
Choosing nodes in parametric 
curve interpolation 
E T Y L e e  

Perhaps a few words might be inserted here to avoid 
In parametric curve interpolation, the choice of the any possible confusion. In the usual function interpolation 
interpolating nodes makes a great deal of difference in 
the resulting curve. Uniform parametrization is generally setting, the problem is of the form P~ = (x, y~) where 

the x~ are increasing, and one seeks a real-valued 
unsatisfactory. It is often suggested that a good choice polynomial y = y(x) so that y(x~)= y~. This is identical 
of nodes is the cumulative chord length parametrization. to the vector-valued polynomial Examples presented here, however, show that this is not 
so. Heuristic reasoning based on a physical analogy leads P(x) = (x, y(x)) to a third parametrization, (the "centripetal model'), 
which almost invariably results in better shapes than with x as the parameter, except with the important 
either the chord length or the uniform parametrization. distinction that here the interpolating conditions 
As with the previous two methods, this method is 
"global'and is 'invariant" under similarity transformations, y(x~) = y~ are 
(It turns out that, in some sense, the method has been 
anticipated in a paper by Hosaka and Kimura.) P(x~) = P~, 0 <~ i <~ n 

that is, the nodes are fixed as the x-coordinates of the computer-aided design, parametric curve interpolation, heuristic 
reasoning, centripetal model data points; there is no room for choice. 

From now on the parametric interval shall be 
normalized so that to = 0, t n = 1, to conform to usual 

Consider the problem of passing a planar curve through customs. One simple choice of the nodes is the uniform 
a given set of points Pi = (x, y~), 0 ~< i ~< n, in the order parametrization, 
indicated. It is assumed that no two consecutive points 
are the same. The curves of particular interest are those t, = i/n, 0 <~ i <~ n (2) 
defined parametrically by vector-valued polynomials of 
degree n, or splines, generally of degrees lower than n. But this is generally unsatisfactory, and is usually 
To fix ideas, the discussion will start with polynomials; dismissed for the obvious reason that the nodes have 
what is said applies equally to splines with minor nothing to do with the distribution of the data points. 
modifications. This is done partly for simplicity in (See Figure l(a). The appearance of the cusp may seem 
description (the idea being the same), and partly 
because the effect of node choices is most pronounced 
in the polynomial context. Thus, let the curve be ~ Chord 
P(t )=(x( t ) ,y( t ) ) ,wi thx( t ) ,y( t )po lynomia lsofdegree ~ y u ~ i ~ ~  h 
n. The interpolating conditions are 

P(t~)=P, O ~ i ~ n  (1) 
a b 

where to < tl < " "  < tn are certain chosen parameter 
values called the interpolating nodes. Equation (1) is a ~ a  ~ Chor~ 
nonsingular linear system for the n + 1 vector coefficients = ' ' ' / z ¢ ~  ~ ' ~  gth 
of P(t). Clearly, different choices of the nodes (t~)g lead 
to different curves. A designer is often concerned with 
obtaining a 'fair' or 'pleasing' curve through the data c d 
points, so the question is: how are the nodes chosen 
to best achieve this? Thus, the problem is one of Figure 1. Cubic polynomials (a-c) and natural cubic 
parametrization of the data points, splines (d) through 4 data points: {x, y}  = {(0, 0), (26, 

In this paper, symbols in capital letters are reserved 24), (28, 24), (54, 0)}. The data points are at the common 
for points or vectors in the plane, with I PI denoting intersections of the curves. Note that in (c), with 
the Euclidean norm of P. increasing (or decreasing) exponent e from 0.5, the 

curve tends in shape to that of the chord length (or 
Boeing Commercial Airplanes, PO Box 3707, M/S 6F-27, Seattle, WA uniform) parametrization. In (a), y = y(x) is the ordinary 
98124, USA polynomial obtained with the nodes 0, 26/54 28/54, 1 
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puzzling to the unwary. However, note that even full rounded curve as in Figure l(a) is desired, the 
though x(t) and y(t) are polynomials, neither x nor y designer would most likely want to specify the four 
need be a polynomial function of the other. A cusp data points nearly evenly spaced; whereas with the 
may occur where x'(t) and y'(t) both vanish.) It has nonuniform distribution of points there, most likely 
been suggested TM (in the spline context) and generally the designer has something else in mind: something 
accepted that a better choice is the cumulative chord that's rounded at the top but close to being straight 
length parametrization; that is, to = 0, and on the two sides. Similar comparisons of the effects of 

uniform against chord length parametrizations have 
t i - t , _ l  = [P~- P~-ll 1 <~i<~n (3) been noted elsewhere s~, 

