Interactive Coding Over the Noisy Broadcast Channel

Klim Efremenko∗ Gillat Kol† Raghuvansh R. Saxena‡

Abstract

In this paper we show first constant rate coding scheme for a noisy broadcast model defined by El Gamal in 1984. In this model a set of n players, each holding a private input bit, communicate over a noisy broadcast channel. Their mutual goal is for all players to learn all inputs. At each round one of the players broadcasts a bit to all the other players, and the bit received by each player is flipped with a fixed constant probability (independently for each recipient). How many rounds are needed?

The best known protocol before our work was given in 1988 by Gallager, who gave an elegant noise-resistant protocol requiring only $O(n \log \log n)$ rounds. We show that $O(n)$ rounds is suffice. Moreover we generalized the above result and initiate the study of interactive coding over the noisy broadcast channel. We show that any interactive protocol that works over the noiseless broadcast channel can be simulated over our restrictive noisy broadcast model with only constant, (independent of number of players), blowup of the communication.

In the paper by Goyal, Kindler, and Saks in 2008 in [GKS08] it was shown that Gallager’s algorithm is essentially tight for a restrictive (non-adaptive) model of communication. Before our work this restriction does not considered a significant restriction. In this work we show that this is not a case and adaptivity can significantly improve the rate of communication.

∗Ben Gurion University
†Princeton University
‡Princeton University

1They do not write it explicitly, but in there proofs they rely on it
1 Introduction

In this paper, we initiate the study of interactive coding over the wireless noisy broadcast channel. In the interactive coding problem, one is given an interactive communication protocol between several parties communicating over a (noiseless) channel. The goal is to design a noise-resilient protocol that “simulates” the original protocol (e.g., computes the same function) over a noisy channel, with as little communication overhead as possible. The interactive coding problem attracted a lot of attention in recent years, and was studied for various two-party settings, as well as for the multi-party case where players communicate over a point-to-point network (private channels). We study the interactive coding problem over a new, restrictive, noisy broadcast model. We show that even in this model, every protocol can be simulated with a constant multiplicative overhead.

The noisy broadcast model was proposed by El Gamal [Gam87] in 1984, as a simple model allowing the study of the effect of noise in a highly distributed system. This model considers n parties, each holding a private input bit x_i, and the goal of the parties is to compute a function $f(x_1, \cdots, x_n)$ of all n inputs, using as few communication rounds as possible. Communication is carried out in a sequence of synchronous rounds. In every round, one of the parties broadcasts a bit over the channel. Each of the other parties independently receives the broadcast bit, with probability $1 - \epsilon$, or the complement of the bit, with probability ϵ, where ϵ is some fixed noise parameter. At the end of the protocol, all players need to know $f(x_1, \cdots, x_n)$ (with high probability).

In 1988, Gallager [Gal88] gave such a noise-resistant protocol for the identity function (all players need to learn all input bits), that requires only $O(n \log \log n)$ broadcast rounds and errs with some small sub-constant probability. Gallager’s result was shown to be tight for non-adaptive model in the beautiful 2005 paper by Goyal, Kindler and Saks [GKS08].

1.1 Our Results

We revisit the above mentioned works in the more general framework of interactive coding, that not only considers n-bit functions, but attempts to simulate the execution of any interactive communication protocol with any input size. Simulating a general n-round interactive communication protocol with n-players over a noisy channel is more challenging than simulating the (naive) protocol for identity on n-bits over the a noisy channel. The reason is that every message broadcast by the communication protocol may depend on all previous messages. There are no such dependencies between the messages sent by the identity protocol, as it merely communicates the n input bits one-by-one.

Towards the goal of round-efficient interactive coding, we observe that the impossibility result of [GKS08] crucially depends on the assumption that the model is non-adaptive, that is, the player broadcasting in each of the rounds is known in advance and is only a function of the round number (and not the inputs or the noise in the channel). Non-adaptivity is assumed because it prevents multiple players from broadcasting in the same round.
To bypass the $\Omega(n \log \log n)$ lower bound of [GKS08], we relax the demand that the order in which the players broadcast is known in advance. We define an adaptive noisy broadcast model, we call the (n, ϵ)-noisy broadcast model, where any number of players may broadcast at the same round. If exactly one player broadcasts in a given round, then, as before, the players each get an independent ϵ-noisy copy of the broadcast bit. We emphasize that the identity of the broadcasting player is not revealed to the other players. However, if in a given round it is not the case that exactly one player broadcasts, all players receive adversarially chosen bits. That is, in case of collision (two or more parties broadcast in the same round) and in the case of silence (no player is broadcasting), an adversary chooses the bits received by the players, where each player may get a different bit. We assume that the adversary knows all the information about the execution of the protocol, including the players’ inputs and randomness, and all their received transcripts. Our model tries to mimic the phenomenon that the “superposition” of two signals cannot be used to conclude anything about any one of the two signals. Furthermore, it rules out communication by silence (“signaling”)\footnote{In noisy models where silence can be detected, players can easily simulate a non-noisy channel with constant overhead: If player i wishes to send the bit 0, he broadcasts something (say, the bit 0), and if he wishes to send the bit 1, he stays silent.}. We require our simulation protocol to work against any strategy of such an adversary.

Various adaptive (noiseless) broadcast models are extensively studied in the context of wireless radio distributed communication [GPP01, CGasK07, Toh01], as these describe real-life scenarios (e.g., radio transmitters, mobile distribution towers, etc.). However, these models usually either assume that collision is detectable, or that collision is received by the players as silence, or that in the case of collision, exactly one of the messages broadcast is received (see [Pel07] for a survey). Our model is more restrictive than all of the above, as both collision and silence are fully adversarial. In particular, any protocol that works in our model will also work in the noisy versions of all of the above models.

Our main result is that even in our restrictive (n, ϵ)-noisy broadcast model, any protocol can be simulated with a constant blow-up in the communication.

Theorem 1.1. Let $\epsilon \in (0, \frac{1}{10})$. For any non-adaptive randomized n-party protocol Π that takes T rounds assuming an n-party noiseless broadcast channel, there exists a randomized adaptive coding scheme that simulates Π over the (n, ϵ)-noisy broadcast channel, that takes $O(T)$ rounds, and errs with probability polynomially small in T.

Designing general simulation protocols over the (n, ϵ)-noisy broadcast channel poses new challenges. To overcome these, we combine tools from interactive coding (e.g., tree codes), wireless distributed computing (e.g., version of the celebrated Decay protocol [BGI92]), and also develop new techniques.

1.2 Related Works

As mentioned above, Gallager was the first to design non-trivial noisy broadcast protocols. He considered the identity and the parity functions and gave $O(n \log \log n)$ protocols for...
both [Gal88]. Noise-resilient protocols for various other n-bit functions where studied by [KM98, FK00, New04, GKS08], showing that, for some interesting functions, $O(n)$ rounds protocols are possible, even in the model where the noise rate is not fixed.

The field of interactive coding was introduced in a seminal paper of Schulman [Sch92]. Various aspects of two-party interactive coding (such as computational efficiency, interactive channel capacity, noise tolerance, list decoding, different channel types, etc.) were considered in recent years [Sch93, Sch96, GMS11, BR11, BKN14, Bra12, KR13, MS14, Hae14, BE14, GMS14, GH14, GHK16, EGH16, BGMO17], to cite a few. Exciting new works show certain two-party settings, it is known that adaptive models may allow for better interactive coding schemes [Hae14, GHS14, AGS16] (note, however, that the improvement in these cases is only by a constant).

Multi-party interactive coding over a point-to-point network was first studied in the beautiful work of [RS94], and more recently by [ABE16, BEGH16]. We mention that the noisy-broadcast setting is very different from the point-to-point case, as in the broadcast setting a player can only send the same bit to all other players.

2 Proof Sketch

We note that the noisy broadcast model is a generalization of the standard interactive communication setting that has two parties, Alice and Bob, connected via a binary symmetric channel. In this setting, any bit sent from Alice towards Bob (or the other way around) is received correctly with probability $1 - \epsilon$ and is flipped with probability ϵ. Indeed, if the number n of parties connected via the noisy broadcast channel is 2, then a noisy broadcast is the same as a noisy transmission of a message from one party to the other.

Interactive coding over the two party setting has been widely studied. The first coding scheme for this channel was presented by Schulman in [Sch92]. Many of the intricacies of this problem are now well-understood and schemes are known that are close to optimal in various parameters of interest [BR11, KR13, GHS14].

The main ingredient in many of these works is a *rewind-if-error* framework [Sch93]. At a very high level, the rewind-if-error framework offers the following very general scheme to protect interactive communication from noise. It says that the noise-resilient simulation needs to have two different phases. The first phase has the ‘regular rounds’ where the parties run the original protocol as if there was no noise. Interspersed between these regular rounds are the ‘check rounds’. The purpose the check rounds serve is to detect if the communication during the regular rounds was affected by noise. If there is an indication of such a noise, the parties go back and re-simulate the part that was affected by noise (in the next set of regular rounds). On the other hand, if there is no indication of such an error, the parties continue the simulation of the next part of the original protocol.

