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Abstract

In TSP with neighborhoods (TSPN) we are given a collection S of regions in the
plane, called neighborhoods, and we seek the shortest tour that visits all neighbor-
hoods. Until now constant-factor approximation algorithms have been known only
for cases where the neighborhoods are of approximately the same size. In this paper
we present the first polynomial time constant-factor approximation algorithm for
disjoint convex fat neighborhoods of arbitrary size. We also show that in the gen-
eral case, where the neighborhoods can overlap and are not required to be convex
or fat, TSPN is APX-hard and cannot be approximated within a factor of 391/390
in polynomial-time, unless P=NP.
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1 Introduction

The Traveling Salesman Problem (TSP) is one of the best known and most
widely studied optimization problems. In the Euclidean setting, of this prob-
lem, one is given a set of n points in the plane (or a higher-dimensional
Euclidean space), and one wants to find the tour—that is, closed curve—
of shortest length that visits all points from the set. A natural generalization
of the Euclidean TSP, first studied by Arkin and Hassin [3], is the TSP-with-
neighborhoods problem (TSPN): given a collection of n regions in the plane,
called neighborhoods, find a shortest tour that visits all neighborhoods. In
principle, a neighborhood can be any subset of the plane, although in the
papers dealing with TSPN the neighborhoods are often restricted to simple
shapes like disks or squares—see Figure 1 for an example. (Stated in the tradi-
tional TSP setting, one can phrase the problem as follows. A salesman wants
to meet some potential buyers, each of whom specifies a region in the plane
where he is willing to meet the salesman. The salesman now wants to find a
shortest tour such that he can meet with all potential buyers.) Since TSPN is
a generalization of the Euclidean TSP, it is NP-hard [8,16].

Fig. 1. An example of TSPN when the input neighborhoods are axis-parallel squares.

In the case when the neighborhoods may be disconnected then the problem
is called the One-of-a-Set TSP [14], and the tour is required to visit at least
one point from each set. It has also been referred to as the Errand Scheduling
Problem [19], since it models the problem of finding the best order in which to
perform a set of errands, each of which can be performed at some subset of the
nodes of a graph. This problem has applications in communication-network
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design [10], VLSI routing [17], and in the manufacturing industry [18]. For
more information see the survey by Mitchell [14].

Mata and Mitchell [12] provided a general framework that gives an O(log k)-
approximation algorithm for TSPN with time complexity O(n5), where k is
the number of neighborhoods and n is the total complexity of the input. The
time complexity was later improved by Gudmundsson and Levcopoulos [9]
to O(n2 log n). Although no algorithms with a better approximation factor
are known for the general TSPN problem, they are known for various special
cases. For example, Arkin and Hassin [3] gave O(1)-approximation algorithms
for the following cases: parallel unit-length segments, translates of a convex
polygonal neighborhoods and, more generally, for neighborhoods with diam-
eter segments that are parallel to a common direction and a ratio between
the longest and the shortest diameter that is bounded by a constant. Later,
Dumitrescu and Mitchell [7] extended and improved these results to include
neighborhoods with comparable diameter, unit disks, and infinite lines. Gud-
mundsson et al. [9] gave a polynomial-time approximation scheme (PTAS) for
the special case when the tour is short compared to the size of the neighbor-
hoods.

The results quoted above leave the main question in this area still open: is
there a constant-factor approximation, or perhaps even a polynomial-time
approximation scheme, for TSPN? In this paper we present two results, which
give a partial answer to this question.

First of all, in Section 2 we use a reduction from the Vertex-Cover Problem
to show that TSPN is APX-hard and cannot be approximated within a fac-
tor of 391/390 in polynomial time, unless P=NP. Thus, a polynomial-time
approximation scheme does not exist for TSPN, unless P=NP. This is in con-
trast to the standard Euclidean TSP, for which there is a polynomial-time
approximation scheme allowing one to compute, for any given ε > 0, a (1+ε)-
approximation in O(nO(1/ε)) time [4,15].