£~=1 (P j -  P~-I [ ' The terms 'fair' and 'pleasing' are vague and difficult 
If the data points are more or less evenly spaced, this to quantify; and so it is hard to say what constitutes 
is approximately the uniform parameterization. So the a good set of nodes. The comments above, on the 
advantage of this choice must be evidenced when the intention of the designer, suggest that at least one 
points are quite unevenly spaced. However, a look at should strive for a smooth curve that more or less 
some of the examples (especially Figures 2 and 4) shows conforms in shape to the polygonal curve defined by 
that the resulting curve can actually be extremely the data points. It may be argued that the designer, 
disturbing: it may wander far off from the defining data not satisfied with a given result, can always try to 
polygon. Even for the curve in Figure l(a) obtained by improve by adding in more points. (This is, of course, 
assignment (3), it may be questionable whether the only practical in the spline context; for polynomials the 
result approaches what the designer has in mind. If a degree will be correspondingly raised.) But this may 

take many iterations, and it is clearly desirable to use 
PP as small a number of data points as possible for an 

intended shape. Furthermore, there are other applications 
p calling for interpolation in which data are obtained from 

processes where there is no control over the spacing 
of the points. 

PP-- P Some recent works have appeared that result in 
some improvements over the chord length parametriza- 

PP discussions). Other experiments have been reported in 

tion. In Topfer 7 and Marin 8, the nodes are derived 
through optimization techniques. But optimization 
methods are expensive, and moreover it is not entirely 
clear what objective function should be used (see later 

Hartley and Judd 6. 
In this paper a node assignment is proposed which 

a b c d is as simple as but almost invariably works much better 
than the chord length parametrization. The designer 

Figure 2. Cubic polynomials (denoted by P) and natural need only input a small number of points; the resulting 
cubic splines (denoted by PP) through 4 points: { x, y} = curve conforms well to the data polygon. The reasoning 
{(0, 0), (9, 39), (10, 40), (13, 40)}. (a) Chord length, here is heuristic but is based on a physical analogy. 
(b) uniform, (c) centripetal, (d) e = 0.37 Further refinements should be possible, but even at this 

stage it should be very useful in practice, especially 
- since most CAD systems at present use either the 

uniform or the chord length parametrization. 

CENTRIPETAL MODEL 

To start, it may be asked why the chord length 
parametrization seems to have been generally taken 
for granted (indeed, so much so that it has sometimes 
been named the 'natural parametrization'9). Apart from 
some justification offered in Epstein 1°, the main reason 
for this choice seems to be that it roughly approximates 
the arc length parametrization. In fact, it has been 
suggested (though not really recommended) that if 
desired, one may iterate until the parametrization 
becomes the arc length parametrization of the resulting 

a b c curve (see Ahlberg et al. ~, p. 51; Sp~th 4, p. 65; de Boor 2, 
Figure 3. Cubic polynomials, with the same data as in p. 318; Brodlie 3, p 19). But why arc length? In analysing 
Figure 2: (c) is obtained by directly varying the nodes, an existing curve, it is customary to use arc length as 
This example is particularly sensitive to variation in node the parameter since, among other things, the first two 
locations. (a) Centripetal; (b) e = 0.37; (c) t~ = 0.65, derivatives have geometric significance, being theun i t  
t2 = 0.76 tangent vector and the curvature vector, respectively. 
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where s, T, N and K denote respectively the arc length, 
unit tangent, unit normal and curvature at P(t). It is 

j assumed that the driver is not reckless; that is, that 
there is no sudden change in speed, so that the 
tangential acceleration d2s/dt 2 may be ignored. Thus 

¢ ~ , the comfort of the driver or the safety of the car 
depends on having the normal or centripetal acceleration 

