MESHI: a new library of Java classes for molecular modeling

Supplementary Material
The supplementary material includes two sections:
1. A detailed description of selected MESHI classes and packages.
2. A comment about the performance of the MESHI application - Beautify - in the CASP6 experiment.

1. A detailed description of selected MESHI classes and packages

General: We demonstrate the modular and object-oriented design of MESHI through a detailed description
of two central packages and their sub-packages. Each of these packages is presented from two angles:
structural and functional. The structural point of view emphasizes the inheritance patterns of generic classes
and the specialized classes that extend them. The functional view, on the other hand, emphasizes the
interactions between different classes.

For clarity sake, not all the classes in the packages are presented and only few of the fields and methods of
each class are mentioned. For a more complete picture see the MESHI API
(http://www.cs.bgu.ac.il/~meshi/API).

Figure S1 introduces the graphical representation of the program components and their relations. This figure
serves as legend for figures S2-5.

Figure S2 provides the structural view of the molecularElements package and its sub packages. The
molecularElements package is built around three classes: Atom, Residue and Protein. In addition to the
classes presented in the figure, the package also includes several specialized container classes such as
AtomList.

Figure S3 demonstrates some of the interactions between objects in the molecularElement package. It
emphasizes the important role of lists in organizing the low level elements (e.g. atoms) within high-level
elements (e.g. proteins).

Figure S4 presents the structural view of the energy package and its sub-packages. In MESHI we made a
considerable effort to standardize the energy terms in order to accelerate their design and implementation.
The extensive use of abstract classes in the energy package serves two purposes:

1. It promotes code reuse. Generic procedures are written once, and are inherited and used by all the
extending classes. For example, the “test” method of the EnergyElement class allows any energy
term to verify its correct derivation.

2. It provides a standard interface for term-specific methods. For example, the abstract method
“evaluate” in the AbstractEnergy class is implemented differently by different energy terms. Other
classes, however, needs to know nothing about the specific implementation.

Figure S5 demonstrates how information flows from the lowest level, the X,Y,Z coordinates of atoms to the
top level minimization algorithm LBFGS [Liu and Nocedal (1989)]. The LBFGS class implements this
powerful minimization technique without “knowing” anything about either atoms or specific energy terms.
It should be noted that the rather complex data structure presented in the figure is practically created with
five code lines.

I || [[I
abstract class B
— —*— mull

Class C extending class B

package

sub-package

Gn instance of classa

(object)
An instance of class A
Jield (object)
An instance of class D
field (object)

A list of instances of class D

Figure S1: The graphical representation of the program components. Note the difference between
classes and their instances (objects). Note also that wide arrows represent inheritance relation between
classes, while thin arrows implies that a field of some object refers to (points at) another object.

molecularElements’

ResidueExtendedAtoms’

Ala® Cys Asp

residueExtended A tom>

ca

Figure S2: A structural view of the molecularElements Package and its sub-packages.
The molecularElments package includes generic classes, while its sub-packages include their model-
specific extensions.

1.
2.

[98)

A generic package for molecular elements.

A specialized package for the extended atom molecular model. This model explicitly considers all
heavy atoms and some of the polar hydrogen atoms (the ones that are well-localized). Other
hydrogen atoms are swallowed by their heavy neighbors.

A specialized package for the Ca model of proteins.

The Atom class represents a general atom. Each Atom instance “knows” its position in space, its
type, its name etc. That is, it has fields that refer to and methods that manipulate this information.
The Residue class represents a residue in a protein. Each Residue instance “knows” the list of its
atoms, its name and position in the chain etc.

The Protein class represents a polypeptide chain. A Protein instance “knows” the lists of its residues,
atoms, bonds etc.

The abstract class ResidueExtendedAtoms represents a model of amino acid residue. Thus, it has
fields for the backbone atoms and the beta carbon and a list of the bonds that connect them.

The Ala class represents a specific residue type within the extended atoms model. It extends the
ResidueExtendedAtoms adding some more information like the name and the fact that no additional
atoms are required.

r N

Protein
object .
!) Ala object
residues’ —
2 3
atoms atoms

Lo "v...' S0, S A B
—] B T R S

3 Atom object

Residue

coordinates

(g
Coordinates’ object N
X S
' RN
3 .'... \
...\

Figure S3: A functional view of the molecularElements Package and its sub-packages.

The various molecular elements constitute a tightly connected graph of references. For clarity sake, only
representative objects and references (the nodes and edges of the graph respectively) are presented. Note,
that every object may be referenced by quite a few other objects. The scheme is modular and the Protein
object, for example, need not know about the implemented molecular model. Within an application, this
complex data-structure may be created by a single line of code.

1. A reference to the list of the protein’s residues.
2. A reference to the list of the protein’s atoms.

A reference to the list of the residue’s atoms. This field was inherited from the Residue class that
Ala extends.

A reference to the Ca atom of this residue. Note that this field is meaningful only in certain
molecular models and is not part of the generic Residue class.

