Machine Learning in Computer Vision: Image Filters and Affine Functions

Lecturer: Oren Freifeld
TA: Ron Shapira Weber

Computer Science, Ben-Gurion University

Apr 25, 2018
1 Image Filters

2 Affine Functions
Examples of using Image Filters

1. Image processing (e.g., enhancement, sharpening, smoothing, etc.)
2. Spatial derivatives (e.g., see optical flow)
3. One way to define high-order clique functions in MRFs (e.g.: Field of Experts; Steerable Random Filters)
4. Modeling image degradation (e.g., blurring or motion artifacts)
5. Convolutional Neural Networks (later in this class)
6. Object Detection via template matching (AKA match filter)
\(I \): an image; \(h \): a filter (another, usually-smaller) image

Definition (The correlation operator)

The **correlation operator**, \(\otimes \), creates a new image, \(I \otimes h \), via

\[
(I \otimes h)(i, j) = \sum_{k,l} I(i + k, j + l)h(k, l) = \sum_{k',l'} I(k', l')h(k' - i, l' - j)
\]

Definition (The convolution operator)

The **convolution operator**, \(* \), creates a new image, \(I * h \), via

\[
(I * h)(i, j) = \sum_{k,l} I(i - k, j - l)h(k, l) = \sum_{k',l'} I(k', l')h(i - k', j - l')
\]

\[
= (h * I)(i, j) = (I \otimes h_{\text{flipped}})(i, j)
\]
Since $I * h = I \otimes h_{\text{flipped}}$, both operators coincide when the filter is symmetric around each of its axes.

Example

$$h = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \Rightarrow (I * h)(i, j) = (I \otimes h)(i, j)$$ is the average value of I in a 3×3 neighborhood around pixel (i, j):

$$\frac{1}{9} [I(i - 1, j - 1) + I(i - 1, j) + I(i - 1, j + 1) + I(i, j - 1)$$

$$+ I(i, j) + I(i, j + 1) + I(i + 1, j - 1) + I(i + 1, j) + I(i + 1, j + 1)]$$
Another Example

The filter below is symmetric so convolution = correlation.

\[f(x,y) \ast h(x,y) = g(x,y) \]

Figure taken from Szelisk’s book, 2010
Remarks

- There are standard ways to handle pixels near the image boundaries (e.g., set “outside pixels” to zero)
- Internally, efficient implementations usually use the Fast Fourier Transform (FFT) instead of the formulas we saw in the definitions.
- In continuous domains, we have similar definitions, with integrals instead of sums.
Exercise

Show that convolution is linear. In effect, show that if I_1 and I_2 are 2D digital arrays, and $c_1, c_2 \in \mathbb{R}$, then

$$(c_1I_1 + c_2I_2) * h = c_1(I_1 * h) + c_2(I_2 * h) \quad (1)$$

Solution

Let $g_1 = I_1 * h$, $g_2 = I_2 * h$, and $g_3 = (c_1I_1 + c_2I_2) * h$.

$$g_3(i, j) =$$

$$\sum_{k,l} (c_1I_1(i - k, j - l) + c_2I_2(i - k, j - l))h(k, l)$$

$$= \left(\sum_{k,l} c_1I_1(i - k, j - l)h(k, l)\right) + \left(\sum_{k,l} c_2I_2(i - k, j - l)h(k, l)\right)$$

$$= c_1 \left(\sum_{k,l} I_1(i - k, j - l)h(k, l)\right) + c_2 \left(\sum_{k,l} I_2(i - k, j - l)h(k, l)\right)$$

$$= c_1I_1(i, j) + c_2I_2(i, j)$$
Exercise

Show that convolution is linear. In effect, show that if I_1 and I_2 are 2D digital arrays, and $c_1, c_2 \in \mathbb{R}$, then

$$(c_1 I_1 + c_2 I_2) \ast h = c_1 (I_1 \ast h) + c_2 (I_2 \ast h) \tag{1}$$

Solution

Let $g_1 = I_1 \ast h$, $g_2 = I_2 \ast h$, and $g_3 = (c_1 I_1 + c_2 I_2) \ast h$.