,. ~ • lc(ds/dt) 2 

a b c varying gently within certain bounds. 
Figure 4. Cubic polynomials through 4 points. The last The aim here is to obtain an a priori estimate for a 
arm of the data polygon is rotated; the nodes remain suitable choice of the arrival time ti for P~. One reason 
the same in each method. Data for the top figure: that the role of d2s/dt 2 is discounted is that otherwise 
(x, y}  = ((0, -0.15),  (9.2, -0.'15), ('10, 0), (10, 0.583"1)}. a simple choice seems hopeless. Since the curve does 
In the middle figure, the last point is changed to (10.5, not yet exist, some simplifying assumptions are necessary. 
0.3). In the bottom figure, the last point is (9.5, 0.3). (a) All quantities will now be replaced by their average 
Uniform, (b) chord length, (c) centripetal values. For the arc between P,-1 and Pi, the average 

¢ I j speed is roughly 

ds I P, - -  P,-1 I 

j j dt ti -- ti_ 1 

Moreover, assuming no inflections, the average curvature 
over the arc is the change in tangent directions divided 
by the arc length (recall ~N = dT/ds). Thus 

a b C 

Figure 5. Same data as in Figure 4, but with natural cubic K ~, I Pi - P,- I (4) 
splines. (a) Uniform, (b) chord length, (c) centripetal 1 

where ~ is the angular change from P~_I to P,. Finally, 
But here the problem is of a different nature: here the it is postulated that, for the comfort of the driver, the 
aim is to create a curve through a given set of points, centripetal force over this arc should be kept roughly 
and it is not clear why one should strive for the arc proportional to this angular change, 
length parametrization, nor is it clear that the suggested 
iterations should even converge. If the curve is regarded K(ds/dt)2 ~ (~/c2 (5) 
as the trajectory of a particle, chord length parametriza- 
tion implies approximately uniform speed of traversal. This last assumption is made mainly for the simplification 
Does this somehow ensure 'fair' shape? below. Note that there is no simple quantitative 

Imagine someone driving on a curved highway, criterion as to the 'optimal' size of the centripetal force 
It becomes quite obvious that the driver does not try to begin with. Admittedly assumption (5) is rather 
to maintain an approximately uniform speed. Anticipating arbitrary and open to question. Still, it d6es not seem 
a sharp turn in the road, the driver would significantly unreasonable: for a given I P~- P,-1 I, the larger the ~ 

the more centripetal force the driver expects to tolerate. slow down, because the centripetal force necessary to 
keep the driver in a natural posture or to keep the car Putting these .together, 
from skidding becomes too great if the speed is not 
reduced. A little closer to the problem described here 5i ('1 ~-P,-lly 5~/c 2 
is the picture of the driver choosing his travel P(t) on I P,--~'~ 11 \ t, ti_l 
an open field to pass successively through a given set 
of points, somewhat like a slalom course. (By 'travel' or If 5, # 0, the following estimate is obtained: 
'trajectory', the function P(t) is emphasized, not just the 
locus of the positions.) The considerations are essentially t~ - t~_ 1 = c] P, - P~_ 1 ] 1,.2 
the same. In a way, 'fair' or 'pleasing' is identified with 
the comfort of the driver during the travel, which will be kept in use even when 5~ = 0. Normalizing, 

The acceleration of the car moving according to P(t) a parametrization by the cumulative square root of the 
is (by chain rule) chord lengths is reached: t o = 0, and 

d2P d2sdP (ds~ 2d2P t i - t , _  IP'-P'-IlI"2 
dt 2 - dt 2 ds + \ d t J  ds 2 1 = Z~=l I P j -  P,-, 11/2' 1 ~< i ~< n (6) 

