization of Equation (12),

which follows from the same argument:

F (m,γ, δ) = min
x>0

g(m,γ, x, δ) (26)

where

g(m,γ, x, δ) = (1−δ) log ((1 + x)m + (1 − x)m)+δ log ((1 + x)m − (1 − x)m)−γm logx−1

with the minimum attained at x = α.
We are now ready to show that P is the relevant max-entropy distribution.

Lemma 23. Fix m ≥ 2, 0 ≤ δ ≤ 1 and γmin ≤ γ < 1
2 . The largest possible entropy

of a Fm2 -distribution satisfying Equations (21) and (22), is h(Pm,γ,δ).

Proof. LetR denote the polytope of Fm2 -distributions that satisfy Conditions (21)
and (22). Note that if γ = γmin this polytope is reduced to a point, and the claim
is trivial. We henceforth assume that γmin < γ, and seek a distribution Q ∈ R
of maximum entropy. This distribution is unique, since the entropy function is
strictly concave. Also, the value ofQ(u) depends only on ∥u∥ for all u ∈ Fm2 , since
the optimum is unique and this maximization problem is invariant to permutation
of coordinates in Fm2 .
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Let ai = Q(u) where ∥u∥ = i. We claim that

ai−2 ⋅ ai+2 = a2
i (27)

for every 2 ≤ i ≤ m − 2. Indeed, let x, y, y′, z ∈ Fm2 be the indicator vectors
for, respectively, the sets {3, . . . , i}, {1, . . . , i}, {3, . . . , i + 2} and {1, . . . , i + 2}.
Consider the distribution Q + θ where

θ(u) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ε for u = y, y′
−ε for u = x, z
0 otherwise.

Note that, if ai−2, ai, ai+2 are positive, Q + θ ∈ R for ∣ε∣ small enough. Hence, by
the optimality of Q,

0 = ∇θh(Q) = log
ai−2ai+2

a2
i

,

yielding Equation (27).
We also want to rule out the possibility that exactly one side of Equation (27)

vanishes. However, even if exactly one side vanishes, it is possible to increase
h(Q) by moving in the direction of either θ or −θ.

A similar argument yields

ai ⋅ ai+3 = ai+1 ⋅ ai+2 (28)

for 0 ≤ i ≤m − 3. Here, we take

θ(u) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ε for u = x,w
−ε for u = y, z
0 otherwise.

where x, y, z,w are the respective indicator vectors of {3, . . . , i+2}, {3, . . . , i+3},
{1, . . . , i + 2} and {1, . . . , i + 3}.

Equation (27) and (28) imply that one of the following must hold:

1. a0, a2, . . . , a2⌊m
2
⌋ and a1, a3, . . . , a2⌊m−1

2
⌋+1 are geometric sequences with the

same positive quotient.

2. a0 = (1 − δ), a1 = δ and ai = 0 for every i ≥ 2.

3. am−1 and am are δ and 1 − δ according to m’s parity, and ai = 0 for all
i ≤m − 2.

Case 2 corresponds to γ = γmin and case 3 is impossible since γ < 1
2 , so we

are left with case 1. If 0 < δ < 1, note that Q must satisfy Equation (24) for some
positive α and β. By the uniqueness of these parameters, it follows that Q = P .

If δ = 0,1 then ai vanishes for odd resp. even i’s. Thus, Q satisfies Equation
(24) with β going to 0 or ∞.
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Figure 4: Illustration for Lemma 24 - F (5, 1
5 , δ)

4.2 Properties of F (m,γ, δ)
Our analysis of Equation (23) requires that we understand F ’s behavior in certain
regimes.

Lemma 24. If m > 1 is an integer, and 0 < γ < 1
2 , then F (m,γ, δ) is a non-

increasing function of δ (see Figure 4).

Proof. If δ > γm, then γ < γmin and F (m,γ, δ) = −∞. It suffices, therefore, to
consider the range 0 ≤ δ < γm.