To protect against errors of varying magnitudes, the rewind-if-error framework has check

3For other works, it is tree codes. We will talk about them later in this section.
rounds of varying sizes. In general, a check round is implemented by parties exchanging hashes of the transcript they witnessed. The size of a check round is just the length of such a hash. Since a long sequence of bit flips is unlikely, the larger check rounds need to be scheduled less frequently. Thus, the cost of exchanging the longer hashes in the rounds is amortized and the overall simulation is only a constant factor more than the length of the original protocol.

2.1 Going to \(n \) Parties

We try to extend the ideas from two party interactive coding to our noisy broadcast channel with \(n \) parties. As motivated before, we need to have regular rounds and check rounds. Further, there must be an entire hierarchy of check rounds where the larger check rounds detect and correct errors of a larger magnitude.

In this light, we define a sequence of protocols \(\{ \mathcal{A}_j \}_{j \geq 0} \). The protocol \(\mathcal{A}_0 \) has only one regular round followed by a small check verifying this regular round. The regular round simulates one broadcast of the original protocol while the check round following it attempts to detect whether or not this simulation was done correctly. For \(j > 0 \), the protocol \(\mathcal{A}_j \) is more involved. In the protocol \(\mathcal{A}_j \), there are two successive executions of \(\mathcal{A}_{j-1} \) followed by a (larger) check round.

Thus, the total number of regular rounds in \(\mathcal{A}_j \) is exactly \(2^j \). Indeed, the first \(2^{j-1} \) of these regular rounds are in the first execution of \(\mathcal{A}_{j-1} \) and the second set of \(2^{j-1} \) regular rounds is in the second execution of \(\mathcal{A}_{j-1} \). If a number \(k \) of regular rounds were correct in the first execution, then the second execution attempts to simulate rounds \(k+1, k+2, \ldots, k+2^{j-1} \) in the original protocol.

We note that the check round of \(\mathcal{A}_j \) checks all the \(2^j \) regular rounds so far. This recursive structure of check rounds is important: If players fail to detect errors in the transcript of \(\mathcal{A}_{j-1} \), which happens with probability roughly \(2^{-j+1} \) (may be substantial if \(j \) is small), they will have another chance of detecting the error in the check rounds of \(\mathcal{A}_{j'} \) for every \(j' \) greater than \(j \). Therefore, as \(j' \) becomes large, the mistake will be found with high probability.

The purpose of the check rounds is to determine the length \(k \) of the prefix that was computed correctly in the regular rounds. This is done by performing a binary search over the length (at most \(2^{j-1} \)) of the prefix. For each prefix considered, one of the players, called the ‘leader’ broadcasts enough hashes of his prefix. The other players compare the hashes received with their own hashes, \(i.e. \), player \(i \) computes a bit \(b_i \) which is 0 if the hash received matches the hash they computed and 1 if there was a disagreement between what was received and what was computed.

The bit \(b_i \) represents the local decision of a node on whether or not there is a need to re-simulate the previously simulated rounds. If \(b_i = 1 \), there was a mismatch between the hashes received by player \(i \) and the hashes computed by player \(i \). Thus, if any one of the bits \(b_i = 1 \), there is a need to re-simulate parts of the original protocol because players disagree on the transcript. Otherwise, we can continue simulating the rest of the original protocol.
Since the decision on whether to ‘go back’ or ‘continue’ is just the OR of all the bits b_i, we next describe our protocol OR for computing the OR function. We first note that a non-adaptive protocol computing the OR function must have at least n rounds. The reason is that each player should broadcast at least once, as they may be the only player with the input 1. In contrast, our OR protocol communicates only $O(\log^3(n))$ bits. As will be explained below, a sub-linear protocol for the OR function is necessary for our approach to work. The fact that such a protocol cannot be constructed in the non-adaptive setting is a bottleneck for constructing a linear non-adaptive interactive coding scheme.

2.2 The OR protocol

We now describe our protocol for the OR function. In this setting, each player i has a private input bit b_i. The players work to compute $or = \lor_i b_i$. Since $or = 1$ if and only if there exists i such that $b_i = 1$, we partition the set of players into two classes based on b_i.

If $b_i = 1$, player i is called a 1-player. Otherwise, he is called a 0-player. The 1-players and the 0-players play complementary roles in the OR protocol.

A 1-player i knows his input $b_i = 1$, and thus can compute $or = 1$. His job is to convince every other player about his presence. If one of the 1-players is able to tell all the other players that their bit is 1, the other players will be able to compute $or = 1$. On the other hand, the 0-players know that their bit will not affect the final outcome and try to listen to the 1-players broadcasting, if any.

Recall that we assume the broadcast channel to be adversarial when more than one player (or no player) is broadcasting. Therefore, if the 1-players keep broadcasting together, the bits received by all the players would be adversarial. To avoid this, the 1-players follow a random-back-off strategy, inspired by the Decay protocol [BGI92]. The OR protocol proceeds in rounds, where in every round, each of the 1-players broadcasts independently with probability α. They start with $\alpha = 1$, and decrease α by a factor of $1/2$ after every round. So, in the first round, all 1-players are broadcasting; in the second round, roughly half are broadcasting; in the third round, about a quarter are broadcasting, etc. When α is roughly the inverse of the number of 1-players, then, in expectation, only one 1-player will broadcast and convince all the 0-players. The expectation argument can be converted to a high probability one by repeating enough times. Observe that this strategy only requires $\text{polylog}(n)$ communication rounds.

The random-back-off strategy described above is implemented in the protocol Advertising (see Algorithm 8). It ensures that if a 1-player exists, they are able to communicate their presence to all the other players with high probability. However, if all players are 0-players, all the players will stay silent throughout these rounds and all the bits received would be adversarial. To deal with this case, we require every player broadcasting during Advertising to broadcast their identity. The identity of player i is just the binary representation of i. During the execution of Advertising, the leader will store all the identities they receive. Note that the problem of computing the OR function on n bits is
now reduced to computing the OR function of the polylog(n) input bits of the players whose identities were stored by the leader.

The players will then run the protocol Inquiry (see Algorithm 9). In this protocol, the leader will ask each of the stored identities for their private input bit. The players will respond with their private input bit. If there exist 1-players, one of them, say player i, would have successfully broadcast the identity i during Advertising. When the leader queries i, he will respond with 1. If all the players were 0-players, all the responses to the leader’s queries will be 0. The players can, thus, output the OR of all the responses to compute or.

It is crucial that the Inquiry protocol is “adversary free”, meaning that, with high probability, exactly one player is talking in every round, thus all transmissions are noisy, but not adversarial. It is crucial because even if the adversary is able to control a single round of communication during the execution of this protocol, he can impersonate a 1-player by replying with the bit ‘1’ to the leader’s query, thus make the protocol output 1 even if no 1-player exists.

The reason the Inquiry protocol is adversary free is that the leader is speaking in predetermined rounds, that is, the rounds in which the leader is speaking are known ahead of time (and are independent of the inputs to the players, the randomness of the protocol and the channel’s noise). Therefore, all players (but the leader) can avoid talking during those rounds. Furthermore, since the leader is encoding his queries using an error correcting code, all the players receive each of the leader’s queries correctly with high probability, and thus, only the player whose identity was queried will broadcast.

2.3 Tree Codes - The Final Ingredient

The discussion until this point suggested that the rewind-if-error approach can be lifted from 2 to an arbitrary number n of parties. We developed check rounds that exchanged hashes and allowed the nodes to arrive at a local decision of whether or not to go back. We also fleshed out an OR protocol that converted all the local decisions into a global decision.

However, a few seconds of thought is enough to realize that there is a big loophole in this argument. For our simulation to be efficient (constant-rate), we need the check rounds to be successful (players agree on the transcript) more often than not. This is because an unsuccessful check round entails re-simulating parts of the original protocol that have already been simulated, thus, increasing the total length of the simulation.

To see whether this holds for our protocol, let us examine A0. The protocol A0, as described previously, has one regular round followed by a check round. For this check round to be successful, the bit transmitted in the regular round should be received correctly by all the n players. Since the noise witnessed by all the n players is independent, the event that all n players don’t experience noise is highly unlikely. In fact, it is easy to see that at least log n repetitions are needed to convince all the n players. However, this is unaffordable as it will increase the length of our simulation by a factor of log n.

To get around this problem, we use the insight that not all players need to be convinced
of the bit broadcast during the regular round *immediately* after it was broadcast. In fact, if a player is scheduled to broadcast in round i of the original protocol\(^4\), the player doesn’t need to know anything while the first $i - 1$ rounds of the original protocol are being simulated.

