Homework assignment no. 3

1. Given n inequalities $a_{i} x+b_{i} y \geq 1$, for $i=1, \ldots, n$, describe an expected linear-time algorithm that finds a point (x, y) (if exists) that (i) satisfies all these inequalities, and (ii) is closest to the origin under the L_{1} distance (where $d_{1}(p, q)=\left|q_{x}-p_{x}\right|+\left|q_{y}-p_{y}\right|$).
2. Construct the search structure for the given scene, assuming s_{i} is inserted in the i 'th iteration, $i=1,2,3,4$. Draw the structure after each insertion.

3. Let P be a set of n points in the interior of an axis-parallel rectangle R. Assume that the points in P represent the houses in some neighborhood R. One needs to determine the best location for a garbage dump in R. That is, one needs to find a point $g \in R$ that maximizes the expression $\min _{p \in P} \operatorname{dist}(p, g)$. Give an $O(n \log n)$-time algorithm for finding such a point g.
4. Let P be a set of n points in the plane. Prove that $\operatorname{MST}(P)$ is contained in $\mathrm{DT}(P)$, that is, the edge set of the minimum spanning tree of P is contained in the edge set of the Delaunay triangulation of P.

Submission: January 3, 2019.