Let 0 ≤ δ < δ′ < γm and let α = α(m,γ, δ). By Equations (26) and (25):

F (m,γ, δ′) − F (m,γ, δ) ≤ g(m,α, δ′) − F (m,γ, δ)
= (δ′ − δ) (log ((1 + α)m − (1 − α)m) − log ((1 + α)m + (1 − α)m)) ≤ 0

We now return to the case δ = 0, and discuss the convexity of F in this regime.

Lemma 25. For any 0 < γ < 1
2 the function F (m,γ) is strictly convex in m for

m ≥ 2. (See Figure 3).

Proof. Since γ is fixed throughout the proof, we can and will denote F (m) =
F (m,γ), g(m,x) = g(m,γ, x). Also, α = α(m,γ) is the value of x which mini-
mizes g(m,γ, x). This allows us to extend the definition of α to real m. Note that
Equation (8) still holds in this extended setting, and that 1 > α > 0. In addition,
a = 1 + α and b = 1 − α.

Our goal is to show that for m ≥ 2 there holds

∂2F

∂m2
(m,α) ≥ 0.
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It follows from Equation (12) that

∂g

∂x
(m,α) = 0. (29)

Taking the derivative w.r.t. m yields

∂2g

∂x∂m
(m,α) + ∂

2g

∂x2
(m,α) dα

dm
= 0. (30)

Using Equation (29) we obtain:

∂F

∂m
= ∂g

∂m
(m,α) + ∂g

∂x
(m,α) dα

dm
= ∂g

∂m
(m,α).

Next,

∂2F

∂m2
= ∂2g

∂m2
(m,α) + ∂2g

∂m∂x
(m,α) dα

dm
= ∂2g

∂m2
(m,α) −

( ∂2g
∂m∂x(m,α))

2

∂2g
∂x2 (m,α)

where the second equality follows from Equation (30). The partial derivatives
commute since g is smooth. We claim that ∂2g

∂x2 > 0. To this end we refer to the
definition of g in Equation (11) and take its derivative twice, then use the defining
relation between γ and α (Equation (8)) to see that the sign of this derivative is
the same as that of

(m − 1)(am−2 + bm−2)(am + bm) −m(am−1 − bm−1)2 + (am + bm)(am−1 − bm−1)
α

> (m − 1)(am−2 + bm−2)(am + bm) −m(am−1 − bm−1)2 + (am + bm)(am−1 − bm−1)
> 0.

Thus, to prove the lemma it suffices to show that

∂2g

∂m2
(m,α)∂

2g

∂x2
(m,α) > ( ∂2g

∂m∂x
(m,α))

2

when m ≥ 2.
We wish to show that rs > t2, where

r = ln 2(am + bm)2 ∂
2g

∂m2
(m,α)

s = ln 2(am + bm)2 ∂
2g

∂x2
(m,α)

t = ln 2(am + bm)2 ∂2g

∂m∂x
(m,α)
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We start with the first order derivatives

∂g

∂m
(m,α) = a

m log a + bm log b

am + bm − γ logx

and
∂g

∂x
(m,α) = m(am−1 − bm−1)

am + bm − mγ
x
.

Expand the second order derivatives with γ replaced according to Equation (8)
to get

r =m(m − 1)(am−2 + bm−2)(am + bm) −m2(am−1 − bm−1)2 + mγ(a
m + bm)2

α2

=m((m − 1)(am−2 + bm−2)(am + bm) + (am−1 − bm−1)(am + bm)
α

−m(am−1 − bm−1)2)

>m ((m − 1)(am−2 + bm−2)(am + bm) + (am+2 + bm+2)(am + bm) −m(am−1 − bm−1)2)
= 4m2am−2bm−2.

The inequality follows from am−1 − bm−1−α(am−2+bm−2) = a+b
2 (am−2−bm−2) > 0.

Also

s = (am + bm)(am(log a)2 + bm(log b)2) − (am log a + bm log b)2

= ambm(log a − log b)2.

and

t = ((m log a + 1)am−1 − (m log b + 1)bm−1) (am + bm)

−m(am−1 − bm−1)(am log a + bm log b) − γ(a
m + bm)2

α
= 2mam−1bm−1(log a − log b).