We develop this insight and require the protocol A_j to convince only the first 2^{j+1} players about the first 2^j rounds of the original protocol. The number 2^{j+1} was chosen because 2^{j+1} is an upper bound on the number of players that may need to broadcast in one execution of A_{j+1}, the next protocol in our sequence. Following A_{j+1} will be a longer check that will convince more (2^{j+2}, to be precise) players.

As discussed before, player i doesn’t need to know the first $i - 1$ bits communicated until round i, as he will surely not be broadcasting during these rounds. However, when player i’s turn arrives, player i will need to know all the previous bits communicated, so he can compute the appropriate message. To make sure that all players know all previously communicated bits when their turn arrives, we make the leader repeat every bit transmitted over a *tree code*. Roughly, a tree code is an error correcting code that can be computed online, i.e., the k^{th} symbol of the encoding depends only on the first k symbols of the word being encoded. As more and more symbols are sent over the tree code, a longer and longer prefix can be decoded correctly with high probability. In our protocol, after every round, each player is decoding the tree code to recover all the messages sent by the leader. When player i’s turn to broadcast arrives, the length of the history encoded over the tree code is long enough to ensure that i can decode it correctly. We note that also in this case, the rounds in which the leader is speaking are pre-determined and therefore the tree code is “adversary free”.

We finish this section by summarizing our simulation protocol. We define a sequence A_j of protocols where protocol A_j has 2^j regular rounds and some check rounds. Structurally, the protocol A_j is just two successive execution of A_{j-1} followed by a check round that convinces 2^{j+1} players. All the transmissions in this protocol are repeated by the leader over a global tree code. The 2^{j+1} players convinced by the protocol A_j are sufficient to carry out the next execution of A_j. During this execution, more bits will be sent over the tree code convincing a larger set of players of the first 2^j bits. Thus, as our protocol evolves, more and more players will be convinced of more and more bits and when it terminates, all players would know all the bits in the simulated protocol.

So, why did we need a sub-linear protocol for OR? As remarked before, a sub-linear protocol for the OR function is necessary for our approach to work. Recall that the protocol A_j has a check that convinces 2^{j+1} players of the correctness of the regular rounds in A_j. This check includes an execution of OR involving 2^{j+1} players. This check is executed after every 2^j regular rounds, and thus, the amortized cost of all the checks is at least $\sum_{j \in [O(\log n)]} \frac{\text{cost}(\text{OR}_{2^{j+1}})}{2^j}$, where $\text{cost}(\text{OR}_k)$ is the number of rounds in an execution of the protocol OR with k players. We therefore at least need that $\sum_{j \in [O(\log n)]} \frac{\text{cost}(\text{OR}_{2^{j+1}})}{2^j} \leq$

\(^4\)Since the original protocol is non-adaptive, this is well defined.
\(O(1)\), which, in turn, implies that \(\text{cost}(\text{OR}_k)\) should be sub-linear in \(k\).

3 Our Protocols

For convenience, we collect all our protocols in this section. The analysis and all details though, are deferred to the appendix.

Algorithm 1 Advertising (the first stage of the OR\(_n\) protocol)

Input: Player \(i \in [n]\) is active and his input is a bit \(x_i \in \{0, 1\}\). Any number of other players may participate as passive players.

Output: The leader has \(l_1 l_2\) identities \([id_{(ld)}^{(id)}]_{j=1}^{l_1 l_2}\) where \(id_{(ld)}^{(id)} \in [n]\).

1: \(\text{for } j_1 \leftarrow 1, 2, \cdots, l_1 \text{ do}\)
2: \(\alpha \leftarrow 2^{1-j_1}\).
3: \(\text{for } j_2 \leftarrow 1, 2, \cdots, l_2 \text{ do}\)
4: \(\text{for all players } i \in [n] \text{ do}\)
5: \(\text{With probability } \alpha,\)
6: \(\text{if } x_i = 1 \text{ then}\)
7: \(\text{Broadcast } E_{\log_2 n, \epsilon}(i). \text{ The leader receives a corrupted codeword and}
\)
\(\text{decodes it to the nearest element } id_{(j_1-1)l_2+j_2}^{(id)} \in [n].\)
8: \(\text{end if}\)
9: \(\text{end for}\)
10: \(\text{end for}\)
11: \(\text{end for}\)

Algorithm 2 Inquiry (the second stage of the OR\(_n\) protocol)

Input: The leader has \(l_1 l_2\) identities \([id_{(ld)}^{(id)}]_{j=1}^{l_1 l_2}\), where \(id_{(ld)}^{(id)} \in [n]\). Player \(i \in [n]\) is active and his input is a bit \(x_i \in \{0, 1\}\). Any number of other players may participate as passive players.

Output: The output of player \(i\) (active or passive) is a bit \(or^{(i)}\).

1: \(\text{for } j \leftarrow 1, 2, \cdots, l_1 l_2 \text{ do}\)
2: \(\text{The leader broadcasts } E_{\log_2 n, \epsilon}(id_{(ld)}^{(id)}).\)
3: \(\text{Player } i \in [n] \text{ (active) decodes the leader’s broadcast. If the value is } i, \text{ then player } i\)
\(\text{broadcasts the bit } x_i \text{ } l_3 \text{ times.}\)
4: \(\text{Player } i' \text{ (active or passive) computes the majority value, } b_{(i')}^{(i')}, \text{ of the } l_3 \epsilon\)-noisy copies
\(\text{of } x_i \text{ he received}.\)
5: \(\text{end for}\)
6: \(\text{Player } i \text{ computes and outputs } \bigvee_{j=1}^{l_1 l_2} b_{(i)}^{(i)}.\)
Algorithm 3 OR\(_n\)

Input: Player \(i \in [n]\) is active and his input is a bit \(x_i \in \{0, 1\}\). Any number of other players may participate as passive players.

Output: The output of player \(i\) (active or passive) is a bit \(or(i)\).

1: Players execute Advertising. The output of the leader is \(\{id_j^{ld} \}_{j=1}^{l_1l_2}, id_j^{ld} \in [n]\).
2: Players execute Inquiry, where the input to the leader is the list of \(l_1l_2\) identities \(\{id_j^{ld} \}_{j=1}^{l_1l_2}\).
3: Player \(i\) outputs the value \(or(i)\) returned by the Inquiry protocol.

Algorithm 4 The LCP\(_n\) Protocol

Input: Player \(i \in [n]\) is active and his input is a string \(v_i \in \{0, 1\}^{\leq n}\). The leader has a string \(v \in \{0, 1\}^{\leq n}\). Any number of other players may participate as passive players.

Output: The output of player \(i\) (active or passive) is an integer \(lcp(i) \in \mathbb{N}\).

1: \(beg(i) \leftarrow 0\).
2: \(end(i) \leftarrow 2^{n_0} - 1\).
3: while \(beg(i) < end(i)\) do
4: \(mid(i) \leftarrow \left\lceil \frac{beg(i)+end(i)}{2} \right\rceil\).
5: \(H^{(i)} \leftarrow H(v_i(beg(i):mid(i)))\).
6: The leader broadcasts \(H^{(id)}, c_1 \log n\) times.
7: Each player \(i\) receives \(c_1 \log n\) noisy copies of \(H^{(id)}\) and computes their majority \(H^{(i)}_{id}\). (The \(j^{th}\) bit of \(H^{(i)}_{id}\) is obtained by taking the majority of the \(j^{th}\) bits of the \(c_1 \log n\) noisy copies received by player \(i\).)
8: \(b^{(i)} \leftarrow (H^{(i)}_{id} \neq H^{(i)})\).
9: Players execute OR\(_n\). Player \(i \in [n]\) are active and have inputs \(b^{(1)}, b^{(2)}, \ldots, b^{(n)}\). All other players are passive. The output of player \(i\) (active or passive) is \(or(i)\).

10: if \(or(i) = 0\) then
11: \(beg(i) \leftarrow mid(i)\)
12: else
13: \(beg(i) \leftarrow mid(i) - 1\)
14: end if
15: end while
16: Player \(i\) outputs \(beg(i)\).
Algorithm 5 A_0

Input: Player 1 is active and his input is a function $f_1 : \{0,1\}^0 \to \{0,1\}$. Players $i \in [n] \setminus \{1\}$ are passive.

Output: The output of player $i \in [n]$ is a string $s^{(i)}$, where $|s^{(i)}| \leq 1$.

1. Player 1 broadcasts $b = f(\varepsilon)$. The leader receives $b^{(ld)}$.
2. The leader broadcasts $C(b^{(ld)})$.
3. Player 1 and the leader run LCP_1 with inputs b and $b^{(ld)}$ (respectively). Denote the leader’s output by $lcp^{(ld)}$.
4. The leader broadcasts a padded version of his output $C(lcp^{(ld)}\|0^{n+1})$.
5. Each player $i \in [n]$ computes and outputs $\text{DECODE}^{(i)}(0)$.