The Coordinates class is defined in the geometry package. For each axis it stores and manipulates
both the position and the force.

1
ener
&y ‘ TotalEnergy’ ‘

| AbstractEnergy’ CooperativeEnergyTerm' |
_— — _—— — _— L —_— _— —_— _— — _— —-—
EnergyElement® l ParameterList®
- s s s s sl
I SimpleEnergyTerm5 | I EnergyCreator7 I_Parameters9 I
BondEnergyElement BondParameterList
BondEnergyTerm BondCreator BondParameters
2
bondEenergy

Figure S4: A structural view of the energy package and one of its sub-packages.

l.
2.

3.

o %0

A package containing all the classes that are relevant to energy functions and are not term-specific.

A specific energy term (e.g. bond energy) is implemented within a designated package (in this case
bond-energy). Term-specific classes extend the energy package classes.

The TotalEnergy class provides the optimization methods with a simple interface to the energy
terms. It handles the creation, evaluation and summation of all the different energy terms.

The AbstractEnergy class handles all the generic aspects of the energy terms, such as
activation/disactivation, report printing etc. Its abstract methods enforce standard interface for term-
specific functions such as the energy term evaluation.

SimpleEnergyTerm is a more specific extension of AbstractEnergy. It handles energy terms that
can be decomposed into a sum of multiple independent elementary energy terms (e.g. covalent
bonds).

AbstractEnergyElement handles all aspects of an energy element (e.g. a single bond or a Lennard-
Jones contact) that are not term-specific. Its abstract methods enforce standard interface for term-
specific functions.

The EnergyCreator class provides a simple interface that hides the complexities of energy term
formation. It encapsulates all the details of how to build an instance of an energy term. These details
may include: searching for a parameters file, setting the term weight in the total energy, and the
handling of any other required data. The TotalEnergy class uses an array of EnergyCreator
instances to build its list of energy term without actually “knowing” anything about each specific
term.

The ParameterList class is used to read multi-line files that hold a large set of parameters.

The Parameters class instances contains specific parameters for a single energy element.

. CooperativeEnergyTerm is yet another extension AbstractEnergy. It handles those terms that

cannot be decomposed to a sum of simple elements.

4)

1 . TotalEnergy object
LBFGS" object
energylerm —
energy
coordinates —— distanceMatrix
/

object

(BondEnergy

BondEnergyElelemt| -
e — | atom ! distance
B s [oatom2 N N e,
Atom
coordinates
N Distance’
o
-. \
.

DistanceMatrix’

Figure S5: Modularity and abstraction in energy minimization.

The LBFGS class implements a powerful minimization algorithm. It knows nothing about the molecular
system accept that it is represented by a derivable energy function and an array of coordinates. Both the
energy values and the array of coordinates are provided to LBFGS by the TotalEnergy object.

The TotalEnergy itself also knows very little. When LBFGS asks it for an energy value, it triggers the
DistanceMatrix to update. Then, TotalEnergy iterates over the energyTerms list and sums the values
returned by each of them.

Simple energy term objects, like the BondEnergy presented in the figure, are a sum of elementary terms.
Thus they only need to know the list of these elements. Only the EnergyElement object actually knows
about both the atoms and the functional form. Some energy terms, however, are hard to decompose and thus
their implementation is a bit less straightforward. Note that distances between atoms are not calculated by
the energy term/element but provided by the DistanceMatrix. Thus each interatomic distance is calculated
at most once.

1. The LBFGS class is part of the optimizers package.

2. The Distance and DistanceMatrix classes are part of the geometry package.

2. A comment about the performance of the MESHI application Beautify in the CASP6
experiment.

The usability of the MESHI package was demonstrated in the CASP6 experiment
[http://predictioncenter.org/casp6/Casp6.html]. We have used a preliminary version of Beautify to refine
homology and fold-recognition models that were downloaded from the CAFASP4 site. Selected Ca
predictions of CASP6 targets were downloaded manually from the CAFASP4 site, and refined by Beautify.
Some of the refined models were ranked among the best submitted.

Figure S6 shows the prediction made with Beautify on CASP6 target T0249 2 (#1 model of group #160)
compared with the submissions of other groups. The graph generated by the CASP6 site according to the
method of Hubbard (1999), shows that except for very small distance cutoffs, Beautify was indeed able to
significantly improve over the original Co model.

o
—

(A)

Distance Cutoff

1 | 1 |

| |
0 20 40 60 80 100
Percent of Residues

Figure S6. An RMS/Coverage graph of the prediction made with Beautify (black) compared with
predictions of other groups (light gray) and the original FR model (dark gray) on CASP6 target T0249 2.
Each line represents a single prediction, and shows the minimal RMSD from native of all Ca subset sizes
(measured in percentage of the total number of residues in the target). The graph was downloaded from the
CASPG6 site, and was overlaid with the original FR model data curve.