Second, in Section 3 we give a new constant-factor approximation algorithm
for TSPN in the case when the regions are disjoint convex fat neighborhoods
of constant complexity. Although we are not able to solve the general case, our
algorithm is able to handle cases that could not be handled before. In particu-
lar, all special cases that were successfully solved until now have one common
property: it is required that the input neighborhoods have roughly the same
size. The main contribution of our paper is a polynomial-time constant-factor
approximation algorithm for a class of arbitrary-size input neighborhoods,
namely for input sets S consisting of n disjoint convex fat neighborhoods. We
also assume that the neighborhoods have constant complexity—their bound-
aries consists of a constant number of algebraic arcs of bounded maximum
degree—so that basic operations such as computing tangent points comput-
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ing intersections with a line, and computing distances can be done in O(1)
time.

Before we proceed we introduce some notation. We use |τ | to denote the
length of a curve τ . In particular, for two points p and q, we use |pq| to denote
the length of the line segment pq. Furthermore, dist(σ, σ′) denotes the distance
between neighborhoods σ and σ′, that is, dist(σ, σ′) := minp∈σ,q∈σ′ |pq|. Finally,
for a set S of neighborhoods we use Topt(S) to denote an optimal (that is,
shortest) tour visiting each neighborhood in S.

2 TSPN is APX-hard

In this section we show that TSPN is APX-hard in the case when the neigh-
borhoods are non-convex and allowed to overlap. We use a reduction from
VertexCover, which is defined as follows. Let G = (V, A) be an undirected
graph. A vertex cover for G is a subset V ′ ⊂ V of vertices such that for any arc
(u, v) ∈ A we have {u, v} ∩ V ′ 6= ∅—that is, any arc has at least one incident
vertex in V ′. VertexCover asks for a vertex cover of minimum cardinal-
ity. Berman and Karpinski [5] have shown that VertexCover is hard to
approximate:

Fact 1 (Theorem 1 (iv) in [5]) VertexCover is APX-hard, and cannot be
approximated within a factor of 79/78 in polynomial time unless P=NP, even
when the degree of each vertex is bounded by four.

Next we perform the reduction from VertexCover. Let G = (V, A) be an
undirected graph with n vertices of maximum degree at most four. We can
restrict ourselves to considering connected graphs with at least n arcs since
the cases when this is not true easily can be handled separately: if the graph
is not connected then we can consider each connected component separately,
and in the case when the graph is a tree an optimal vertex cover can be found
by dynamic programming.

We will construct a set S(G) of n + |A| neighborhoods such that an approxi-
mation of Topt(S(G)) can be transformed into an approximation of a minimum
vertex cover for G. The construction uses two types of neighborhoods: points
and objects consisting of a line segment followed by a circular arc followed by
another line segment. (The circular arc can easily be replaced by a few line
segments.) The second type of neighborhoods will correspond to the arcs of
G, hence they are called arc objects. The points are called helper objects.

The helper objects. The helper objects are the points located at the ver-
tices of a regular n-gon of unit edge length.
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The arc objects. To define the arc objects, we first assign a location to each
node of G. Note that these locations are not neighborhoods in S(G). The n
node locations are defined as follows. For each edge pq of the n-gon defining
the helper objects, the point x outside the n-gon such that |px| = |qx| = 1
is a node location. We assign each node in V a unique node location in an
arbitrary manner. Let C be the circle with the same center as the n-gon
and at distance 2n from the node locations. We call the line segment of
length 2n connecting a node location to C the spoke of the node. Now the
arc object for an arc (u, v) ∈ A consists of the spokes of u and v and one
of the circular arcs (it doesn’t matter which one) along C connecting the
spokes.

1
1

1
node location

2n
spoke

arc objecthelper object

C

Fig. 2. The construction used in the reduction from VertexCover to TSPN.

Figure 2 illustrates the construction. The set of helper objects is denoted by
SH and the set of arc objects by SA. We let S(G) := SH∪SA. In the remainder
of this section we prove that if we can approximate Topt(S(G)), then we can
approximate a minimum vertex cover for G. From this it will follow that TSPN
is APX-hard.