We therefore conclude that
rs > t2

as claimed.

The following corollary follows immediately from Lemma 25.

Corollary 26. For every 0 < γ < 1
2 and every 2 ≤m ≤m′, the holds

F (m′, γ) + F (m,γ) < F (m′ + 1, γ) + F (m − 1, γ).

We also need the following result in order to bound ∣TV ∣.
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Proposition 27. Let 0 < γ < 1
2 , 0 ≤ δ ≤ 1 and m ≥ 2. Then,

F (1, γ, δ) + F (m + 1, γ) < F (2, γ) + F (m,γ).

Proof. Recall that F (1, γ, δ) ≤ 0 and F (2, γ) = h(γ). Thus, the claim follows
from

F (m + 1, γ) < F (m,γ) + h(γ).
This holds since F is strictly convex in m (Lemma 25) and since the limit slope
of F is h(γ) (Proposition 15).

5 Derivation of the main theorems
We can now return to the beginning of Section 4 and complete our proof. Equation
(5) can be restated as

E ((X −E(X))k) = Θ(
k−1

∑
D=0

GD) (31)

where
GD = N−λD ∑

V ≤Fk2
D(V )=D
V robust

∣TV ∣. (32)

We need to determine which term dominates Equation (31). We use the crude
upper bound of 2min(D,k−D)⋅k on the number of D-dimensional linear subspaces V
of Fk2. This bound follows by considering the smaller of the two: a basis for V or
for its orthogonal complement.

We proceed to bound ∣TV ∣ for a robustD-dimensional subspace V ≤ Fk2. When
D < k

2 , the trivial bound log ∣TV ∣ ≤ n ⋅ h(QV ) ≤ nDh(γ) suffices. Indeed, a vector
sampled from QV is determined by D of its bits, each of which has entropy h(γ).
It follows that

GD ≤ ND(h(γ)−λ)+ kD
n (33)

for D < k
2 .

To deal with the range D ≥ k
2 we return to the notations of Equation (23),

log(∣TV ∣)
n

≤ F (m1, γ) +
k−D
∑
i=2

F (mi, γ, δi) (34)

where mi = ∣∆i∣ and ∑k−D
i=1 mi = k.
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Lemma 24 yields F (mi, γ, δi) ≤ F (mi, γ). By repeatedly applying Corollary
26 and Proposition 27 we get the upper bound

log(∣TV ∣)
n

≤ F (2(D+1)−k, γ)+(k−D−1)F (2) = F (2(D+1)−k, γ)+(k−D−1)h(γ).

Hence,

logGD ≤ −λDn + (k −D)k + n(F (2(D + 1) − k, γ) + (k −D − 1)h(γ))
= n (F (2(D + 1) − k, γ) − (k − 1)λ + (k −D − 1)(h(γ) + λ)) + (k −D)k.

(35)

Our bounds on GD are in fact tight up to a polynomial factor in n (but per-
haps exponential in k). This follows from the existence of certain large terms in
Equation (32). For D < k

2 , pick any map ϕ from {D + 1, . . . , k} onto {1, . . . ,D}.
Consider the space V that is defined by the equations vi = vϕ(i) for every k ≥ i > D.
It is clear that the space V is robust. For D ≥ k

2 , consider the contribution of the
term corresponding to

V = {u ∈ Fk2 ∣
t

∑
i=1

ui = 0 ∧ ut+1 = ut+2 ∧ ut+3 = ut+4 ∧ . . . ∧ uk−1 = uk} ,

where t = 2(D + 1) − k.
We turn to use these bounds to compute X’s central moments. We consider

two cases, according the value of γ.

5.1 Moments of even order
Let k be even. By Lemma 25 and Proposition 15, there is a positive integer k0 =
k0(γ, λ) such that

{2 ≤m ∈ N ∣ F (m,γ) − (m − 1)λ > m
2
(h(γ) − λ)} = {k0, k0 + 1, k0 + 2, . . .}

We claim that the sum in Equation (31) is dominated by either G k
2

or Gk−1 de-
pending on whether k < k0 or k ≥ k0.

