1. Calculus Gimmel 2-Exercise 7a

1.1. Formula for surface area.

$$
A(S)=\iint_{D} \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d A
$$

1.2. Find the area of the surface.

(1) The part of the plane $z=2+3 x+4 y$ that lies above the rectangle $[0,5] \times[1,4]$.
(2) The part of the plane $2 x+5 y+z=10$ that lies inside the cylinder $x^{2}+y^{2}=9$.
(3) The part of the plane $3 x+2 y+z=6$ that lies in the first octant.
(4) The part of the surface $z=1+3 x+2 y^{2}$ that lies above the triangle with vertices $(0,0),(0,1)$, and $(2,1)$.
(5) The part of the cylinder $y^{2}+z^{2}=9$ that lies above the rectangle with vertices $(0,0),(4,0),(0,2)$, and $(4,2)$.
(6) The part of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the $x y$-plane.
(7) The part of the hyperbolic paraboloid $z=y^{2}-x^{2}$ that lies between the cylinders $x^{2}+y^{2}=1$ and $x^{2}+$ $y^{2}=4$.
(8) The surface $z=\frac{2}{3}\left(x^{3 / 2}+y^{3 / 2}\right), 0 \leq x \leq 1,0 \leq y \leq 1$.
(9) The part of the surface $z=x y$ that lies within the cylinder $x^{2}+y^{2}=1$.
(10) The part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies above the plane $z=1$.
(11) The part of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$, that lies within the cylinder $x^{2}+y^{2}=a x$, and above the $x y$ plane.
(12) The part of the sphere $x^{2}+y^{2}+z^{2}=4 z$ that lies inside the paraboloid $z=x^{2}+y^{2}$.
1.3. Partial answers. (1). $15 \sqrt{26},(3) \cdot 3 \sqrt{14},(5) .12 \arcsin \left(\frac{2}{3}\right)$, (7). $\frac{\pi}{6}(17 \sqrt{17}-5 \sqrt{5}),(9) \cdot \frac{2 \pi}{3}(2 \sqrt{2}-1), \quad(11) \cdot a^{2}(\pi-2)$.
1.4. Partial solution. (7). The surface area formula gives $A(S)=\iint_{D} \sqrt{1+(-2 x)^{2}+(2 y)^{2}} d A=\iint_{D} \sqrt{1+4\left(x^{2}+y^{2}\right)} d A$.
Converting to polar coordinates, we get

$$
\begin{aligned}
\int_{0}^{2 \pi} \int_{1}^{2} \sqrt{1+4 r^{2}} r d r d \theta & =\frac{1}{8} \int_{0}^{2 \pi} d \theta \int_{1}^{2} \sqrt{1+4 r^{2}} d\left(1+4 r^{2}\right) \\
& =\left.\frac{1}{8} \cdot 2 \pi \cdot \frac{2}{3}\left(1+4 r^{2}\right)^{3 / 2}\right|_{1} ^{2} \\
& =\frac{\pi}{6}\left((1+16)^{3 / 2}-(1+4)^{3 / 2}\right) \\
& =\frac{\pi}{6}(17 \sqrt{17}-5 \sqrt{5})
\end{aligned}
$$