We start by proving a bound on the length of any tour visiting a given subset
of the spokes.

Lemma 2 Let S be an arbitrary subset of the spokes in the construction above.
Then |Topt(SH ∪ S)| = n + |S|.

PROOF. An optimal tour for SH∪S has n+ |S| links, each connecting a pair
of neighborhoods in SH ∪ S. The distance between any two neighborhoods is
at least 1, so |Topt(SH ∪ S)| ≥ n + |S|. Obviously, a tour of this length also
exists: connect (the node location of) each spoke to the two closest helper
points and complete the tour by adding the appropriate subset of edges of the
n-gon.
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Next we show that an approximation for Topt(S(G)) induces an approximation
of a minimum vertex cover for G.

Lemma 3 Let T be a tour visiting each neighborhoods in S(G), such that
|T | = c · |Topt(S(G))| for some constant 1 ≤ c < 2. Then we can construct in
polynomial time a vertex cover for G whose cardinality is at most 5c− 4 times
the minimum cardinality of a vertex cover for G.

PROOF. Let m be the minimum cardinality of a vertex cover for G. Note
that m ≥ n/4, since the degree of the nodes in G is bounded by four and since
the number of arcs is at least n. By Lemma 2 this implies that there is a tour
for S(G) of length n+m. Since a tour of length n+m or less can never reach the
circular-arc parts of the arc objects, we even have that |Topt(S(G))| = n + m.
Using Lemma 2 again, and the fact that T cannot visit the circular-arc parts
of the arc objects (because c < 2), we see that T can visit at most

c(n + m)− n = ((c− 1)n/m + c)m ≤ (5c− 4)m

spokes. The nodes corresponding to these spokes form a vertex cover, which
can trivially be found in polynomial time.

The main result of this section now follows easily.

Theorem 4 TSP with neighborhoods is APX-hard, and cannot be approxi-
mated within a factor of 391/390 in polynomial time unless P=NP.

PROOF. Lemma 3 implies that if we can approximate TSPN within a factor
391/390, then we can approximate VertexCover (for graphs of maximum
degree four) within a factor 5 · (391/390) − 4 = 79/78. Lemma 1, however,
states that this is impossible in polynomial time unless P=NP.

3 A constant-approximation algorithm for fat neighborhoods

We now turn our attention to computing an approximation of the optimal
tour through a given set of α-fat disjoint bounded convex neighborhoods
of constant complexity. The definition of fatness we use was introduced by
Van der Stappen [20]. For convex neighborhoods it is basically equivalent to
other definitions [1,2,11,13].
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Definition 5 [20] Let α be a parameter with α ≥ 1. A neighborhood σ is
α-fat if for any disk D whose center lies in σ and whose boundary intersects
σ, we have area(D) ≤ α · area(σ ∩D).

In our setting of bounded planar neighborhoods it turns out that α ≥ 4 [20].

We shall need the following property of convex fat neighborhoods, which was
proved by Chew et al. [6]. Below we will use the notation ∂σ to denote the
boundary of σ.

Lemma 6 [6] Let σ be a convex α-fat neighborhood, and let p, q be two points
on ∂σ. Then the length of the shorter path from p to q along ∂σ is at most
(1 + 4α/π) · |pq|.

We also need the following lemma.

Lemma 7 Let ` and `′ be two parallel lines intersecting a convex α-fat neigh-
borhood σ. Let p and q be two points between ` and `′ and on opposite sides of
σ. Then

min{dist(q, `), dist(q, `′)} ≤ (1 + 4α/π) · |pq|.