Algorithm 6 A_j

Input: Player $i \in [2^j]$ is active and his input is a function $f_i : \{0,1\}^{i-1} \to \{0,1\}$. Player $i \in [n] \setminus [2^j]$ are passive.

Output: The output of player $i \in [n]$ is a string $s^{(i)}$ of length at most 2^j.

1. Players execute A_{j-1} for the first time: Player $i \in [2^{j-1}]$ participates as active player i with input f_i. All other players participate as a passive players. Denote the output of the execution for player $i \in [n]$ by $s_1^{(i)}$.
2. Players execute A_{j-1} for the second time: Player $i \in [2^j]$ checks if $i \in \left[|s_1^{(i)}| + 1, |s_1^{(i)}| + 2^j - 1\right]$. If so, he participates as the active player i with input function $g_i : \{0,1\}^{i-1-|s_1^{(i)}|} \to \{0,1\}$, where $g_i(t) = f_i(s_1^{(i)}\|t)$. Otherwise, participates as a passive player. Denote the output of the execution for player $i \in [n]$ by $s_2^{(i)}$.
3. Player $i \in [2^j] \cup \{ld\}$ sets v_i to $s_1^{(i)}\|s_2^{(i)}$, but replaces coordinate i of $s_1^{(i)}\|s_2^{(i)}$ by the value $f_i(v_i[1 : i-1])$ if $|s_1^{(i)}\|s_2^{(i)}| \geq i$.
4. Players execute LCP_{2^j}: Player $i \in [2^j]$ participates as active player i with input v_i. The leader is participating with the input $v^{(ld)}$. All other layers participate as a passive players. Denote the output of the execution for player $i \in [n]$ by $lcp^{(i)}$.
5. The leader broadcasts a padded version of their output $C(lcp^{(ld)}\|0^{(n+1)(j+1)})$.
6. Player $i \in [n]$ computes and outputs $\text{DECODE}^{(i)}(j)$.

Algorithm 7 $\text{DECODE}^{(i)}(j)$

1. Run $\text{DECODE}^{(i)}(j-1)$ where the underlying string decoded from the tree code is T_1 to get the output string r_1.
2. Run $\text{DECODE}^{(i)}(j-1)$ where the underlying string decoded from the tree code is T_2 to get the output string r_2.
3. Output $(r_1\|r_2)[1 : lcp^{(i)}]$.

10
Appendix

4 Preliminaries

4.1 Notation

Throughout this paper, we use A^k to denote the k-fold cartesian product of a set A with itself, i.e.

$$A^k = A \times A \times \cdots \times A$$

We define $A^{\leq n} = \bigcup_{i=1}^{n} A^i$. The set of all natural numbers less than or equal to n is denoted by $[n]$. To simplification of notation, we sometimes omit the upper ceiling operator. For example, we may write \sqrt{n} and mean $\lceil \sqrt{n} \rceil$.

We denote by ε the empty string (the string of length zero). For a string s and $i, j \in \mathbb{N}$, we denote by $|s|$ the length of s, and by $s[i:j]$ the substring from position i to position j (both inclusive). If $i > j$, then $s[i:j] = \varepsilon$. If $|s| < j$, then we first pad s with zeros to be of length i, and then take the slice. We sometimes abbreviate $s[i:j-1]$ as $s[i:j)$ and so on.

Let S be a set of bit strings. We denote by $l(S)$ the longest prefix that is common to all strings in the set S. That is, $l(S)$ is a prefix of all the strings in S, and no string of length greater than $|l(S)|$ is a prefix of all strings in S. If $S = \{s_1, \ldots, s_m\}$, we sometimes write $l(s_1, \ldots, s_m)$ to denote $l(S)$. Given a vertex v in a binary tree, we often view v as the bit-string that corresponds to the path from the root to v. Hence, for two vertices v and u, $l(v, u)$ is the lowest common ancestor of v and u. For two bit strings s and t, we denote by $s \| t$ the concatenation of s and t.

4.2 Probability

We use the following formulation of Chernoff bound.

Lemma 4.1 (Multiplicative Chernoff bound). Suppose X_1, \cdots, X_n are independent random variables taking values in $\{0,1\}$. Let X denote their sum and let $\mu = \mathbb{E}[X]$ denote the sum’s expected value. Then,

$$\Pr[X \geq (1 + \delta)\mu] \leq e^{-\frac{\delta^2 \mu}{2}}, \quad \forall 0 < \delta < 1,$$

$$\Pr[X \geq (1 + \delta)\mu] \leq e^{-\frac{\delta \mu}{2}}, \quad \forall 1 \leq \delta,$$

$$\Pr[X \leq (1 - \delta)\mu] \leq e^{-\frac{\delta^2 \mu}{2}}, \quad \forall 0 < \delta < 1.$$
Proof. For \(i \in [cf] \), let \(X_i \) be a random variable that is 0 if the \(i \)th noisy copy of \(b \) is indeed \(b \), and 1 otherwise. For \(i \in [cf] \), we have \(\Pr[X_i = 1] = \epsilon \). Let \(X = \sum_{i \in [cf]} X_i \). The majority is incorrect only if \(X \geq cf/2 \). By the Chernoff bound (Lemma 4.1),

\[
\Pr[X \geq cf/2] \leq \exp\left(-\frac{\delta^2 cf}{3}\right),
\]

where \(\delta = \min\{\frac{1}{2\epsilon} - 1, 1\} \). Setting \(c = \frac{3}{\delta \epsilon} \) gives the result. \(\square \)

4.3 Error Correcting Codes

We will use the existence of the following error correcting codes. The following version is derived from [GKS08].

Theorem 4.3. For \(\gamma \in (0, 1/2) \), there is an integer \(K_1 = K_1(\gamma) \) such that for all positive integers \(t \) and each \(K \geq K_1 \), there exists a code \(C_t \subset \{0, 1\}^{Kt} \) of size \(2^t \), such that for all \(v, w \in C_t \) with \(v \neq w \), \(d(v, w) \geq \gamma Kt \), where \(d(v, u) \) denotes the Hamming distance between \(v \) and \(w \).

Let \(\gamma \in (0, 1/2) \). In what follows, we let \(E_{t,\gamma} : \{0, 1\}^t \rightarrow \{0, 1\}^{K_t} \) stand for the encoding function of the error correcting code promised by the above theorem for \(\gamma \), and let \(D_{t,\gamma} : \{0, 1\}^{K_t} \rightarrow \{0, 1\}^t \) be the corresponding decoding function. Our protocols use the following lemma.

Lemma 4.4. Let \(\epsilon \in (0, 1/8) \), \(\gamma = 4\epsilon \), and \(x \in \{0, 1\}^{\log n} \). Suppose that \(\tilde{E} \) is a noisy copy of \(E_{\log n,\gamma}(x) \) obtained by flipping each of the \(K_t \gamma t \) bits of \(E_{\log n,\gamma}(x) \) independently with probability \(\epsilon \). Then, the probability that \(D_{\log n,\gamma}(\tilde{E}) = x \) is at least \(1 - n^{-30} \).

Proof. Let \(K = K_\gamma \), and assume without loss of generality that \(K > \frac{1000}{\epsilon} \). It holds that \(D_{\log n,\gamma}(\tilde{E}) = x \) unless \(d(\tilde{E}, E_{\log n,\gamma}(x)) > 2\gamma Kt \). For \(i \in [K \log n] \), define a random variable \(X_i \) to be 1 if \(\tilde{E} \) and \(E_{\log n,\gamma}(x) \) differ on the \(i \)th bit, and 0 otherwise. Let \(X = \sum_{i=1}^{K \log n} X_i \). Since the noise in each coordinate is independent, by the Chernoff bound (Lemma 4.1),

\[
\Pr[X \geq 2\epsilon K \log n] \leq e^{-\frac{\epsilon K \log n}{4}} \leq n^{-30}.
\]

\(\square \)

4.4 Tree Codes

Tree codes were introduced by Schulman [Sch93]. These are powerful “online” error correcting codes that work in an environment where the input is streaming. Thus, can be used towards the goal of reliable communication over noisy channels. We use the following version defined in [BR11].
Theorem 4.6. For every \(w \) symbols on the path from at least \(\alpha \) depth \(n \) property:

\[\text{code condition implies that for any two leaves } u \text{ to some node in the tree, and } \]

\[C \text{ decoding function. Then, for any } k \text{ in the range of } \]

\[d \text{ they can be viewed as a more powerful. } \]

\[\text{decode } \tilde{C} \text{ from } \Sigma. \]

In this setting, each element \(s \) differences are in the last \(k \) \(\in \Sigma \) alphabet.