$$g_3(i, j) =$$
$$\sum_{k,l} (c_1 I_1(i - k, j - l) + c_2 I_2(i - k, j - l))h(k, l)$$
$$= \left(\sum_{k,l} c_1 I_1(i - k, j - l)h(k, l) \right) + \left(\sum_{k,l} c_2 I_2(i - k, j - l)h(k, l) \right)$$
$$= c_1 \left(\sum_{k,l} I_1(i - k, j - l)h(k, l) \right) + c_2 \left(\sum_{k,l} I_2(i - k, j - l)h(k, l) \right)$$
$$= c_1 I_1(i, j) + c_2 I_2(i, j)$$
Different Notations for Convolution

\[g(i, j) = \sum_{k,l} I(i-k, j-l) h(k,l) = \sum_{k,l} h(i-k, j-l) I(k, l). \quad (2) \]

The summation is done over all relevant pixels (i.e., where \(h \) is defined). A slightly different way of writing the same thing is as

\[g(\mathbf{x}) = \sum_{\mathbf{x}_i} I(\mathbf{x} - \mathbf{x}_i) h(\mathbf{x}_i) = \sum_{\mathbf{x}_i} h(\mathbf{x} - \mathbf{x}_i) I(\mathbf{x}_i) \quad (3) \]

where \(\mathbf{x} \) denotes the location of the pixel of interest, and the \(\mathbf{x}_i \)'s denote the locations of the pixels where \(h \) is defined.

Example (When \(h \) is Gaussian)

\[g(\mathbf{x}) = \frac{1}{c} \sum_{\mathbf{x}_i} \exp \left(-\frac{1}{2} \frac{||\mathbf{x} - \mathbf{x}_i||^2}{\sigma^2} \right) I(\mathbf{x}_i) \quad (4) \]

where \(c \) typically is taken as a normalizer: \(c = \sum_{\mathbf{x}_i} \exp \left(-\frac{1}{2} \frac{||\mathbf{x} - \mathbf{x}_i||^2}{\sigma^2} \right) \).
Impulse Response

Definition (2D discrete-domain impulse signal)

\[\delta(i, j) = \begin{cases}
1 & \text{if } i = 0 \text{ and } j = 0 \\
0 & \text{otherwise}
\end{cases} \] (5)

- \(h \) is also called the “impulse response”, since its convolution with an impulse signal is \(h \ast \delta = \delta \ast h = h \)
A 2D filter, K, is called separable if it can be written as the outer product of two 1D filters; namely:

$$K = vh^T$$ \hspace{1cm} (6)

where v and h are two column vectors, typically of the same length.
Convolution with a Separable Filter

For a separable filter, $K = vh^T$, the 2D convolution, $g = I * K$, can be done more efficiently via a 1D horizontal convolution followed by a 1D vertical convolution; i.e., if $g = I * K$, then it can be computed as:

- Convolve each row i with h

$$
\tilde{g}(i,:) = I(i,:) * h
$$

$$
\tilde{g}(i,j) = \sum_l I(i,j-l)h(l) \tag{7}
$$

- Convolve each column j of the result with v:

$$
g(:,j) = \tilde{g}(:,j) * v
$$

$$
g(i,j) = \sum_k \tilde{g}(i-k,j)v(k) \tag{8}
$$
Example (An isotropic “Gaussian”)

A 5×5 discrete and truncated approximation of an isotropic Gaussian:

$$h = v = \frac{1}{16} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \end{bmatrix}$$

$$K = vh^T = \frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}$$

Example (horizontal Sobel filter – approximates $\frac{\partial}{\partial x}$)

$$h = \frac{1}{2} \begin{bmatrix} -1 & 0 & 1 \end{bmatrix} \quad v = \frac{1}{4} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$

$$K = vh^T = \frac{1}{8} \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
Example (An isotropic “Gaussian”)

A 5×5 discrete and truncated approximation of an isotropic Gaussian:

$$h = v = \frac{1}{16} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \end{bmatrix}$$

$$K = vh^T = \frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}$$

Example (horizontal Sobel filter – approximates $\frac{\partial}{\partial x}$)

$$h = \frac{1}{2} \begin{bmatrix} -1 & 0 & 1 \end{bmatrix} \quad v = \frac{1}{4} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$

$$K = vh^T = \frac{1}{8} \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
Laplacian of Gaussian (LoG)