PROOF. Define p′ and q′ to be the two intersection points of pq with ∂σ
closest to p and q, respectively—see Figure 3. (Possibly p′ = p and/or q′ = q.)
We have

` `′

p

p′

q

q′

σ

Fig. 3. Illustration for Lemma 7.

min{dist(q, `), dist(q, `′)}≤min{dist(q′, `), dist(q′, `′)}+ |qq′|
≤ |shorter path along ∂σ from p′ to q′|+ |qq′|
≤ (1 + 4α/π) · |p′q′|+ |qq′|
≤ (1 + 4α/π) · (|p′q′|+ |qq′|)
≤ (1 + 4α/π) · |pq|.
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3.1 The algorithm

Let S be a set of n disjoint bounded convex α-fat neighborhoods, for some
constant α (≥ 4). The overall approach we take is quite simple: for each
neighborhood σ ∈ S we compute a collection Rσ of representative points, and
then we compute a short tour that visits (that is, passes through at least one
point of) each setRσ. The latter step is done using an algorithm by Slavik [19].
His algorithm computes, for a collection of n planar point sets, in polynomial
time a tour that visits each set and whose length is at most 3k/2 times the
optimal length of such a tour, where k is the maximum cardinality of the sets.
Our goal is thus to construct the sets Rσ in such a way that (i) their maximum
cardinality is bounded by a constant, and (ii) the optimal tour visiting each
set Rσ is not much longer than the optimal tour visiting each neighborhood σ.

The representative points.

Fix an neighborhood σ ∈ S. The set Rσ of representative points of σ contains
at most three types of points: several corners, at most one anchor, and possibly
several guards. Next we define these points, and we prove some basic properties
of them.

3.1.0.1 The corners. Let γ be a small constant such that π/2 ≥ γ > 0
and t = 2π/γ is an integer; later we shall see that we need to choose γ so that
tan(γ/2) ≤ π/(21α). For some i with 0 ≤ i < t, we let pi be a point on ∂σ that
has a tangent making an angle iγ with the positive x-axis. Here the tangent is a
directed line, whose direction is consistent with a counterclockwise orientation
of ∂σ. For convenience, we assume that the points pi are unique; since the
neighborhoods have constant complexity—in particular, each neighborhood
has only a constant number of straight segments on its boundary—we can
easily enforce this by a suitable rotation of the coordinate axes. We call the
points pi the corners of σ. The portions of ∂σ connecting consecutive corners
are called sides of σ. The side connecting corners pi and pi+1 is denoted by
ei. It can happen that pi = pi+1, in which case the side ei can be ignored.
When necessary, we shall write pi(σ), ei(σ), and so on, to indicate to which
neighborhood the corner or side belongs.

Before we proceed, we need to introduce one more concept. Consider a side
ei of σ, connecting the corners pi and pi+1. For a point p and an angle φ, let
`(p, φ) be the line through p that makes an angle φ with the positive x-axis.
Define φi := (i + 1/2)γ − π/2. The slab of ei, denoted slab(ei), is the region
bounded by the lines `(pi, φi) and `(pi+1, φi). The part of this slab bounded

8



by ei, `(pi, φi), and `(pi+1, φi), and not containing σ, is called the semi-slab of
ei; it is denoted slab(ei)

+. Fig. 4 illustrates these definitions.

ei

iγ

γ/2

(i + 1)γ

γ/2
pi

pi+1

`(pi, φi)

`(pi+1, φi)slab(ei)+

Fig. 4. Corners, sides and (semi-)slabs.

Next we prove two properties of the partitioning into sides. The first lemma is
basically a consequence of the fact that a side is ‘almost straight’—the tangent
does not vary too much along a side—and that the slab boundaries are ‘almost
perpendicular’ to the side.

Lemma 8 Let σ be a convex neighborhood, and ei be one of its sides. Let ` be
any line parallel to and inside slab(ei), and let p := `∩ ei. Then for any point
q ∈ ei we have

|qp| ≤ (1/ cos(γ/2)) · dist(q, `).

PROOF. Observe that there must be a point on ei in between q and p whose
tangent is parallel to pq. Hence, the line containing pq makes an angle with `
that lies in the range [π/2−γ/2, π/2+γ/2]. It follows that |qp| ≤ (1/ cos(γ/2))·
dist(q, `), as claimed.

The next lemma uses the fact that the sides are almost straight, as well as the
fact that we deal with fat neighborhoods.