Definition 4.5 \((d, \alpha, \Sigma)\)-tree code). A \(d \)-ary tree code of depth \(n \) and distance \(\alpha > 0 \) over

alphabet \(\Sigma \) is defined using an encoding function \(C : [d]^{\leq n} \rightarrow \Sigma \) that satisfies the following property:

\[\text{Define } \overline{C}(v_1, v_2, \cdots, v_k) \text{ as } C(v_1)\|C(v_1, v_2)\|\cdots\|C(v_1, v_2, \cdots, v_k). \text{ Let } u \text{ and } v \text{ be any two strings of length } k \leq n. \]

\[\text{Let } k_0 = k - |l(u, v)|. \text{ Then, } \overline{C}(u) \text{ and } \overline{C}(v) \text{ differ in at least } \alpha k_0 \text{ coordinates. } \]

Note that the way \(\overline{C} \) is defined implies that \(\overline{C}(u) \) and \(\overline{C}(v) \) are of length \(k \) and share a prefix of length at least \(k - k_0 \). Thus, the definition implies that at least a \(\alpha \) fraction of the remaining coordinates are different in both strings. Tree codes with larger values of \(\alpha \) are more powerful.

Encoders \(C \) that satisfy this property in Definition 4.5 are called tree codes because they can be viewed as a \(d \)-ary tree of depth \(n \), where each edge is labelled with an element from \(\Sigma \). In this setting, each element \(s \) in \([d]^{\leq n}\) can be seen as defining a path from the root to some node in the tree, and \(C(s) \) is just the symbol on the last edge in this path. The tree code condition implies that for any two leaves \(u \) and \(v \) at the same depth and \(w = l(u, v) \), at least \(\alpha \) fraction of the symbols on the path from \(w \) to \(u \) differ from the corresponding symbols on the path from \(w \) to \(v \). The following theorem was first proved by [Sch96]:

Theorem 4.6. For every \(n, d \in \mathbb{N} \), and \(0 < \alpha < 1 \), there exists a \((d, \alpha, [d^\cdot \alpha(1)])\)-tree code of depth \(n \).

We now introduce the decoder for tree codes that we will use. The decoding function \(D : \Sigma^{\leq n} \rightarrow [d]^{\leq n} \) takes the closest string \(\sigma \) in \(\Sigma^{\leq n} \) (in terms of Hamming distance) that lies in the range of \(\overline{C} \) and returns \(\overline{C}^{-1}(\sigma) \). If two strings differ in their length, then we consider their Hamming distance to be \(\infty \). The following theorem formalizes the property that we want a tree code to satisfy.

Theorem 4.7. Fix \(\alpha > 2\epsilon > 0 \). Let \(C \) and \(\overline{C} \) define a \((d, \alpha, \Sigma)\)-tree code of depth \(n \). Let \(k \leq n \) and consider any string \(s \in [d]^k \). Let \(\tilde{C}(s) \) be \(\overline{C}(s) \) where each symbol is replaced with a random symbol from \(\Sigma \) independently with probability \(\epsilon \). Let \(t = D(\tilde{C}(s)) \) where \(D \) is the decoding function. Then, for any \(k_0 \in \mathbb{N} \),

\[\Pr \{|l(s, t)| \leq k - k_0 \} \leq K_1 \exp(-K_2 k_0), \]

for some constants \(K_1 \) and \(K_2 \) depending on \(\epsilon \) and \(\alpha \).

Proof. Define the random variable \(l = l(s, t) \) and consider the event \(l = l_0 \). Since \(\overline{C} \) defines a tree code, \(\overline{C}(s) \) and \(\overline{C}(t) \) differ in at least \(\alpha(k - l_0) \) places. Furthermore, all of these differences are in the last \(k - l_0 \) coordinates. A Hamming distance based decoder would decode \(\tilde{C}(s) \) to \(t \) only if at least \(\alpha(k - l_0)/2 \) indices were affected by noise. Define indicator random variables \(\{X_i\}_{i=1}^k \) such that \(X_i \) is 1 if and only if index \(i \) is corrupted by noise. Let
$X_{> j} = \sum_{i=j+1}^{k} X_i$. An application of Lemma 4.1 gives:

$$\Pr[l = l_0] \leq \Pr[X_{> l_0} \geq \alpha(k - l_0)/2] = \Pr \left[X_{> l_0} \geq (1 + \delta)\mathbb{E}[X_{l_0}] \right] \leq \exp \left(-\frac{\delta^2\mathbb{E}[X_{l_0}]}{3} \right) = \exp \left(-\frac{\delta^2(k - l_0)}{3} \right),$$

where $\delta = \min \left(\frac{\alpha^2}{2k} - 1, 1 \right)$ is a constant. This directly gives,

$$\Pr \left[l(s, t) \leq k - k_0 \right] = \sum_{i=k_0}^{k-1} \Pr \left[l(s, t) = k - i \right] \leq \sum_{i=k_0}^{k-1} \exp \left(-\frac{\delta^2 i}{3} \right) \leq \sum_{i=k_0}^{\infty} \exp \left(-\frac{\delta^2 i}{3} \right) = \frac{\exp \left(-\frac{\delta^2 k_0}{3} \right)}{1 - \exp \left(-\frac{\delta^2 k}{3} \right)}.$$

\[\square\]

5 Our Broadcast Model

5.1 The Definition

We define an adaptive noisy broadcast model that generalized the non-adaptive variant described in [GKS08]. Our model has a leader and n participants numbered 1 through n. All participants i (also referred to as players i) have their input x_i from the set X_i. The leader doesn’t have any input. The participants and the leader can transmit one bit in every round they decide to broadcast in. The decision of whether to broadcast or not is made based on the round number t, the transcript heard as of round t and the input x_i.

Consider a round t and suppose a subset $S_t \subseteq [n] \cup \{ld\}$ of participants decide to broadcast. If $|S_t| \neq 1$, all the players and the leader receive a bit chosen by the adversary. On the other hand, if $|S_t| = 1$, then there is exactly one player who broadcasts a bit, say b. In this case, all the players $i \in [n] \cup \{ld\}$ receive the bit $b \oplus \epsilon_i$. The vector ϵ_i is vector of independent and identically distributed random variables that each take the value 1 with probability ϵ and 0 with probability $1 - \epsilon$.

A protocol $\Pi \equiv \{X_i, g_{it}\}_{t=1}^{n,T}$ in this model is defined by a number T of rounds and a set of functions g_{it} for all players $i \in [n] \cup \{ld\}$ and $1 \leq t \leq T$. The function g_{it} is of the form

$$g_{it} : \{0, 1\}^{t-1} \times X_i \to \{0, 1, sil\},$$

5Throughout the paper, ld denotes the leader
The base case, i.e., when all players receive one bit in every round, is maintained that for all t, before deciding whether or not to broadcast in round t, all players i have a transcript π_i, of length $t-1$. In round t, player i decides to broadcast $g_i(\pi_i, x_i)$. We remind that if $g_{it}(\pi_i, x_i) = sil$, then player i is said to stay silent in round t. After all the T rounds are over, the players are allowed to output any function of the transcript they heard during the execution of Π.

We now define a restriction of the general scheme described above. If there exists a sequence of players p_t such that $g_i(\pi_i, x_i) = sil$ for all $i \neq p_t, x_i$, and π_i and $g_{pt}(\pi_{pt}, x_{pt}) \neq sil$ for all x_{pt}, and π_{pt}, then we say that the protocol Π is non-adaptive. Intuitively, this corresponds to the case when player p_t is broadcasting in round t independent of any inputs or transcripts. This sequence p_t is fixed in advance before the execution of the protocol Π. If this is the case, our model reduces to the model described in [GKS08].

5.2 A Complete Problem for Non-Adaptive Protocols

This section is dedicated to proving Theorem 5.1. Essentially, Theorem 5.1 proves that the n-player CPJ problem defined below is a complete problem for all non-adaptive protocols on a noiseless channel.

An n-player CPJ instance is defined by a complete binary tree of depth d (with $2^d - 1$ internal nodes and 2^d leaves) and a sequence $\{p_t, f_t\}_{t=1}^d$, for $p_t \in [n]$ and $f_t : \{0, 1\}^{i-1} \rightarrow \{0, 1\}$, interpreted as follows: Each internal layer $i \in [d]$ in this tree belongs to the player $p_t \in [n]$. Player $p_t \in [n]$ has an input function $f_t : \{0, 1\}^{i-1} \rightarrow \{0, 1\}$ for every layer i that belongs to him. This function takes one of the 2^{i-1} nodes in layer i as input and outputs one of the two edges emanating from that node. The goal of the n players is to compute the path σ_d defined by the recursion:

\[
\begin{align*}
\sigma_0 &= \varepsilon \\
\sigma_i &= \sigma_{i-1} \parallel f_i(\sigma_{i-1})
\end{align*}
\]

This definition captures the path formed by joining all the correct edges. Equivalently, this can also be seen as a representation of one of the 2^d leaves in the CPJ tree (by the standard bijection).