In a continuous domain:
- A normalized and isotropic Gaussian filter is given by:

\[G(x, y, \sigma) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right) \]

- The Laplacian of \(I \) is

\[\nabla^2 I = \frac{\partial^2 I}{\partial x^2} + \frac{\partial^2 I}{\partial y^2} = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) I \]
Laplacian of Gaussian (LoG)

- Blurring I with $G(x, y, \sigma)$ followed up by applying ∇^2 can be done in a single operation, by convolving I with the LoG filter:

$$\nabla^2 G(x, y, \sigma) = \left(\frac{x^2 + y^2}{\sigma^4} - \frac{2}{\sigma^2} \right) G(x, y, \sigma)$$

- In practice, we approximate this using a finite filter, e.g., 5×5.
- LoG is an example of an undirected filter: at a given point, it is invariant to the rotation of I around that point.
Laplacian of Gaussian (LoG)

\[\nabla^2 G(x, y, \sigma) = \left(\frac{x^2 + y^2}{\sigma^4} - \frac{2}{\sigma^2} \right) G(x, y, \sigma) \]
Definition (directional derivative)

The directional derivative of a function \(f(x, y) \), in the direction of the unit vector \(\mathbf{u} = \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} \), denoted by \(\nabla_{\mathbf{u}} = \frac{\partial}{\partial \mathbf{u}} \), is the scalar given by

\[
\nabla_{\mathbf{u}} f \triangleq (\nabla_x f) \mathbf{u} = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{bmatrix} \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} = \cos \theta \frac{\partial f}{\partial x} + \sin \theta \frac{\partial f}{\partial y}
\]

where \(\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix} \) and \(\nabla_x f = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{bmatrix} \).
Directed/Oriented Filters

- An example for an oriented filter is obtained via a Gaussian blurring followed by taking the directional derivative,

\[
\nabla (G \ast I) \ast u = \nabla u (G \ast I) = (\nabla u G) \ast I
\]

(9)

where \(u = \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} \) and

\[
\nabla u G = u \frac{\partial G}{\partial x} + v \frac{\partial G}{\partial y}
\]

(10)

- The Sobel filter, \(\frac{1}{8} \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \), approximates this for \(u = \begin{bmatrix} 1 \\ 0 \end{bmatrix}^T \).

- Remark: we briefly discussed the Steerable Random Field model: an MRF whose clique functions are responses to directed filters which were “steered” according to the spatial gradient.
Sobel and Laplacian Example

Horizontal Sobel $\approx \frac{\partial}{\partial x}$
Vertical Sobel $\approx \frac{\partial}{\partial y}$
Laplacian $\approx \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$
LoG Example

Image Filters

I

Gaussian blur

Laplacian of I

LoG of I
Median Filtering

- Replace pixel \((i, j)\) with the median of the value in, say, a 5 by 5, neighborhood around it. This is a nonlinear operation.

- This is an example of a nonlinear filtering (e.g., usually \(\text{median}(\text{array1}) + (\text{array2}) \neq \text{median}(\text{array1}) + \text{median}(\text{array2})\))

Images taken from Wikipedia
A linear map from \mathbb{R}^n to \mathbb{R}^n, $f : x \mapsto Ax$, is invertible if and only if A satisfies a condition. What is this condition?

Solution

$\det A \neq 0$.
Exercise

A linear map from \mathbb{R}^n to \mathbb{R}^n, $f : x \mapsto Ax$, is invertible if and only if A satisfies a condition. What is this condition?

Solution

det $A \neq 0$.
Exercise

Let \(f : \mathbb{R} \to \mathbb{R} \) be defined by \(f : x \mapsto ax + b \) for some \(a, b \in \mathbb{R} \). In other words, \(f \) describes a straight line. Show that if \(b \neq 0 \) then \(f \) is a nonlinear function. Remark: people often refer to such functions as linear, and occasionally we may also do it ourselves, but, strictly speaking, this is incorrect.