Lemma 9 Let σ and σ′ be two convex α-fat neighborhoods such that ei(σ
′)

lies at least partially inside slab(ei(σ))+. Let p be any point on ei(σ) such that
the line through p parallel to slab(ei(σ)) intersects σ′, and let q be any point
in σ′ ∩ slab(ei(σ))+. If γ is such that tan(γ/2) ≤ π/(21α), then

|pq| ≤ c · dist(ei(σ), ei(σ
′)),

for c = 2 + 10α/π.
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PROOF. Let B be the bounding box of σ′ ∩ slab(ei(σ))+ with edges parallel
and orthogonal to slab(ei(σ)). Let wB be the width and hB be the height of
B. See Figure 5.

p

B

wB

hB

h

R

s

s′

s′′

v v′

l′
l

h cos(γ/2)− 2wB sin(γ/2)

slab(ei(σ))

Fig. 5. The bounding box B, the segments s, s′, and s′′, and the lines l and l′, and
the region R.

The neighborhood σ′ intersects all four edges of B. Consider the vertical line
that cuts B into two equal halves; this line clearly intersects σ′∩ slab(ei(σ))+.
Let m ∈ σ′ ∩ slab(ei(σ))+ be a point on this vertical line. Consider the disk
D with diameter wB centered at m; D touches both vertical edges of B. The
boundary of D is intersected by σ′ and thus it follows that area(D ∩ σ′) ≥
area(D)/α ≥ πw2

B/4α. Since D ∩ σ′ lies completely inside B we also have
area(B) ≥ πw2

B/4α. As a result we obtain

hB ≥ (π/4α)wB. (1)

A point p on ei(σ) such that the line through p parallel to slab(ei(σ))+ in-
tersects σ′ lies inside the imaginary subslab of slab(ei(σ))+ bounded by the
supporting lines of the vertical edges of B. We denote by h the distance from
p to the bottom edge of the bounding box B. The distance from p to any
point q ∈ σ′ ∩ slab(ei(σ))+ is bounded by the distance from p to the farthest
corner of the bounding box B of σ′ ∩ slab(ei(σ))+, which in turn is bounded
by wB + h, so

|pq| ≤ h + wB. (2)

We shall see that h cannot be arbitrarily small.
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We define three segments s, s′, and s′′ orthogonal to and connecting the sup-
porting lines of the vertical edges of B. The segment s runs through p and
its left and right endpoints are denoted by v and v′ respectively; s′ is lo-
cated at a distance wB tan(γ/2) below the top edge of B; s′′ lies at a distance
wB tan(γ/2) above the bottom edge of B. Finally, we let l be the line through
v defining a clockwise angle of γ/2 with s, and l′ be the line through v′ defining
a counterclockwise angle of γ/2 with s.

The next two inequalities follow from a series of similar observations involving
the angle of γ/2. As σ′ ∩ slab(ei(σ))+ intersects the top edge of B (implying
that there is a point on ei(σ) that is above the top edge of B), ei(σ) cannot
reach the part of B below s′, as this would require a too steep descent of ei(σ).
As a result, the point p cannot lie below s′ and thus

h ≥ hB − wB tan(γ/2). (3)

By definition, the side ei(σ
′) touches the bottom edge of B. The bounds on

its tangents dictate that ei(σ
′) ∩ slab(ei(σ))+ remains completely inside the

portion of B below s′′. Similarly, the bounds on the tangents of ei(σ), which
contains the point p, imply that ei(σ) remains completely inside the region R
consisting of points that are above l or above l′. The distance dist(ei(σ), ei(σ

′))
is therefore bounded from below by the distance between R (the upper shaded
region in Figure 5) and the portion of B below s′′ (the lower shaded rectangle
in Figure 5), so

dist(ei(σ), ei(σ
′)) ≥ h cos(γ/2)− 2wB sin(γ/2). (4)

The inequality tan(γ/2) ≤ π/21α implies that sin(γ/2) ≤ π/21α, and that
cos(γ/2) > 0.98. The ratio

h + wB

h cos(γ/2)− 2wB sin(γ/2)

is decreasing for increasing h in the range given by inequality (3). As a conse-
quence it attains its largest value when h is as small as possible. By applying
inequalities (1) and (3), and the bounds on sin(γ/2), cos(γ/2), and tan(γ/2)
we get

h + wB

h cos(γ/2)− 2wB sin(γ/2)
≤ ((π/4α)wB − (π/21α)wB) + wB

0.98((π/4α)wB − (π/21α)wB)− 2(π/21α)wB

=
17π + 84α

0.98 · 17π − 8π

≤ 2 + 10α/π
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Combination of this bound with inequalities (2) and (4) gives the final result.