Theorem 5.1. Let $\Pi = \{X_i, g_{it}, p_t\}_{i=1, t=1}^{n, T}$ be a non-adaptive protocol over a noiseless channel where $x = (x_1, x_2, \cdots, x_n) \in X_1 \times X_2 \times \cdots \times X_n$ be an input. There exists a CPJ instance $\{q_{i', f_{i'}}\}_{i'=1}^d$ such that the solution σ_d of the CPJ instance is the transcript of the protocol Π when it is run with the inputs x. Furthermore, every player i knows q_1, \cdots, q_d and knows f_i if $i = q_{i'}$.

Proof. We define $d = T$ and the sequence $q_{i'}$ to be the same as the sequence p_t.

Let $\pi = \pi_1 \pi_2 \cdots \pi_T$ be the transcript of Π. Let $\pi_{\leq t} = \pi_1 \pi_2 \cdots \pi_t$ and $\pi_{\leq 0} = \varepsilon$. Since the channel is noiseless, $\pi_{\leq t}$ is the same for all players. We prove $\pi_{\leq t} = \sigma_t$ by induction on t. The base case ($j = 0$) is trivial. We assume the result for $t - 1$ and prove it for t. We have
\[\pi_{\leq t} = \pi_{\leq t-1} \parallel \pi_t = \pi_{\leq t-1} \parallel g_{p_t}(\pi_{\leq t-1}, x_{p_t}) = \pi_{\leq t-1} \parallel f_t(\pi_{\leq t-1}) = \sigma_{t-1} \parallel f_t(\sigma_{t-1}) = \sigma_t. \]

Remark 5.2. The function \(f_t \) can be computed by player \(q_t = p_t \) on their own given the function \(g_{p_t} \). Thus, any non-adaptive protocol can converted to a CPJ instance over the same \(n \) players.

6 Our Framework

Each subsection here discusses an important feature in our protocol. We refer to this section extensively throughout the paper.

6.1 The Leader

A major difficulty in designing adaptive protocols in our \((n, \epsilon)\)-noisy broadcast model is to co-ordinate the broadcasts by all the players. This is difficult because the noise injected in the transcript received by the players is independent of each other. Thus, two different players might have entirely different views of the protocol. However, it is crucial to ensure that most rounds have only one player broadcasting. If this is not the case in some round, the bits received by all the players in that round are adversarial.

This important task is designated to a special player, called the “leader” in our protocols. Almost all the communication in all our protocols will be routed through the leader. For the rest of the text, we assume that the leader is an extra player (player \(n + 1 \)), but the same arguments hold if the leader is one of the original players.

We will make sure that the leader is broadcasting in *pre-determined rounds*, that is, in rounds whose number is fixed in advance, and does not depend on the player’s inputs and randomness and on the noise in the channel. Since all the other players in \([n]\) know these rounds (they are specified by the protocol), they would never broadcast in these rounds. We sometimes call such pre-determined rounds “adversary free”. The name reflects the fact that the bit received by all the players in these rounds in noisy, but not adversarial (as only the leader was broadcasting).

Since the leader’s broadcasts are adversary free and the players only take instructions from the leader, important parts of our protocol are adversary free. Almost throughout, the players only broadcast after the leader asks them to, to ensure synchronization. The leader will only ask one player at any given time, making that player the only person broadcasting.
6.2 Global Tree Code

We solve the CPJ problem via a sequence of protocols \(\{\mathcal{A}_j\}_{j \geq 0} \) where each protocol \(\mathcal{A}_j \) invokes the protocol \(\mathcal{A}_{j-1} \) twice. Throughout the execution of the different sub-protocols that compose our main protocol, we assume that the leader is maintaining a single tree code. The tree code is a “global variable” that retains its value between the calls to different sub-protocols. It records all the information that any protocol needs from any other protocol executed before it. Further, the leader is the only player that encodes messages using this tree code and broadcasts their encodings.

We refer to such broadcasts as ‘broadcasts over the tree code’. Since only the leader makes these broadcasts, the tree code is adversary free. Suppose that at some stage in the protocol, the leader has already broadcast the encoding of the bits \(b_1, \ldots, b_m \) over the tree code and wants to send the next bit \(b_{m+1} \). To broadcast \(b_{m+1} \) over the tree code, the leader broadcasts the message \(C(b_1\|\ldots\|b_m\|b_{m+1}) \), bit by bit (see subsection 4.4). We denote this message by simply \(C(b_{m+1}) \). The previous bits \(b_1, \ldots, b_m \) will be clear from the context (these are all the bits communicated over the tree code so far).

6.3 Active and Passive Players

All the protocols we describe are multi-party protocols executed over a noisy broadcast network. However, we partition the players into two sets: active players and passive players. Active players are assumed to have an input and may broadcast messages during the execution of the protocol. Passive players do not have inputs and will not be broadcasting (only listening-in). Since both the types listen to the bits broadcast, they are able to compute functions of the transcripts they witnessed, and thus compute the outputs promised by the protocols. We mention that the leader will participate in any execution of any protocol as an active player.

6.4 Harmonious Executions and Fixed Length Protocols

The protocol we employ to solve the CPJ problem involves many sub-protocols that are invoked multiple times. Some of the sub-protocols that are invoked many times may involve a different set of players in each invocation. The subset of players participating in an invocation of a sub-protocol is determined adaptively, i.e., according to the players’ inputs, randomness and the randomness in the channel.

Consider a sub-protocol \(\mathcal{A} \) that involves \(k \) active players in any given execution, but this subset of \(k \) players might vary between two different invocations. To simplify the description and the analysis, we will describe and analyze every such protocol \(\mathcal{A} \) as if players in the set \([k]\) were participating in it.

We now define a notion of a ‘harmonious invocation’ that would allow us to lift our results from players in the set \([k]\) to an arbitrary subset \(S \) of participating players. Since we want the result(s) proved for the case where the players in the set \([k]\) are active (and
the rest are passive) to hold in general, intuitively, we want the invocation to look similar. We require three things from a harmonious invocation. Firstly, every player in \([n]\) should know the number \(k\) of active players. Secondly, there should be a set \(S\) of size \(k\) such that a player \(i\) participates as an active player if and only if \(i \in S\). Thirdly, since the \(k\) active players in the description of \(\mathcal{A}\) might play different roles, we assume that the players in \(S\) know a common bijection \(f : S \rightarrow [k]\) and player \(i \in S\) participates as \(f(i)\) in the execution of \(\mathcal{A}\).

The definition above ensures the following. Firstly, every active player knows exactly who participates in the execution of \(\mathcal{A}\) and in what role. This means that they can determine what parts of the transcript they receive during the execution are from which players. This allows them to ‘parse’ the transcript the right way. Also, since the passive players know they are passive, they stay silent throughout. This doesn’t cause undesirable collisions (rounds where multiple people speak) due to players not in \(S\) interfering in the execution of the protocol. Together, these things imply that the invocation proceeds as if the players in \([k]\) were participating.

One nuance in the above discussion is in the word ‘throughout’. How do the passive players know that the invocation of \(\mathcal{A}\) has ended and they may need to broadcast now? All the sub-protocols we describe would require a fixed number of broadcasts. This number is solely determined by \(k\) and is independent of the inputs, the players’ randomness or the noise in the channel. Since all the players know \(k\), the passive players can tell when the execution ends. The fact that our protocols are of fixed length, also allows us to make sure that the rounds in which the leader is broadcasting are adversary free.

7 The OR Protocol

In this section, we design an adaptive protocol called \(\text{OR}_n\) for the problem of computing the OR of \(n\) bits belonging to \(n\) different participants connected by an \((n, \epsilon)\)-noisy broadcast network. The protocol is given in Algorithm 10. For the rest of the section we fix \(n\) and refer to \(\text{OR}_n\) as simply \(\text{OR}\).

Theorem 7.1. There exists \(m \in \mathbb{N}\) and parameters \(l_1, l_2, l_3 = \mathcal{O}(\log n)\) such that the following holds: Assume that \(n \geq m\) active players with inputs \(x_1, \ldots, x_n \in \{0, 1\}\), and any number of passive players, run the \(\text{OR}\) protocol. Then, the output \(\text{or}^{(i)}\) of player \(i\) (active or passive) satisfies \(\text{or}^{(i)} = \text{OR}(x_1, \ldots, x_n) = \forall i \in [n] x_i\) with probability at least \(1 - \frac{1}{n^{20}}\). The probability is over the noise of the channel and the randomness of the players.

The protocol \(\text{OR}\) requires a fixed number of broadcast rounds, and this number is at most \(\mathcal{O}(\log^3 n)\).

We note that our protocol performs better than the \(\Omega(n)\) lower bound that holds for all non-adaptive protocols. The reason this is possible is because an adaptive environment allows the players to broadcast based on their input.
An Informal Discussion of the OR Protocol. The OR of n bits has the property that it is 1 if and only if one of the n bits is 1. If these bits belong to different participants, the participant that has 1 doesn’t need to know anything about any other participant’s input. All they have to do is to convince everyone that they are holding a 1. Participants holding a 0 play the complementary role. They know that their input is not going to affect the ultimate result. Hence, they might stay silent and try to hear the participants, if any, that have a 1.