d2s ( d s y  With nearly equally spaced points, all three para- 
= d T T + \ d t ]  KN metrizations (2), (3) and (6) are about the same. In all 
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cases (except one) tested, where the data points are (Schoenberg-WhitneyL Here, for odd degree splines, 
unevenly spaced, the square root method (6)invariably the knots will simply be chosen to coincide with the 
gives much better results than methods (2) or (3); and nodes. Specifically, with d the degree, the knots are 
this, in the final analysis, is the only justification for the ~ ,J . . . . .  ~0 = t,, 
various drastic simplifications made above. The on(; 
exception is when all the data points are distributed ~ =  t,, 1 ~<i~< n - 1  
monotonically along a straight line, in which case 
clearly the chord length method (3) gives a uniform and~n= . . . .  ~r,+j= C~. The dimension of such a spline 
sweeping of the line segment. The centripetal model is space is n + d, so in addition to the n + 1 interpolating 
based on the curving of the road; if the road is straight, conditions (1), an extra d - 1 conditions are needed, 
there is no need to vary speed. If assignment (6) were which may conveniently be assigned symmetrically, 
to be used in this situation, then with certain half at each end. It is well known that the resulting 
distributions of points, the resulting curve, even though system is solvable, with various choices of the extra 
on a straight line, would have a small 'doubling-back' conditions. For the examples here, only cubic splines 
or 'overshoot' effect near the end points, as will happen are considered (d = 3), with the end conditions chosen 
even more so with method (2). (It can be shown that as the 'natural' conditions 
such an effect, however, cannot occur if P(t) is 
quadratic.) This point could perhaps be dismissed by P"(0) = 0, P"(1) = 0 (7) 
an appeal again to the psychology of the designer. If a 
single straight line segment is intended, it suffices to For even degree splines, the interior knots may be 
specify the two end points, or if for some reason the chosen as the midpoints of the nodes. That is, the knots 
designer wants to input several points, most likely the are ~_~ . . . . .  ~0 = to, 
points would be chosen more or less spaced evenly, 
in which case all three methods perform similarly. In ~ =  (t, ~ + tj)/2, 1 <~ i<, n 
case the data polygon is not a line but contains 
several consecutive collinear or nearly collinear segments, and ~n +~ . . . . .  ~,~ + ~J+ 1 = tn. The spline space now has 
test examples show that the resulting curves are still dimension n + d + 1, so that again d/2 conditions may 
very satisfactory. See Figures 4, 5, 7 and 8. be assigned symmetrically at each end (see de Boor 2, 

The method described here still does not fully take p. 76). 
into account the geometry of the data polygon. It The cubic interpolating splines in this paper are 
ignores the turnings of the successive arms of the computed using CUBSPL in de Boor 2, p. 57. (Cubic 
polygon (due to the assumption (5)). However, test polynomials can also be obtained by the same routine, 
examples are quite satisfactory. See Figures 4 and 5, using the'not-a-knot'endconditionsinsteadofconditions 
where one arm is rotated while all arm lengths are fixed. (7).) The interpolating polynomials are computed using 

the Newton form, the coefficients of which are divided 

EXAMPLES AND COMMENTS 

The considerations in the previous section do not - ~'---'/ 
depend on the curve being in the class of polynomials 

1 or splines. In order for equation (1) to be solvable, P(t) 
can be a 'generalized polynomial' spanned by a system a~ b c 
of n + 1 functions unisohent over [0, 1]. But only 
polynomials and splines seem to be of current interest 
in CAD. 

The case of interpolation by sptines does not exactly 
fit into the pattern of equation (1), and so perhaps needs 
some explanation. Generally the knots of the spline ~ 
need not be the same as the nodes of interpolation, ~ y 
and for a system like equation (1) to be solvable, there u ~ f o ~ m ~  
is an interplay between nodes and knots involved Centripetal 

Chord l e n g t h /  234~u d I' 

Figure 7. Natural cubic splines. Data." {x, y} = {(0, 41), 
('10, 41), (31, 41), (40.8, 41), (41, 40.8), (41, 31), (41, 10), 

1 n i f o r m  (4"~, O)}. (a) shows the chord length parametrization and 
the centripetal model superimposed; (b ) the centripetal 

Figure 6. Natural cubic splines through 5 points: { x, y } = model; (c) the uniform parametrizaUon; (d) shows the 
{(0, 0), (10, 25), (10, 24), (11, 24.5), (33, 25)} different behaviours near the corner 
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, , ~ . , . , ! ~ - ~ ' ~ ,  / - - ,  modification is the general exponent method: to = 0 and 
/ - -/ p e 

]Pi-- /-11 1 <~i<~n (8) \ / t , - t , _ l  £~= l lp j_  pj_lle, Chord length d l e n g t h /  

~ which reduces to method (2) with e = 0 ,  and to 
Centripetal Centripetal method (3) with e = 1. As expected, decreasing the 

value of e causes the resulting curve to tend in shape 
to that of the uniform parametrization, while with 
increasing e the curve tends to that of the chord length 

a b parametrization. Thus in Figure 1, a more satisfactory 
.._, curve results with e = 0.65, while in Figure 3, e = 0.37 

seems better in that between data points 1 and 2 the 
curve is straighter. Note that t =  (tl . . . .  , tn-1), as a 
function of e, 0~<e~<l,  is a curve in the simplex 
{ t : 0  < t~ < . . .  < tn_~ < 1}, and it is quite conceivable 
that better choices of l may be found off this curve. 
For example, in place of a single e, different values ei 
might be determined over different arms in assignment 
(8). (Such a scheme would, however, destroy the 

