Homework assignment no. 1

1. Prove that the problem of computing the convex hull of a set of n points in the plane has an $\Omega(n \log n)$ lower bound. Hint: Show that a set of n real numbers can be sorted in time $O(n)$, plus the time needed for a single convex hull computation.
2. A slab is a region of the plane that is defined by two parallel lines. Its width is the distance between the lines defining it. Let P be a set of n points in the plane. The width of P is the width of a minimum-width slab that contains P. Describe an $O(n \log n)$-time algorithm for computing the width of P. (Hint: Show that the width of P is determined by a pair of parallel lines supporting the convex hull of P, where at least one of them contains an edge of the convex hull.)
3. Let P be a set of n points in the plane. A point $p \in P$ is h-maximal, for $0 \leq h \leq n-1$, if the number of points in P which are both above and to the right of p is at most h. p is maximal if it is 0 -maximal.
(i) Give a four-point example P that has both a maximal point in the interior of $C H(P)$, and a vertex of $C H(P)$ that is not maximal.
(ii) Describe an $O(n \log n)$-time algorithm to compute the h-maximal points of P, where $|P|=n$ and h is a non-negative integer.
4. Let C_{1} and C_{2} be two convex polygons, each with n vertices. (Each polygon is given by the sequence of its vertices in clockwise order.)
(i) Show that the number of intersection points between edges of C_{1} and edges of C_{2} is $\Theta(n)$.
(ii) Describe an $O(n)$-time algorithm for computing all these intersection points.
5. Let S_{1} be a set of n disjoint horizontal segments, and let S_{2} be a set of n disjoint vertical segments. Describe an $O(n \log n)$-time algorithm for counting the number of intersections in $S_{1} \cup S_{2}$.

Submission: November 14, 2018.