3.1.0.2 The anchor. Consider a side ei(σ). We say that ei(σ) dominates
a side ei′(σ

′) of another neighborhood σ′ if i = i′ and σ′ ⊂ slab(ei(σ))+. We
define an anchor for σ if σ has a side that dominates a side of another neighbor-
hood, as follows. Of all the sides of other neighborhoods that are dominated
by any of the sides of σ, take the one whose distance to its dominating side is
minimal. Suppose this ‘closest dominated side’ is ej(σ

∗). Let ` := `(pj(σ
∗), φj).

Note that ` is parallel to slab(ej(σ)). Then anchor(σ), the anchor of σ, is the
point ` ∩ ej(σ)—see Figure 6.

σ

σ∗
anchor(σ)

ej(σ)

ej(σ∗)

Fig. 6. The anchor of a neighborhood σ.

3.1.0.3 The guards. Consider a side ei of σ. We call ei extreme if all other
neighborhoods σ′ intersect the semi-slab slab(ei)

+. For each extreme side of σ,
we add one or two more representative points, called guards. They are defined
as follows.

guards guard(a) (b)

σ σ

Fig. 7. The guards of a neighborhood σ.

Suppose there are lines parallel to and inside slab(ei) that stab all the neigh-
borhoods in S. The collection of all such stabbing lines forms a subslab of
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slab(ei). We add two guards on ei to Rσ, namely the intersection points of the
lines bounding this subslab and ei—see Figure 7(a).

If there are no stabbing lines, then there must be a line ` parallel to and
inside slab(ei) such that both half-planes defined by ` fully contain at least
one neighborhood of S. (Thus the line ` separates at least two neighborhoods.)
In this case we add one guard to Rσ, namely the intersection point of ` and
ei—see Figure 7(b).

3.2 The analysis

To show that our algorithm achieves a good approximation factor, we have to
show that the optimal tour visiting each set Rσ is not much longer than the
optimal tour visiting each neighborhood σ.

Theorem 10 Let S be a collection of n disjoint convex α-fat neighborhoods in
the plane, and let R(S) := {Rσ : σ ∈ S} be the collection of sets of represen-
tative points, as defined above. Let Topt(R(S)) be an optimal tour visiting each
set Rσ ∈ R(S), and let Topt(S) be an optimal tour visiting each neighborhood
σ ∈ S. Then

|Topt(R(S))| ≤ (1 + c) · |Topt(S)|,
for c = (4 + 20α/π)t (where t = 2π/γ depends on α).

PROOF. The strategy of our proof is to add detours to Topt := Topt(S), of
total length c · |Topt|, such that the extended tour visits each set Rσ.

Let pstart be an arbitrary point on Topt outside all the neighborhoods. Imagine
traversing the tour (in some arbitrary direction), starting at pstart. We define
the entry of an neighborhood σ ∈ S to be the point on σ where the tour first
meets σ during the traversal. If the entry of σ happens to be one of its corners,
then the set Rσ is already visited by Topt and no detour has to be added for σ.
The neighborhoods for which this is not the case have their entry in the interior
of one of their sides. We partition the collection of these neighborhoods into t
subsets, S0, . . . ,St−1, such that Si contains the neighborhoods σ whose entry
lies in the interior of ei(σ).

Fix a non-empty subset Si. We claim that we can add detours of total length
(4+20α/π)|Topt| to Topt, such that each set Rσ with σ ∈ Si is visited. Proving
this claim will establish the theorem. We distinguish two cases.