5.1.1 When k < k0

Since k0 = k0(γ, λ) does not depend of n, and since k < k0 there is only a bounded
number of Fk2-subspaces. We wish to compute the term GD = G k

2
. We show that

in this case, the sum in Equation (32) is dominated by spaces of the form

V = {v ∈ Fk2 ∣ vi1 = vj1 ∧ vi2 = vj2 ∧⋯ ∧ vi k
2

= vj k
2

}, (36)
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where the pairs {i1, j1}, . . . ,{i k
2
, j k

2
} form a partition of [k]. Clearly, for such a

space V , a matrix in TV is defined by k
2 of its rows, so

∣TV ∣ = ( n
γn

)
k
2

.

If U ≤ Fk2 is robust, of dimension k
2 , and not of this form (36), then at least

one of its associated mi’s (see Equation (34)) equals 1. By repeated application
of Proposition 27, it follows that

∣TU ∣ ≤ N
k
2
F (2,γ)−Ω(1) = N k

2
h(γ)−Ω(1),

which, as claimed, is exponentially negligible relative to ∣TV ∣. The number of
subspaces of the form (36) is k!!, whence

G k
2
= k!!( n

γn
)
k
2

N−λ k
2 (1 +N−Ω(1)) = N k

2
(h(γ)−λ)− k logn

4n
+O( k

n
).

We turn to show that GD = o(Gk/2) for any D ≠ k
2 . For D < k

2 this follows
from Equation (33). For D > k

2 , due to Lemma 25, the r.h.s. of Equation (35) is
strictly convex in D, and therefore attains its maximum at D = k

2 or D = k − 1.
Since k < k0, the former holds.2

Equation (31) yields

E ((X −E(X))k) = k!!( n
γn

)
k
2

N−λ k
2 (1 + o(1)).

5.1.2 When k ≥ k0

Note that Vk is the one and only (k−1)-dimensional robust subspace of Fk2. Hence,
by Equation (10),

Gk−1 = N−λD∣TVk ∣ = NF (k,γ)−(k−1)λ− k logn
2n

+O( k
n
).

We next show that the sum in Equation (31) is dominated by this term. By Propo-
sition 15 and Equations (35) and (33),

GD ≤ ND⋅(h(γ)−λ)−1+O((1−2γ)k)+ (k−D)k
n

2It is possible that the r.h.s. of Equation (35) attains the same value with D = k
2

and D = k − 1.
Note that G k

2
still dominates in this case, due to polynomial factors
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for all 0 ≤ D ≤ k − 2. Consequently,

GD
Gk−1

≤ N (k−1−D)(λ−h(γ))+O((1−2γ)k)+ k logn
2n

+ (k−D)k
n .

For large enough k, this is at most N−Ω(k−D), so

E ((X −E(X))k) = Gk−1(1 − o(1)) = NF (k,γ)−(k−1)λ− k logn
2n

+O( k
n
) (37)

It is left to show that Equation (37) holds for all k ≥ k0, but this follows again
from the convexity of F . Namely, since k ≥ k0, the r.h.s. of Equation (35) is
strictly maximized by D = k − 1, whence GD = o(Gk−1) for k

2 ≤ D < k − 1. For
D < k

2 , this inequality follows from GD < G k
2
.

We are now ready to state our main theorem:

Theorem 2. For every γ < 1
2 and 0 < λ < h(γ) and for every even integer k ≤

o( n
logn), the expectation E((X −E(X))k) is the larger of the two expressions

k!!( n
γn

)
k
2

N−λ k
2 (1 + o(1)) and

NF (k,γ)−(k−1)λ− k logn
2n

+O( k
n
).

There is an integer k0 = k0(γ, λ) ≥ 3 such that the former term is the larger of the
two when k < k0 and the latter when k ≥ k0.

5.2 Moments of odd order
We turn to the case of odd k > 2. The arguments that we used to derive the
moments of even order hold here as well, with a single difference, as we now
elaborate.