Consider the following simple protocol where those participants who have a 1 (called 1-players) broadcast 1. The participants holding a 0 (called 0-players) stay silent throughout. If there is exactly one 1-player, this is the best possible protocol. After $\Theta(\log n)$ broadcasts, each participant would know that a 1-player exists with probability $1 - \frac{1}{\text{poly}(n)}$. By a union bound, all n players will know the correct answer with probability $1 - \frac{1}{\text{poly}(n)}$. Observe, however, that this simple algorithm fails to work if the number of 1-players is anything other than one.\(^6\)

Suppose now that the number of 1-players is at least one. In this case, if the 1-players keep broadcasting throughout, every single round of the protocol would encounter a collision and every single bit received by every participant would be adversarial. This shows that the 1-players need to coordinate during the protocol (since the input is worst case, no coordination is possible beforehand).

It is notable that similar situations arise in distributed networks during the so-called ‘rumor-spreading’ protocols. These protocols work in the environment where all participants are connected by a network unknown to any of the participants. One of the participants, call them the leader has a ‘rumor’\(^7\) that they want to spread to all other participants. However, if more than two neighbors of any given participant speak at the same time, the bits sent are lost. The crux of the problem is to adaptively ensure that all the participants don’t keep stepping on each others’ toes.

The celebrated Decay protocol \cite{Decay} achieves this by discounting the probability with which the players are broadcasting. In the first round of the protocol, all 1-players will broadcast 1. In each of the following $O(\log n)$ rounds, each participant that broadcasted in the previous round will back-off (stay silent) randomly with probability $1/2$ and with probability $1/2$, broadcast 1. Once a player decides to back-off, he will never broadcast again. Thus, the number of broadcasting neighbors of any participant decreases by (roughly) $1/2$ in each round. It can been proved that with constant probability, there would be a round where exactly one neighbor broadcasts, thus the message will be conveyed. Of course, the process can be repeated to boost the success rate. We follow a similar ‘random-back-off’ approach in our protocol.

In addition to handling the case where more than one 1-player is broadcasting, our OR protocol needs to also handle the case where there are no 1-players. (The assumption that

\(^6\)It is worth mentioning that if the number of 1-players is assumed to be one always, the participants don’t actually need to do anything to compute the result of the OR.

\(^7\)This may consist of multiple bits.
there exists a 1-player is equivalent to assuming that the OR is always 1.) This introduces a complication, as in our model, if no transmissions occur, then every participant would receive an adversarial bit in every round. Since these bits might resemble legitimate broadcasts by a 1-player if they existed, it is necessary to verify that this is not the case.

Our procedure for authenticating messages is first having all the players ‘sign’ their messages with a unique identifier (their “name”). The length of each identifier is logarithmic in \(n \). One of the participants, whom we call the ‘leader’, then verifies each message they received by broadcasting the signature. The player who signed the message can then tell the leader their bit, and the leader can, thus, verify.

Finally, note that we focused entirely on the adversary and overlooked the noise injected by the channel. We correct this by noting that if the adversary is not corrupting the transmission, correct reception by all the participants can be ensured by using error correcting codes.

7.1 The Protocol

Our description of the protocol closely follows the ideas in the foregoing section. We break our protocol into two phases: the advertising phase and the inquiry phase. The final OR protocol is obtained by running the advertising protocol with the given input bits, followed by an execution of the inquiry protocol.

7.1.1 Phase 1: Advertising

Phase 1 is the ‘advertising’ phase where the 1-players try to convey their bit to other participants. The protocol for this phase is given in Algorithm 8. Note that it is not necessary for all 1-players to convince everyone else. Even if only one 1-player is able to achieve this, the players can then convince themselves that the OR of all the bits is 1.

In our protocol, the 1-players advertise themselves by broadcasting their identity\(^8\). By identity we mean the player’s number (that is, player \(i \) broadcasts the binary representation of \(i \))\(^9\). To cope with the noise in the channel, the participants encode their identities using a constant rate error-correcting code. This guarantees that all the other participants will correctly decode with high probability.

If multiple (or zero) participants broadcast at the same time, then the bits received are adversarial. At the heart of our protocol is a method that ensures that at least one of the identities is transmit on an otherwise silent channel. We do this by making the 1-players broadcast with a probability \(\alpha \). If there are \(1/\alpha \) participants, the number of participants that broadcast at any given time is 1 in expectation. We convert this to a high probability

\(^8\)If convenient, it may be imagined that they also broadcast 1 multiple times and then sign it with their identity. However, since we assume that only 1-players broadcast, this step is redundant.

\(^9\)We mention that we could have used any unique string as an ‘identity’. However, we must make sure that the set of all identities is known to the leader.
argument by a standard repetition technique. Note that this is similar to the random-back-off technique followed in the Decay algorithm [BGI92].

We describe our protocol using the parameters l_1, l_2, and l_3. Asymptotically, all of these parameters would grow as $\mathcal{O}(\log n)$. The selection of parameters is made in subsection 7.2.

Algorithm 8 Advertising (the first stage of the OR$_n$ protocol)

Input: Player $i \in [n]$ is active and his input is a bit $x_i \in \{0, 1\}$. Any number of other players may participate as passive players.

Output: The leader has $l_1 l_2$ identities $\{\text{id}^{(l_1)}_{j_2} \}_j$ where $\text{id}^{(l_1)}_j \in [n]$.

1: for $j_1 \leftarrow 1, 2, \ldots, l_1$ do
2: \hspace{1em} $\alpha \leftarrow 2^{1-j_1}$.
3: \hspace{1em} for $j_2 \leftarrow 1, 2, \ldots, l_2$ do
4: \hspace{2em} for all players $i \in [n]$ do
5: \hspace{3em} With probability α,
6: \hspace{4em} if $x_i = 1$ then
7: \hspace{5em} Broadcast $E_{\log_2 n, 4\epsilon}(i)$. The leader receives a corrupted codeword and
8: \hspace{5em}\hspace{1em} decodes it to the nearest element $\text{id}^{(l_1)}_{(j_1-1)l_2+j_2} \in [n]$.
9: \hspace{3em} end if
10: \hspace{2em} end for
11: end for

7.1.2 Phase 2: Inquiry

All that the advertising phase guarantees is that if there were 1-players, then with high probability, one of them will transmit their identity over an otherwise silent channel. It makes no claims about any of the other identities transmitted. Indeed, many of them would be adversarial. It also does not say anything about which identity was received correctly by the leader. Furthermore, if there were no 1-players, all bets are off. In this case, anything received by any participant in this phase is adversarial.

The next phase of the protocol is the inquiry phase. The protocol for this phase is given in Algorithm 9. In the protocol, the leader decodes each of the $l_1 l_2$ encodings they receive in the advertising phase to an identity in the set $[n]$. A fact that would turn out to be crucial in the proof is that the rounds in which the leader broadcasts the value it decoded are fixed in advance. No other participant is allowed to speak in these rounds. These ‘non-adaptive’ steps are also non-adversarial (see subsection 6.1). When the leader broadcasts their decoded values\footnote{after re-encoding them}, every other participant receives only a noisy (and not adversarial) version of these broadcasts. Since this identity was encoded using an error correcting code, it will be decoded correctly by every player in the network with high probability.
Assume now that all the players decode the identity broadcast by the leader correctly. This means that all the players would now agree on a value $i \in [n]$ that was sent by the leader. This value i uniquely defines one of n active players. This player would answer the inquiry by sending their bit $\log n$ times. Moreover, no one else would be broadcasting when they do this. This implies that all the players would receive noisy (but not adversarial) copies of the bit. The players can then compute the majority bit which will be, with high probability, correct.

If there was a 1-player, one of the identities broadcast by the leader was of a 1-player. They would answer this inquiry with 1 and would be able to convince all the players that the OR is 1. If there were no 1-players, all the inquiries would be answered with 0. The players can use this information to say that the OR is 0.

For the case where all participants are 0-players, it is crucial that exactly one participant responds to each of the leader’s inquiries. This is because in this case, the players say that the OR is 0 only if all the bits received are 0. Even if one of the responses is adversarial, the adversary can send a 1 as that response. The players would then compute value of OR (incorrectly) as 1. This is where we need the leader to know n. If the leader inquires about a string not in $[n]$, no player would respond to that inquiry making the response adversarial. Since the adversary can send a 1, in which case the output of the algorithms is 1, the algorithm will no longer be reliable.

Algorithm 9 Inquiry (the second stage of the OR$_n$ protocol)

Input: The leader has $l_1 l_2$ identities $\{id_j^{(ld)}\}_{j=1}^{l_1 l_2}$, where $id_j^{(ld)} \in [n]$. Player $i \in [n]$ is active and his input is a bit $x_i \in \{0, 1\}$. Any number of other players may participate as passive players.

Output: The output of player i (active or passive) is a bit $or^{(i)}$.