Case (i): |Si| > 1.
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Number the neighborhoods in Si as σ1, σ2, . . . in the order as they are en-
countered during the traversal of Topt. Consider a neighborhood σj ∈ Si,
and let pi := pi(σj) and pi+1 := pi+1(σj). Denote the entry of σj by qj, and
let Topt(qj, qj+1) be the portion of Topt from qj to qj+1, with indices taken
modulo (|Si|+ 1). We have three subcases.
• If qj+1 6∈ slab(ei(σj))

+, then we add the shorter of the two detours qjpiqj

and qjpi+1qj to Topt.
If qj+1 6∈ slab(ei(σj)) then Topt(qj, qj+1) crosses one of the bounding lines

of slab(ei(σj)) and we can use Lemma 8 to bound the length of the detour
by 2 · (1/ cos(γ/2)) · |Topt(qj, qj+1)|. Otherwise qj+1 lies inside slab(ei(σj))
but on the opposite side of σj as seen from qj. In this case we can use
Lemma 6 to bound the length of the detour as follows. Let q′ 6= qj be the
intersection point of qjqj+1 with ∂σj.

min{|qjpiqj|, |qjpi+1qj|}≤ 2 · |shortest path along ∂σj from qj to q′|
≤ 2 · (1 + 4α/π) · |qjq

′|
≤ 2 · (1 + 4α/π) · |qjqj+1|
≤ 2 · (1 + 4α/π) · |Topt(qj, qj+1)|.

• If qj+1 ∈ slab(ei(σj))
+ and σj+1 lies only partly in slab(ei(σj))

+, then
we add one of the two detours qj+1piqj+1 and qj+1pi+1qj+1 to Topt as fol-
lows. Let p ∈ {pi, pi+1} be a corner of ei(σj) such that the bounding
line of slab(ei(σj)) that passes through p intersects σj+1. We add the de-
tour qj+1pqj+1, and use Lemma 9 to bound the length of the detour by
2 · (2 + 10α/π) · |Topt(qj, qj+1)|.

• If qj+1 ∈ slab(ei(σj))
+ and σj+1 lies entirely in slab(ei(σj))

+, then we add a
detour to anchor(σj). (Note that anchor(σj) must exist in this case.) More
precisely, if σ∗ denotes the neighborhood that determines anchor(σj), then
we add a detour from the entry of σ∗ to anchor(σj) and back. (That σ∗

need not be in Si does not matter.)
Let ek(σj) be the side containing anchor(σj). Then, using Lemma 9 and

the definition of the anchor, we have

|length of detour| ≤ 2 · (2 + 10α/π) · dist(ek(σj), ek(σ
∗))

≤ 2 · (2 + 10α/π) · dist(ei(σj), ei(σj+1))

≤ 2 · (2 + 10α/π) · |Topt(qj, qj+1)|.
The total length of the detours we add in Case (i) is bounded by

∑

σj∈Si

2·max{ 1

cos(γ/2)
, (2+

10α

π
)}·|Topt(qj, qj+1)| ≤ max{ 2

cos(γ/2)
, (4+

20α

π
)}·|Topt|.

Case (ii): |Si| = 1.

Let σ be the neighborhood in Si and let q be its entry. There are two
subcases.
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• If Topt does not stay inside slab(ei(σ))+, then we can follow the proof of
the first subcase of Case (i) to show that we can add a detour for σ of
length at most max{1/ cos(γ/2), (1 + 4α/π)} · |Topt|.

• Otherwise Topt lies completely inside slab(ei(σ))+, so ei(σ) is extreme. In
this case we add the shortest detour from q to a guard on ei(σ) and back.

To bound the length of the detour, first suppose that there is no stabbing
line for S parallel to and inside slab(ei(σ)). In this case we added a single
guard on ei(σ), which lies on a line ` that has neighborhoods on both sides
of it. But then Topt must cross `, so we can use Lemma 8 to bound the
length of the detour by (1/ cos(γ/2)) · |Topt|.