The role previously held by G k
2

is now be taken by either

G k−1
2
= Θ (N k−1

2
(h(γ)−λ)− (k−1) logn

4 )

or
G k+1

2
= Θ (N k−3

2
(h(γ)−λ)+F (3,γ)−2λ− (k+1) logn

4 ) .

These asymptotics are for bounded k. Which of these two terms is larger depends
on whether F (3, γ) > (h(γ) − λ). This yields our main theorem for moments of
odd order.
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Theorem 3. For every γ < 1
2 and 0 < λ < h(γ) and for every odd integer 3 ≤ k ≤

o( n
logn), the expectation E((X −E(X))k) is the larger of the two expressions

Θ (N k−3
2

(h(γ)−λ)−λ− (k−1) logn
4 ⋅Nmax(h(γ),F (3,γ)−λ− logn

2n
)) and

NF (k,γ)−(k−1)λ− k logn
2n

+O( k
n
).

There is an integer k1 = k1(γ, λ) such that the former term is the larger of the two
when k < k1 and the latter when k ≥ k1.

5.3 Normalized moments
In this section we return to a theorem stated in the introduction. While it is some-
what weaker than our best results, we hope that it is more transparent and may
better convey the spirit of our main findings. Recall that

Var(X) = ( n
γn

)N−λ(1 + o(1)).

Consider the variable X√
Var(X) . By the same convexity arguments as above, its odd

moments of order up to k0 are on(1). This yields the following result.

Theorem 1. Fix γ < 1
2 and 0 < λ < h(γ), let X =Xn,γ,λ, and let

k0 = min{m ∣ F (m,γ) − (m − 1)λ > m
2
(h(γ) − λ)} .

Then, for 2 ≤ k ≤ o( n
logn),

E((X −E(X))k)
Var(X) k2

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

o(1) if k is odd and < k0

(1 + o(1)) ⋅ k!! if k is even and < k0

NF (k,γ)− k
2
h(γ)−( k

2
−1)λ− k logn

4n
+O( k

n
) if k ≥ k0

6 Discussion

6.1 Extensions and refinements
Throughout this paper, we have limited γ to the range (0, 1

2). What about γ > 1
2?

The function F (k, γ, δ) can be naturally extended to γ ∈ (1
2 ,1) and it satisfies

the following obvious identity that follows by negating all bits in the underlying
distribution.

F (m,γ, δ) =
⎧⎪⎪⎨⎪⎪⎩

F (m,1 − γ, δ) if m is even
F (m,1 − γ,1 − δ) if m is odd.
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Figure 5: . Illustration for Section 6.1 - Extending F to γ ∈ (1
2 ,1). Solid: F (5, γ)

Dashed: F (5, γ,1) = F (5,1 − γ) Dotted: 5h(γ) − 1

In particular, when γ > 1
2 and m is odd, F is increasing rather than decreasing in

δ. Also, Lemma 25 is no longer valid. In fact, F (m,γ) is larger than the linear
function m ⋅ h(γ) − 1 when m is even, but smaller than it when m is odd (see
Figure 5 for an example of the odd case).

It can be shown that Theorem 2 still holds in this range, but the odd moments
are more complicated. The dominant term in Equation (31) is no longer necessar-
ily a product of Vm spaces. Rather, it may be a (k − 2)-dimensional space, the
exact parameters of which are determined by γ.

We illustrate this unexpected additional complexity with a numerical example.
Consider the following two 7-dimensional subspaces of F9

2:

U = {u ∈ F9
2 ∣

8

∑
i=1

ui = 0 ∧ u9 = u8}

and

V = {u ∈ F9
2 ∣

3

∑
i=1

ui =
8

∑
i=4

ui =
9

∑
i=7

ui} .

For most values of γ there holds ∣TU ∣ > ∣TV ∣, but for γ > 0.9997 the opposite
inequality holds.

We believe that further analysis along the lines of the present paper may yield
these odd moments as well.

Similar phenomena occur when γn is odd. Due to parity considerations, TV is
empty when there is an odd weight vector that is orthogonal to V . It turns out that
computing the moments in this case comes down to essentially the same problem
as the one described above for γ > 1

2 .
We next discuss the possible range of k. Namely, which moments we know.

