1. Calculus Gimmel 2 - Exercise 7a

1.1. Formula for surface area.

$$A(S) = \iint_{D} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2}} dA$$

1.2. Find the area of the surface.

- (1) The part of the plane z = 2 + 3x + 4y that lies above the rectangle $[0,5] \times [1,4]$.
- (2) The part of the plane 2x+5y+z=10 that lies inside the cylinder $x^2+y^2=9$.
- (3) The part of the plane 3x + 2y + z = 6 that lies in the first octant.
- (4) The part of the surface $z = 1+3x+2y^2$ that lies above the triangle with vertices (0,0), (0,1), and (2,1).
- (5) The part of the cylinder $y^2+z^2=9$ that lies above the rectangle with vertices (0,0),(4,0),(0,2), and (4,2).
- (6) The part of the paraboloid $z = 4 x^2 y^2$ that lies above the xy-plane.
- (7) The part of the hyperbolic paraboloid $z = y^2 x^2$ that lies between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.
- (8) The surface $z = \frac{2}{3}(x^{3/2} + y^{3/2}), 0 \le x \le 1, 0 \le y \le 1$.
- (9) The part of the surface z = xy that lies within the cylinder $x^2 + y^2 = 1$.
- (10) The part of the sphere $x^2+y^2+z^2=4$ that lies above the plane z=1.
- (11) The part of the sphere $x^2 + y^2 + z^2 = a^2$, that lies within the cylinder $x^2 + y^2 = ax$, and above the xy-plane.
- (12) The part of the sphere $x^2 + y^2 + z^2 = 4z$ that lies inside the paraboloid $z = x^2 + y^2$.
- 1.3. Partial answers. $(1).15\sqrt{26}$, $(3).3\sqrt{14}$, $(5).12\arcsin(\frac{2}{3})$, $(7).\frac{\pi}{6}(17\sqrt{17}-5\sqrt{5})$, $(9).\frac{2\pi}{3}(2\sqrt{2}-1)$, $(11).a^2(\pi-2)$.

1.4. **Partial solution.** (7). The surface area formula gives

$$A(S) = \iint_D \sqrt{1 + (-2x)^2 + (2y)^2} \, dA = \iint_D \sqrt{1 + 4(x^2 + y^2)} \, dA.$$

Converting to polar coordinates, we get

$$\int_0^{2\pi} \int_1^2 \sqrt{1+4r^2} r \, dr \, d\theta = \frac{1}{8} \int_0^{2\pi} d\theta \int_1^2 \sqrt{1+4r^2} \, d(1+4r^2)$$

$$= \frac{1}{8} \cdot 2\pi \cdot \frac{2}{3} (1+4r^2)^{3/2} |_1^2$$

$$= \frac{\pi}{6} \left((1+16)^{3/2} - (1+4)^{3/2} \right)$$

$$= \frac{\pi}{6} \left(17\sqrt{17} - 5\sqrt{5} \right).$$