Homework assignment no. 1

1. Prove that the problem of computing the convex hull of a set of \(n \) points in the plane has an \(\Omega(n \log n) \) lower bound. Hint: Show that a set of \(n \) real numbers can be sorted in time \(O(n) \), plus the time needed for a single convex hull computation.

2. a. Let \(P_1 \) and \(P_2 \) be two disjoint convex polygons with \(n \) vertices in total. Describe an \(O(n) \) algorithm that computes the convex hull of \(P_1 \cup P_2 \).
 b. Develop an \(O(n \log n) \) algorithm for computing the convex hull of a set of \(n \) points in the plane that is based on the algorithm above.

3. Let \(C_1 \) and \(C_2 \) be two convex polygons with \(n_1 \) and \(n_2 \) vertices, respectively. (Each polygon is given by the sequence of its vertices in clockwise order.) Describe an \(O(n) \)-time algorithm for computing \(C_1 \cap C_2 \), where \(n = n_1 + n_2 \).

4. Let \(S_1 \) be a set of \(n \) disjoint horizontal segments, and let \(S_2 \) be a set of \(n \) disjoint vertical segments. Describe an \(O(n \log n) \)-time algorithm for counting the number of intersections in \(S_1 \cup S_2 \).

5. Let \(l_1, \ldots, l_n \) be \(n \) given lines in the plane, no two parallel and no three meeting at a common point. Let \(S \) be the set of their \(n(n-1)/2 \) intersection points. Give an algorithm for calculating the convex hull of \(S \) in time \(O(n \log n) \). (In particular, you cannot afford to calculate the entire set \(S \).) Prove your claims.