We are presently restricted to k ≤ o( n
logn), but it is conceivable that with some

additional work the same conclusions can be shown to hold for all k ≤ o(n).
The current bound arises in our analysis of the expression GD

Gk−1
in Equation (37).
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Our lower bound on Gk−1 includes a factor of N− k logn
2n , which is absent from our

upper bound on GD. Lemma 12 can presumably be adapted to work for general
robust subspaces, thereby improving this upper bound, thus yielding the same
conclusions for k up to o(n).

Pushing k to the linear range k ≥ Ω(n) is likely a bigger challenge, since
many basic ingredients of our approach are no longer valid. If k > (1−λ)n+1, we
expect our code to have dimension smaller than k−1, whereas our main theorems
show that the k-th moment of X is dominated by (k − 1)-dimensional subsets of
the (γn)-th layer of Fk2. Concretely, for k ≥ Ω(n), our derivation of Equation
(37) would fail, since the term (k−D)k

n is no longer negligible. It is interesting to
understand which terms dominate these very high moments.

The above discussion about large k is also related to the way that we sample
random linear subspaces C in this paper. In our model there is a negligible prob-
ability that dim(C) > (1−λ)n. This can be avoided by opting for another natural
choice, viz. to sampleC uniformly at random from among the (1−λ)-dimensional
subspaces of Fn2 . The effect of this choice manifests itself already in Proposition 1.
This effect is negligible when D ≪ (1−λ)n, but becomes significant as D grows,
e.g., under the alternative definition Pr(Y ⊆ C) = 0 whenever dim(Y ) > (1−λ)n.
Presumably, X’s moments of order Θ(n) are sensitive to this choice of model.

There is further potential value to improving Lemma 12. A reduction in its
error term would have interesting implications for the range n

logn ≫ k > logn
− log(1−2γ) .

As things stand now, the difference between the upper and lower estimates in
Proposition 15 is smaller than the error term in our estimates for the moments and
yields

Nkh(γ)−1−(k−1)λ− k logn
2n

+O( k
n
).

as our best estimate for the k-th moment. Reducing the error term in Lemma 12
may significantly improve several of our results.

Since the original submission of this paper, extensions of our techniques have
turned out to be useful in other ongoing lines of research. One such line concerns
Gallager’s classic construction of LDPC codes [6]. Gallager’s codes are a more
structured variant of the generic random linear codes with which we deal in the
current paper. Hence, it is not surprising that our methods apply to them as well.
Our approach also seems helpful in analyzing the list-decodability parameters of
certain codes, namely, for bounding the number of codewords contained in a ball
of some given radius (see e.g., [7] lec. 9 for the exact definition).

Finally, we note that much of our analysis, at the very least the part contained
in Sections 2 and 3, can be naturally generalized from the binary regime to random
linear codes over any finite field.
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6.2 Open problems
The long-term goal of this research is to understand the distribution of the random
variable X . In particular, it would be interesting to understand the large deviation
probabilities of this variable. Although our computation of X’s moments is a
step in this direction, we still do not yet have a clear view of this distribution.
In particular, since all but boundedly many of X’s normalized moments tend to
infinity, there is no obvious way to apply moment convergence theorems.

Taking an even broader view, let us associate with a linear code C the proba-
bility measure µ on [0,1], with the CDF

f(x) = ∣C ∣−1 ⋅ ∣{u ∈ C ∣ ∥u∥ ≤ nx}∣.

We are interested in the typical behavior of this measure when C is chosen at
random. In this context, our random variable X corresponds to the PDF of µ at
the point γ. Note that µ is typically concentrated in the range 1

2 ±O(n− 1
2 ), so that

our questions correspond to large deviations in µ.
Many further problems concerning µ suggest themselves. What can be said

about correlations between µ’s PDF at two or more different points? Also, clearly,
µ is binomial in expectation, but how far is it from this expectation in terms of
moments, CDF, or other standard measures of similarity? We believe that the
framework developed in this paper can be used to tackle these questions.
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