Solution

Note \(f(0) = b \). If \(b \neq 0 \) then \(f \) is nonlinear since a linear function must “take zero to zero”. If \(b = 0 \) then \(f \) is linear since \(x \mapsto ax \) is linear.
Exercise

Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f : x \mapsto ax + b$ for some $a, b \in \mathbb{R}$. In other words, f describes a straight line. Show that if $b \neq 0$ then f is a nonlinear function. Remark: people often refer to such functions as linear, and occasionally we may also do it ourselves, but, strictly speaking, this is incorrect.

Solution

Note $f(0) = b$. If $b \neq 0$ then f is nonlinear since a linear function must “take zero to zero”. If $b = 0$ then f is linear since $x \mapsto ax$ is linear.
Exercise

Under what condition(s) an affine map, \(f : x \mapsto Ax + b \), is invertible?

Solution

\(\det A \neq 0 \).
Exercise

Under what condition(s) an affine map, \(f : x \mapsto Ax + b \), is invertible?

Solution

\(\det A \neq 0 \).
Exercise (Composition of affine maps)

Let \(h = g \circ f \) where \(f : \mathbb{R}^n \to \mathbb{R}^m \) and \(g : \mathbb{R}^m \to \mathbb{R}^k \) are two affine maps:

\[
\begin{align*}
 f : x &\mapsto A_1 x + b_1 \\
 g : x &\mapsto A_2 x + b_2
\end{align*}
\]

\[A_1 \in \mathbb{R}^{m \times n} \quad b_1 \in \mathbb{R}^m ; \]

\[A_2 \in \mathbb{R}^{k \times m} \quad b_2 \in \mathbb{R}^k . \] \hspace{1cm} (11)

Show that \(h : \mathbb{R}^n \to \mathbb{R}^k \) is affine.

Solution

\[
h(x) = g(f(x)) = A_2 (A_1 x + b_1) + b_2 = A_2 A_1 x + A_2 b_1 + b_2 .
\]

Thus, \(h \) is affine where the linear part of \(h \) is given by the \(A_2 A_1 \) matrix while its offset part is given by \(A_2 b_1 + b_2 \).
Exercise (Composition of affine maps)

Let \(h = g \circ f \) where \(f : \mathbb{R}^n \to \mathbb{R}^m \) and \(g : \mathbb{R}^m \to \mathbb{R}^k \) are two affine maps:

\[
\begin{align*}
f : x &\mapsto A_1 x + b_1 \\
g : x &\mapsto A_2 x + b_2
\end{align*}
\]

\(A_1 \in \mathbb{R}^{m \times n} \quad b_1 \in \mathbb{R}^m ; \)

\(A_2 \in \mathbb{R}^{k \times m} \quad b_2 \in \mathbb{R}^k \). \quad (11)

Show that \(h : \mathbb{R}^n \to \mathbb{R}^k \) is affine.

Solution

\[
\begin{align*}
h(x) = g(f(x)) &= A_2(A_1 x + b_1) + b_2 \\
&= A_2 A_1 x + A_2 b_1 + b_2
\end{align*}
\]

Thus, \(h \) is affine where the linear part of \(h \) is given by the \(A_2 A_1 \) matrix while its offset part is given by \(A_2 b_1 + b_2 \).
Exercise (Composition of invertible affine maps)

Let $h = g \circ f$ where $f : \mathbb{R}^n \to \mathbb{R}^n$ and $g : \mathbb{R}^n \to \mathbb{R}^n$ are two invertible affine maps. Show that h is also an invertible affine map.

Solution

The linear part of h is $x \mapsto A_2 A_1 x$. The matrix $A_2 A_1$ is invertible since the product of two $n \times n$ invertible matrices is invertible.
Exercise (Composition of invertible affine maps)

Let \(h = g \circ f \) where \(f : \mathbb{R}^n \to \mathbb{R}^n \) and \(g : \mathbb{R}^n \to \mathbb{R}^n \) are two invertible affine maps. Show that \(h \) is also an invertible affine map.

Solution

The linear part of \(h \) is \(x \mapsto A_2 A_1 x \). The matrix \(A_2 A_1 \) is invertible since the product of two \(n \times n \) invertible matrices is invertible.