Quadrics (from wikipedia)

Quadrics in the Euclidean plane are those of dimension $D=1$, which is to say that they are curves. Such quadrics are the same as conic sections, and are typically known as conics rather than quadrics.

5
Ellipse ($e=1 / 2$), parabola ($e=1$) and hyperbola ($e=2$) with fixed focus F and directrix.
In Euclidean space, quadrics have dimension $D=2$, and are known as quadric surfaces. By making a suitable Euclidean change of variables, any quadric in Euclidean space can be put into a certain normal form by choosing as the coordinate directions the principal axes of the quadric. In three-dimensional Euclidean space there are 16 such normal forms. ${ }^{[2]}$ Of these 16 forms, five are nondegenerate, and the remaining are degenerate forms. Degenerate forms include planes, lines, points or even no points at all. ${ }^{[3]}$

Non-degenerate real quadric surfaces

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

Spheroid (special case of ellipsoid)

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}}+\frac{z^{2}}{b^{2}}=1
$$

Sphere (special case of spheroid) $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}}+\frac{z^{2}}{a^{2}}=1$

Elliptic paraboloid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-z=0
$$

Circular paraboloid(special case of elliptic paraboloid)

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}}-z=0
$$

Hyperbolic paraboloid

Hyperboloid of one sheet

Hyperboloid of two sheets

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=-1
$$

Degenerate quadric surfaces

Cone

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0
$$

Circular Cone (special case of cone) $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}}-\frac{z^{2}}{b^{2}}=0$

Elliptic cylinder

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

Circular cylinder (special case of elliptic cylinder)

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}}=1
$$

Hyperbolic cylinder

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

$$
x^{2}+2 a y=0
$$