Next suppose that there is a collection of lines inside and parallel to
slab(ei(σ)) that stab all neighborhoods. Let ` and `′ be the two lines
bounding the subslab of all such stabbing lines. The guards we added in
this case were the points `∩ei(σ) and `′∩ei(σ). If Topt does not lie entirely
inside the subslab, then we can use Lemma 8 again to bound the length of
the detour by (1/ cos(γ/2)) · |Topt|. If, on the other hand, Topt stays inside
the subslab, then we can bound the length of the detour as follows. Let σ′

be the neighborhood that lies directly below σ inside the subslab. Clearly
Topt has to cross σ′ to reach a point p below σ′ (assuming there are at least
three neighborhoods). Lemma 7 tells us that min{dist(q, `), dist(q, `′)} ≤
(1 + 4α/π) · |pq|. If we combine this with Lemma 8 and use the fact that
Topt ≥ 2|pq|, then we see that we can bound the length of the detour by
((1 + 4α/π)/ cos(γ/2)) · |Topt|.

We conclude that in Case (ii) we can bound the length of the detour by

( 1+4α/π
cos(γ/2)

) · |Topt|.
The condition tan(γ/2) ≤ π/(21α) needed for Lemma 9 implies that

0.98 < cos(γ/2), so the length of the detour in both cases can be bounded
by (4 + 20α/π)|Topt|. Since there are at most t non-empty subsets Si, we
obtain that c = (4 + 20α/π)t. Notice that t = 2π/γ depends on α because
of the condition on γ above.

Our algorithm computes an approximation of the optimal tour visiting each
set Rσ, using Slavik’s algorithm. The latter algorithm has an approximation
factor 3k/2, where k is the maximum cardinality of any of the sets. In our
case, the maximum size of Rσ is 3t + 1 (t corners, 2t guards and 1 anchor),
where t = t(α) is the number of sides of a neighborhood in S. Combining this
with the theorem above, we get the following result.

Corollary 11 Let S be a collection of n disjoint convex α-fat neighborhoods
of constant complexity in the plane. We can compute in polynomial time a tour
visiting each neighborhood in σ, whose length is at most 3(3t + 1)/2 · (1 + c)
times the length of an optimal tour, where t = π/arctan(π/21α) and c =
(4 + 20α/π)t.
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Remark 12 A very rough estimate of the approximation factor would be
12000α3. A more careful analysis would give a better value, although still large.
For example, in the case when the input is a set of disjoint axis-aligned squares
the approximation factor can be improved to roughly 93. There are two main
reasons for this: (1) if the slabs are chosen to be axis-aligned then a square
can have at most one extreme edge, and (2) there are only four squares with
extreme edges and each of these only need two corner points. Hence, the num-
ber of representative points is at most five per square. Summing up the lengths
of the detours we get 5 · 3

2
(4 · 2√2 + 1) < 93.

In our analysis we assume that a neighborhood can have 2t guards which is a
very conservative bound. If a neighborhood has many extreme edges then most
guards will coincide with the corners, hence we expect the number of guards to
be much smaller than the number of corners.

To improve the approximation factor one might be tempted to increase the
value of t, i.e. the number of representative points, but due to the limitations
of our proof technique this will only increase the value of the approximation
factor.

4 Conclusions and open problems

In this paper we have made two steps towards a better understanding of the
approximability of TSPN. We have shown that in the most general setting—
intersecting and non-convex neighborhoods—TSPN is APX-hard, and cannot
be approximated within a factor 391/390, unless P=NP. We also presented a
constant-factor approximation algorithm for disjoint neighborhoods that are
convex and fat. This is the first constant-factor approximation algorithm that
does not require the neighborhoods to have roughly the same size.

Despite this progress, the problem is far from resolved. Probably the most
interesting case to focus on is that of disjoint convex neighborhoods. Here the
best known approximation factor is O(log k) [9,12], where k is the number
of neighborhoods. In fact, even for horizontal line segments this is the best
known bound. We have tried to apply our techniques to obtain a constant-
factor approximation for this case, but without success. There might even be
a polynomial-time approximation scheme for disjoint convex neighborhoods;
our lower bound result uses intersecting non-convex neighborhoods, and it
seems hard to get around this.
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