Lectures 12 and 13
Dynamic programming:
weighted interval scheduling

COMP 523: Advanced Algorithmic Techniques
Lecturer: Dariusz Kowalski
Overview

Last week:
• Graph algorithm: BFS and DFS, testing graph properties based on searching, topological sorting

This week:
• Dynamic programming
• Weighted interval scheduling
• Sequence alignment
Dynamic Programming paradigm

Dynamic Programming (DP):
• Decompose the problem into series of subproblems
• Build up correct solutions to larger and larger subproblems

Similar to:
• Recursive programming vs. DP: in DP subproblems may strongly overlap
• Exhaustive search vs. DP: in DP we try to find redundancies and reduce the space for searching
(Weighted) Interval scheduling

(Weighted) Interval scheduling:
Input: set of intervals (with weights) on the line, represented by pairs of points - ends of intervals
Output: finding the largest (maximum sum of weights) set of intervals such that none two of them overlap

Greedy algorithm doesn’t work for weighted case!
Example

Greedy algorithm:
- Repeatedly select the interval which ends first (but still not overlapping the already chosen intervals)

Exact solution of unweighted case.

Greedy algorithm gives total weight 2 instead of optimal 3
Basic structure and definition

• Sort the intervals according to their right ends
• Define function p as follows:
 – $p(1) = 0$
 – $p(i)$ is the number of intervals which finish before i^{th} interval starts

\[\begin{align*}
\text{weight 1} & \quad p(1) = 0 \\
\text{weight 3} & \quad p(2) = 1 \\
\text{weight 2} & \quad p(3) = 0 \\
\text{weight 1} & \quad p(4) = 2
\end{align*}\]
Basic property

• Let w_j be the weight of j^{th} interval
• Optimal solution for the set of first j intervals satisfies
 \[\text{OPT}(j) = \max \{ w_j + \text{OPT}(p(j)) , \text{OPT}(j-1) \} \]

Proof:
If j^{th} interval is in the optimal solution O then the other intervals in O are among intervals $1, \ldots, p(j)$.
Otherwise search for solution among first $j-1$ intervals.

\[\begin{align*}
 & \text{weight 1} & p(1) = 0 \\
 & \text{weight 3} & p(2) = 1 \\
 & \text{weight 2} & p(3) = 0 \\
 & \text{weight 1} & p(4) = 2
\end{align*} \]
Sketch of the algorithm

• Additional array $M[0...n]$ initialized by $0, p(1), ..., p(n)$ (intuitively $M[j]$ stores optimal solution $OPT(j)$)

Algorithm
• For $j = 1, ..., n$ do
 – Read $p(j) = M[j]$
 – Set $M[j] := \max \{ w_j + M[p(j)], M[j-1] \}$

Lectures 12-13: Dynamic Programming
Complexity of solution

Time: $O(n \log n)$

- Sorting: $O(n \log n)$
- Initialization of $M[0…n]$ by $0,p(1),…,p(n)$: $O(n \log n)$
- Algorithm: n operations, each takes constant time, total $O(n)$

Memory: $O(n)$ - additional array M

\[p(1)=0, \quad p(2)=1, \quad p(3)=0, \quad p(4)=2 \]
Sequence alignment problem

Popular problem from word processing and computational biology

- Input: two words $X = x_1x_2\ldots x_n$ and $Y = y_1y_2\ldots y_m$
- Output: largest alignment

Alignment A: set of pairs $(i_1,j_1),\ldots,(i_k,j_k)$ such that
- If (i,j) in A then $x_i = y_j$
- If (i,j) is before (i',j') in A then $i < i'$ and $j < j'$ (no crossing matches)
Example

• Input: $X = c t t t c t c c$ $Y = t c t t c c$

Alignment A:

$X = c t t t c t c c$

| | | |

$Y = t c t t c c$

Another largest alignment A:

$X = c t t t c t c c$

 | | |

$Y = t c t t c c$
Finding the size of max alignment

Optimal alignment $\text{OPT}(i,j)$ for prefixes of X and Y of lengths i and j respectively:

$$\text{OPT}(i,j) = \max \{ \alpha_{ij} + \text{OPT}(i-1,j-1), \text{OPT}(i,j-1), \text{OPT}(i-1,j) \}$$

where α_{ij} equals 1 if $x_i = y_j$, otherwise is equal to $-\infty$

Proof:

If $x_i = y_j$ in the optimal solution O then the optimal alignment contains one match (x_i, y_j) and the optimal solution for prefixes of length $i-1$ and $j-1$ respectively.