C d invariance with respect to dilations.) In Figure 3(c), the 
result of tl = 0.65, t2--0.76 does not seem obtainable 

Figure 8. Natural cubic splines by chord lengths and by by simply varying e in assignment (8). Such an 
centripetal parametrization. In the former method, da ta  experimentation (choosing various values of ti) is clearly 
points must be increased to decrease the undulations; laborious and not practical unless n is small. In any 
while by the latter method, all cases remain about the case, the centripetal or the general exponent method 
same. The data are (a): {x, y}  = {(0, 47), (40.95,41), (41 ,  provides fairly good results and can be used as a guide 
40.95), (41, 0)}; (b): as for (a) plus (31, 41) and (41, to further varying the nodes if necessary. Finally, it is 
31); (c): as for (b) plus (10, 41), (27, 41), (41, 21) and reassuring to note from the figures that in the spline 
(47, 10); (d): as for (c) plus (35, 47) and (41, 35) case, the centripetal models are already very satisfactory, 

and generally we should find no need to vary the 
differences computed recursively (see de Boor 2, p. 24, exponent. 
for example). It is also a simple matter to rewrite the In all examples, for each method of parametrization, 
linear systems to solve for the B~zier or B-spline the natural cubic splines are always better shaped than 
coefficients ('control points'), the polynomial curves for the same data points. This 

Some examples are now discussed, the data for is to be expected: splines should always be preferred 
which are listed in the captions of the figures. At least over single polynomials. It is somewhat unexpected 
in the first ten figures, the exact numerical data are that in many test cases, with small n, the splines 
not important; only their relative positions have obtained with chord length parametrization cannot 
significance, since the interpolation procedures even compete with the corresponding single polynomials 
considered here, being 'global', are invariant under obtained with the centripetal method. For large n, of 
(that is, commute with) similarity transformations course, single polynomials will generally be undesirable, 
(translations, rotations, reflections, dilations) of the data no matter what the method of parametrization. 
points, as such transformations clearly do not affect In Figures 7 and 8, the data points lie on a right-angled 
the choice of nodes under discussion. (It is also invariant corner with the intention that a slightly rounded corner 
under reversal of the data sequence; however, except should be obtained. The chord length method leads to 
for the uniform parametrization, it is not invariant under undulations about the data polygon that persist, though 
different scalings of the x and y components.) with diminishing amplitudes, as the number of data 

In most of these examples, a small data set has points is increased. The centripetal models give the 
purposely been used. This is to bring out the effects desired shape with no perceptible undulations in all 
of various parametrizations more emphatically, and to cases. Thus the present method has the clear practical 
accommodate polynomial examples (which should not advantage that generally, for an intended shape, a 
be used with high degrees). The figures confirm our smaller number of data points will suffice. 
intuition: where there is an abrupt change in the length This type of example has been considered by Marin 
of successivearmsofthedata polygon, overshoot tends (see Figure 6 in MarinS). Marin proposes to vary the 
to occur with the uniform parametrization, due to large nodes to minimize the functional 
speed over the longer arm, resulting at times in loops 
or cusps; while .with the chord length parametrization, 11 
the curve tends to wander, over the longer arm, far J0 I P"(t)12dt (9) 
from the data polygon, due to long sojourn time. The 
centripetal model achieves a suitable balance. The 'optimal' nodes are computed numerically. However, 

It is also seen that in the polynomial case, even the the resulting curve still exhibits significant undulations 
centripetal model is not entirely satisfactory. An easy (about half the amplitude of that of the interpolant 
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obtained with the chord length method/. This seems ~ _ ~  ~-* 
to indicate, as far as shape is concerned, that the 
minimization of the integral (9) may not be a proper 
criterion. What then should be a more appropriate 
objective function? No simple satisfactory answer seems 
apparent. Perhaps, in view of the discussion in the 
previous section, an attempt may be made to minimize 
the total variation of the centripetal force. No work has 
been done on this. (It should be mentioned that Marin 8 i 
makes a distinction between 'geometric applications' 
and applications to robot manipulators. For the latter, 
minimizing integral (9) would seem natural.) a b c 

