Machine Learning in Computer Vision: SPD Matrices and Norms

Oren Freifeld
Computer Science, Ben-Gurion University

March 8, 2018
Definition (positive-definite matrix)

An $n \times n$ matrix, A, is called Positive Definite (PD) if

$$x^T A x > 0 \quad \forall \text{ non-zero } x \in \mathbb{R}^n .$$ \hfill (1)

Example

$I_{n \times n}$, the identity matrix, is SPD:

$$x^T I x = x^T x = \sum_{i=1}^{n} x_i^2 > 0 \quad \forall \text{ non-zero } x \in \mathbb{R}^n .$$ \hfill (2)

Definition (positive-semidefinite matrix)

An $n \times n$ matrix, A, is called Positive Semidefinite (PSD) if

$$x^T A x \geq 0 \quad \forall \text{ non-zero } x \in \mathbb{R}^n .$$ \hfill (3)
Definition (symmetric matrix)

An $n \times n$, A, is called symmetric if $A = A^T$.

Definition (symmetric positive-definite matrix)

An $n \times n$, A is called SPD if it is both symmetric and PD.

Definition (symmetric positive-semidefinite matrix)

An $n \times n$, A is called SPSD if it is both symmetric and PSD.

Fact

- A symmetric matrix A is SPD \iff all its eigenvalues are positive \iff it has a unique Cholesky decomposition; namely, there exists a unique lower triangular matrix L, with positive diagonal elements, such that $A = LL^T$.
- A symmetric matrix A is PSD \iff all its eigenvalues are nonnegative.
Definition (ℓ_p norm (for n-tuples))

For $\mathbf{x} = [x_1, \ldots, x_n]^T \in \mathbb{R}^n$,

$$\|\mathbf{x}\|_{\ell_p} \triangleq \left(\sum_{j=1}^{n} |x_j|^p \right)^{1/p} \quad 1 \leq p < \infty$$

(4)

is the ℓ_p norm of \mathbf{x}.

Example (ℓ_2 norm – AKA the Euclidean norm (for n-tuples))

$$\|\mathbf{x}\|_{\ell_2}^2 \triangleq \sum_{j=1}^{n} x_j^2$$

(5)

is the squared ℓ_2 norm of \mathbf{x}.
Example (ℓ_1 norm (for n-tuples))

$$
\|x\|_{\ell_1} \triangleq \sum_{j=1}^{n} |x_j|
$$

(6)

is the ℓ_1 norm of x.
Definition (ℓ_p distance (for n-tuples))

For $x, y \in \mathbb{R}^n$,

$$\|x - y\|_{\ell_p} \quad 1 \leq p < \infty$$

(7)

is the ℓ_p distance of between x and y.

Example (ℓ_2 distance – AKA the Euclidean distance (for n-tuples))

$$d^2(x, y) = \|x - y\|_{\ell_2}^2$$

(8)

is the squared ℓ_2 distance between x and y.

Since Euclidean distance is usually the default, often one drops the subscript and just writes $\|x - y\|$ instead of $\|x - y\|_{\ell_2}$.
Example (ℓ_1 distance (for n-tuples))

\[d(x, y) = \| x \|_{\ell_1} \triangleq \sum_{j=1}^{n} |x_j - y_j| \]

(9)

is the ℓ_1 distance between x and y.

Remark

The norms and distances above are easily modified for the case of infinite sequences instead of n-tuples. For example, the ℓ_2 norm for sequences of the form (x_1, x_2, \ldots) is given by

\[\| x \|_{\ell_2}^2 \triangleq \sum_{j=1}^{\infty} x_j^2. \]
Example (norm and distance defined via an SPD matrix)

Let $Q \in \mathbb{R}^{n \times n}$ be SPD. Then we let

$$\|x\|_Q^2 \triangleq x^T Q x$$

and

$$d_Q^2(x, y) = \|x - y\|_Q^2 = (x - y)^T Q (x - y)$$

be the norm and induced distance defined by Q.

Let Q be an SPD matrix and LL^T denote its (unique) Cholesky decomposition. Note that

$$\|x\|_Q^2 = x^T Q x = x^T L L^T x = (L^T x)^T L^T x = \|L^T x\|_{\ell_2}^2.$$