Otherwise at most one end is matched. It follows that either

- $x_1x_2\ldots x_{i-1}$ is matched only with letters from $y_1y_2\ldots y_m$ or
- $y_1y_2\ldots y_{j-1}$ is matched only with letters from $x_1x_2\ldots x_n$. Hence the optimal solution is either the same as for $\text{OPT}(i-1,j)$ or for $\text{OPT}(i,j-1)$.

Algorithm finding max alignment

• Initialize matrix $M[0..n,0..m]$ into zeros

Algorithm

• For $i = 1,\ldots,n$ do
 – For $j = 1,\ldots,m$ do
 • Compute α_{ij}
 • Set $M[i,j] := \max\{ \alpha_{ij} + M[i-1,j-1], M[i,j-1], M[i-1,j] \}$
Complexity

Time: \(O(nm) \)
- Initialization of matrix \(M[0..n,0..m] \): \(O(nm) \)
- Algorithm: \(O(nm) \)

Memory: \(O(nm) \)
Reconstruction of optimal alignment

Input: matrix $M[0..n,0..m]$ containing OPT values

Algorithm

- Set $i = n, j = m$
- While $i,j > 0$ do
 - Compute α_{ij}
 - If $M[i,j] = \alpha_{ij} + M[i-1,j-1]$ then match x_i and y_j and set $i = i - 1, j = j - 1$; else
 - If $M[i,j] = M[i,j-1]$ then set $j = j - 1$ (skip letter y_j), else
 - If $M[i,j] = M[i-1,j]$ then set $i = i - 1$ (skip letter x_i)
Distance between words

Generalization of alignment problem

• Input:
 – two words $X = x_1x_2…x_n$ and $Y = y_1y_2…y_m$
 – mismatch costs α_{pq}, for every pair of letters p and q
 – gap penalty δ

• Output: (smallest) distance between words X and Y
Example

• Input: $X = ctttctc$ $Y = tcttcc$

Alignment A: (4 gaps, 1 mismatch of cost α_{ct})

$X = ctttctc$

| | | ^ |

$Y = tcttcc$

Largest alignment A: (4 gaps)

$X = ctttctc$

| | | |

$Y = tcttc$
Finding the distance between words

Optimal alignment \(\text{OPT}(i,j) \) for prefixes of X and Y of lengths \(i \) and \(j \) respectively:

\[
\text{OPT}(i,j) = \max \{ \alpha_{ij} + \text{OPT}(i-1,j-1), \delta + \text{OPT}(i,j-1), \delta + \text{OPT}(i-1,j) \}
\]

Proof:

If \(x_i \) and \(y_j \) are (mis)matched in the optimal solution \(O \) then the optimal alignment contains one (mis)match \((x_i, y_j) \) of cost \(\alpha_{ij} \) and the optimal solution for prefixes of length \(i-1 \) and \(j-1 \) respectively.

Otherwise at most one end is (mis)mached. It follows that either \(x_1x_2...x_{i-1} \) is (mis)mached only with letters from \(y_1y_2...y_m \) or \(y_1y_2...y_{j-1} \) is (mis)mached only with letters from \(x_1x_2...x_n \). Hence the optimal solution is either the same as counted for \(\text{OPT}(i-1,j) \) or for \(\text{OPT}(i,j-1) \), plus the penalty gap \(\delta \).

Algorithm and complexity remain the same.
Conclusions

• Dynamic programming
• Weighted interval scheduling
• Sequence alignment
Textbook and Exercises

- Chapter 6 “Dynamic Programming”
- All Interval Sorting problem