As an aside, note that it need not be surprising that Figure 10. Effects of end conditions. The splinesare cubic, 
minimization of integral (9) does not afford a good with centripetal parametrization;dataponts are." { x ,y }  = 
criterion here. The strain energy of a thin elastic beam {(0, 0), (0, 10), (4, 10), (4, 12), (5, 12)}. In (b) and (c), 
is the integral along the curve of the square of the the tangent direction at (0, O) is (0, 1), and that at (5, 
curvature. If the beam is given by a function y = y(x), 12) is (1, 0). The magnitudes o[ the derivatives in (b) 
then under small deflections, the energy is well are those suggested by [ormula (11) in the text, whereas 
approximated by those in (c) are 5 times as large. (a) Natural boundary 

conditions 

f (y,,)2 dx 
P1 - P0 ] 

-- (10) 
so the consideration of integral (9) seems natural, t~ 
However, a little reflection will show that, for parametric 
curves, integral (9) can no longer be considered as a Let d~ = IP,-P, ~ and p = Z~ d~ '2. With the centri- 
good approximation of the strain energy, small deflection petal method, 0~ is 
or not. (Consider, for instance, a straight line segment 
x(t) = t ( 2 -  t), y(t) = 0, 0 ~< t ~< 1.) More discussions on ~ = d~(2p (11) 
energy and related matters are contained in another 
article ~. Different parametnzations of course give different 

Instead of the 'natural' end conditions (7), the first expressions for equation (11). For instance, with uniform 
derivatives may be assigned at the ends ('complete' parametrization, ~ = nd~. It goes without saying that 
cubic spline interpolation). Generally, however, the this is merely a guide; however, a size differing from 
designer will only be able to assign the tangent formula (11) by about an order of magnitude will 
directions. Thus, for instance, the first equation of generally show ill effects (see Figure 10). 
conditions (7) will be replaced by At times a designer may want to impose tangent 

directions at other data points. (Of course, the 
P'(0) = c~T interpolation conditions (1) will be suitably amended. 

Note for polynomials, degrees will be raised; for cubic 
where T is a unit vector. The question arises as to what splines, only C ~ curves may be expected.) Suppose 
appropriate magnitude ~ should be assigned. Consistent P'(0 = ~iT~, 0 < i < n, where T, is the assigned unit 
with the heuristic, it may be suggested that the vector. It seems reasonable to assign to ~ the average 
magnitude should be roughly the average speed over speed over the adjacent segments P~_IP, and PiP~+~. 
the first segment; thus, Thus 

~ - t  ~ [ - - ]  d, + d,+~ 
, } ] 0¢ i -  
: ; I' I, l [  t i+ l - - t ,  7 

[ ; I I ~ / ~  ~ which, with the centripetal parametrization! can be 
" f  \ / X /~-  - ~ ,  written as the average // \'/ /' '~ / \' 

d? d~+ 2, 
a b c o~, d~.2+d~.+2 (d~'2p)-+ - d~/2 + d l ,  2 ( d ) ~ l p )  i+1 

Figure 9. Natural cubic splines through 18 points: { x, y } = 
{(0, 0), (1.34, 5), (5, 8.66), (10, 10), (10.6, 10.4), No test has been made, however, regarding this. 
(10.7, 12), (10.7, 28.6), (10.8, 30.2), (11.4, 30.6), (19.6, 
30.6), (20.2, 30.2), (20.3, 28.6), (20.3, 12), (20.4, 10.4), I=UI~ITI,,Ii=I ~ I~I=MARI~S 
(21, 10), (26, 8.66), (29.66, 5), (31, O)}. Note (a) contains 
several loops; (b) might even be pre[erred on artistic Some obvious disclaimers should perhaps be noted. 
grounds, but the shape is not the one intended. (a) First, the emphasis is on parametric rather than [unction 
Uniform, (b)chord length, (c)centripetal interpolation, and hence the interpolants need not 
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preserve 'single-valuedness' (that is, if Pi = (xi, y~), with some earlier local methods given in Brodlie 3 (e.g. the 
x~ increasing, and if the interpolant is (x(t), y(t)), y(t) 'osculatory method' and the method of Ellis-McLain; 
need not be a function of x(t)). In fact, the only a result by J. Butland in the same survey is, however, 
rotation-invariant interpolation method which preserves much better). 
'single-valuedness' must result in the data polygon as A common criticism often levelled against spline 
the interpolant; see Brodlie 3, p. 34. interpolations is the tendency to produce spurious 

Second, any definite qualitative sense of 'shape inflections. Often this is due to the insistence upon 
preservation' is not claimed here other than that the function interpolation, where the nodes are dictated as 
interpolant conforms well to the data polygon. In recent the abscissas of the data points. In Figure 13, the results 
years there have appeared a number of sophisticated for a data set used in Brodlie ~ are shown, where all 
'shape preserving' function interpolation schemes. By three node choices produce equally good curves. 
this is meant either monotonicity preserving or convexity Hartley and Judd 6 suggested a different method of 
preserving, or both. Generally they obtain estimates of spline interpolation. The knots are chosen in a special 
the derivatives at the data points and use them in the way; the nodes are then taken as the Schoenberg 
construction of the interpolants. As such, they belong averages of these knots. No extra end conditions are 
to what is called 'local' methods, in contrast to the required. However, in the very special case where the 
'global' methods considered here. number of data points equals the order of the spline, 

Still, it may not be entirely out of place to compare it is easily seen that the method actually reduces to 
a few of the test results obtained with some of the interpolation by a single polynomial with uniform 
function interpolation methods with the results obtained parametrization. 
by simple node choices. Figure 11 shows results for the After completion of this paper, the author was 
Akima data tested in Fritsch and Carlson 11. The centripetal informed that the parametrization by the square root 
model seems quite passable, but the result with e = 0.25 of the chord lengths has already been touched upon in 
appears as good as that obtained by the monotonicity Hosaka and Kimura 12 with, however, no attempt at a 
preserving method of Fritsch and Carlson ~1. Note the justification. Specifically, Section 3 of that paper deals 
chord length result in Figure 11(b) is not 'single-valued'. with interpolation by parametric cubic splines, couched 
Nor is it in Figure 12(b), where the data is from Brodlie 3. in terms of Bezier polynomials. If P,(t), 0 ~< i ~< n -- 1, are 
In Figure 12(c), between data points 4 and 5, the cubic polynomials with P,(0)=P~, P~(1)=P~+~, the 
curve clearly fails to be monotone; not much assignment of thefactors k ~ , 0 ~ i ~ < n - 2 ,  in 
improvement can be obtained by varying e. However, 
the centripetal model still compares quite well with Pi'(1) = k~P~'÷l(0) 

is equivalent to the assignment of the nodes t,, 
90 1 ~< i ~< n - 1. (Thus the chord length parametrization 

corresponds to k i = I P~+~ - P~I/I P,÷2 - P~÷~ I, etc.) Part 
~ / of that section seems devoted to a justification of the 

chord length method, since they prove that under this 
assignment, two different approaches lead to the same 
set of equations for the spline coefficients. However, 
in a brief remark (with an example), it is stated that 

! 'frequently', the square root method 'gives more 

15 

a b 

1 

¢ d 
Figure "17. An example considered extensively in Fritsch *- ' C ~ *  
and Carlson~7: {x, y} = {(0, "10), (2, `10), (3, `10), (5, 10), 
(6, `10), (8, `10), (9, `10.5), (11, `15), ('12, 50), ("14, 60), ('15, Figure '12. Parametric interpolation with natural cubic 
85)}. This figure shows results obtained by parametric splines, for a case considered in Brodlie3: {x, y} = {(0, 
interpolation with natural splines, under various node '1), ('1, '1.'I), (2, "1.̀ 1), (3, "1.2), (4, `1.3), (5, 7.2), (6, 3.`1), (7, 
choices. Display scales are different in x and in y. (a) 2.6), (8, "1.9), (9, "1.7), ("10, "1.6)}. (a) Uniform, (b) chord 
Uniform, (b) chord length, (c) centripetal, (d) e = 0.25 length, (c) centripetal, (d) e = 0.6 
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natural curves' than does the chord length method, interest in this work and his help in facilitating the 
(These comments also appear in some of their later graphics displays. The name 'centripetal model' is also 
publications.) suggested by him. The author is also indebted to George 

In conclusion, engineers in industry often complain Allen who drew his attention to the work of Hosaka and 
about control points not being on the curve; of course Kimura, during the SIAM meeting in Albany, 1987, 
they are not. B~zier and B-spline curves are particular where this paper was presented. Comments by Los Piegl 
representations of polynomial and piecewise polynomial also result in some improvement of presentation. 
curves, the control points being the coefficients in 
these representations. These representations are par- 
ticularly nice due to their numerical stability, and the REFERENCES 
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