1: for $j \leftarrow 1, 2, \ldots, l_1 l_2$ do
2: The leader broadcasts $E_{\log_2 n, \epsilon}(id_j^{(ld)})$.
3: Player $i \in [n]$ (active) decodes the leader’s broadcast. If the value is i, then player i broadcasts the bit x_i l_3 times.
4: Player i' (active or passive) computes the majority value, $b_j^{(i')}$, of the $l_3 \epsilon$-noisy copies of x_i he received.
5: end for
6: Player i computes and outputs $\lor_{j=1}^{l_1 l_2} b_j^{(i)}$.

7.2 Analysis

7.2.1 The Advertising Phase

In this section we analyze the advertising stage of the protocol. Define $A \subseteq [n]$ as the set of all 1-players. That is, A is the set of players with input 1. Let $(j_1, j_2) \in [l_1] \times [l_2]$. Let $X_{j_1 j_2}$ be the set of players broadcasting in iteration (j_1, j_2) of the protocol Advertising. We first
Algorithm 10 OR$_n$

Input: Player $i \in [n]$ is active and his input is a bit $x_i \in \{0, 1\}$. Any number of other players may participate as passive players.

Output: The output of player i (active or passive) is a bit $or^{(i)}$.

1. Players execute **Advertising**. The output of the leader is $\{id_{j}^{(ld)}\}_{j=1}^{l_1 l_2}$, $id_{j}^{(ld)} \in [n]$.
2. Players execute **Inquiry**, where the input to the leader is the list of $l_1 l_2$ identities $\{id_{j}^{(ld)}\}_{j=1}^{l_1 l_2}$.
3. Player i outputs the value $or^{(i)}$ returned by the **Inquiry** protocol.

prove that at least one of the sets $X_{j_1 j_2}$ is singleton. This formalizes the claim made in the previous section that at least one 1-player is able to advertise non-adversarially. For this to be true, there should exist one 1-player. Thus, throughout this section, we would assume that $k = |A| \geq 1$.

Lemma 7.2. Let $k \geq 1$ and $j_1 = \lfloor \log_2 k \rfloor + 1$. With probability at least $1 - (\frac{15}{16})^{l_2}$, there exists a $j_2 \in [l_2]$ for which $|X_{j_1 j_2}| = 1$.

Proof. We consider two cases. We first analyze the case where $k = 1$ (and $j_1 = 1$, $\alpha = 1$). This corresponds to the simple case where there is exactly one 1-player. As discussed before, we can actually prove a stronger statement in this case. We prove that in fact for all $j_2 \in [l_2]$, $|X_{1 j_2}| = 1$. This is indeed the case as for any j_2, since $\alpha = 1$, the only 1-player in A transmits in every iteration $(1, j_2)$.

Now we deal with the case where $k > 1$. Since $j_1 = \lfloor \log_2 k \rfloor + 1$, $\frac{2}{k} > \alpha \geq \frac{1}{k}$. In the iteration (j_1, j_2) each of the k players in A broadcast with probability α, independently. The probability of exactly one player broadcasting in iteration (j_1, j_2) is given by

$$
\Pr[|X_{j_1 j_2}| = 1] = \left(\frac{k}{1}\right)\alpha(1 - \alpha)^{k-1} \geq (1 - \alpha)^k \geq (1 - \alpha)^{2/\alpha}.
$$

Since we assumed that $k \geq 2$, we have $j_1 \geq 2$ and $\alpha = 2^{1-j_1} \leq 1/2$. The function $(1 - x)^{1/x}$ is strictly decreasing in the range $[0, 1]$. Continuing the previous equation,

$$
\Pr[|X_{j_1 j_2}| = 1] \geq (1 - \alpha)^{2/\alpha} \geq \left(1 - \frac{1}{2}\right)^4 = 1/16.
$$

Thus, for all j_2, we have $\Pr[|X_{j_1 j_2}| \neq 1] \leq \frac{15}{16}$. Since the randomness is chosen independently for each iteration (j_1, j_2), we have

$$
\Pr[\exists j_2 : |X_{j_1 j_2}| = 1] \geq 1 - \left(\frac{15}{16}\right)^{l_2}.
$$

Theorem 7.3. For $l_1, l_2 = O(\log n)$, if $k \geq 1$, then with probability at least $1 - n^{-100}$, there exist $j_1 \in [l_1], j_2 \in [l_2]$ such that $|X_{j_1 j_2}| = 1$.

23
Proof. We fix \(l_1 = \lfloor \log n \rfloor + 1 \) and \(l_2 \) such that \((\frac{15}{16})^{l_2} \leq n^{-100}\). Lemma 7.2 guarantees that \(\exists j_2 \in [l_2] \) such that \(|X_{\lfloor \log k \rfloor + 1, j_2}| = 1 \) with probability at least \(1 - (\frac{15}{16})^{l_2} \geq 1 - \frac{1}{n^{100}} \). We just set \(j_1 = \lfloor \log k \rfloor + 1 \leq \lfloor \log n \rfloor + 1 = l_1 \).

\[\]

7.2.2 The Inquiry Phase

At the beginning of this stage, the leader has a list of \(l_1 l_2 \) identities \(\{id_j\}_{j=1}^{l_1 l_2} \). This list was formed by decoding the bits received in the \((j_1, j_2)\)th iteration of the advertising stage to the nearest element in \([n]\), for every \((j_1, j_2) \in [l_1] \times [l_2] \). The leader proceeds by broadcasting each of these identities and listening to the response. If all the participants are 0-players (have a 0 input), then all the responses should be 0. The leader hopes that if there exists a 1-player, one such participant would be inquired and a 1 would be received as a response. We assume throughout that the noise in the channel is less than \(1/8 \).

We first prove that a unique (active) player responds to each of the leader’s query.

Lemma 7.4. Fix any \(i \in [n] \). With probability at least \(1 - n^{-29} \), all active participants decode the leader’s \(\epsilon\)-noisy broadcast of \(E_{\log n,4\epsilon}(i) \) correctly (see Line 3 of Algorithm 9).

Proof. Because the rounds in which the leader broadcasts are known in advance, the others players never broadcast in these rounds, and all the players receive a noisy copy of \(E_{\log n,4\epsilon}(i) \). Lemma 4.4 implies that any given player decodes the correct value except with probability at most \(n^{-30} \). Taking a union bound over all the \(n \) players, we get that the probability that there exists a player who decodes incorrectly is upper bounded by \(n^{-29} \).

Corollary 7.5. After the leader broadcasts \(E_{\log n,4\epsilon}(i) \) for some \(i \in [n] \), with probability at least \(1 - n^{-29} \), exactly one player broadcasts in the next \(l_3 \) rounds (see Line 3 of Algorithm 9).

Proof. Players only broadcast if the value they decode is their own identity. If all players decode the same value, only one player can broadcast as identities are unique. Also, since the identities are in \([n]\), at least one player will broadcast. By Lemma 7.4, this is the case with probability at least \(1 - n^{-29} \).

Having established that collisions are rare in the responses, we turn to prove that the responses would allow any participant to compute the OR correctly. For this, it is essential that the majority of \(l_3 \) broadcasts is reliable with high probability. In other words,

Lemma 7.6. For some \(l_3 = O_\epsilon(\log n) \) the following holds: Suppose that each participant has \(l_3 \) (possible different) \(\epsilon\)-noisy copies of a bit \(b \) (that is, each of the copies is \(b \) with probability \(1 - \epsilon \), independently). Then, with probability at least \(1 - n^{-99} \), the majority of the \(l_3 \) copies of all players is \(b \).

Proof. Let \(l_3 = 100c \log n \) where \(c \) is the constant given by Lemma 4.2. Lemma 4.2 says that the probability that the majority of the \(l_3 \) copies of a specific player is different than \(b \) is at most \(n^{-100} \). A union bound over all \(n \) players shows that the assertion holds.
Together, the two foregoing results can be interpreted as follows. Each of the $l_1 l_2$ iterations in Algorithm 9 is a query and a response. The query is the leader broadcasting $E_{\log n, A}(i)$ for an $i \in [n]$. The response is when (hopefully) one of the participants broadcasts their bit l_3 times. Since the rounds when the leader broadcasts are fixed in advance, all the players receive a noisy copy of $E_{\log n, A}(i)$. Lemma 7.4 guarantees that this is decoded to i by all the players with high probability. Since there is a unique player with identity i, exactly one player will be transmitting in the response step (Corollary 7.5). All players would receive l_3 noisy versions of this response and the majority of these l_3 responses would be correct with high probability.

We are now ready to prove the main theorem of this section:

Proof of Theorem 7.1. Let $l_1, l_2, l_3 = O_\epsilon(\log n)$. The the number of broadcasts during the OR protocol is $l_1 l_2 (l_3 + O_\epsilon(\log n)) = O_\epsilon((\log n)^3)$.

We next prove the correctness of the protocol. Denote $OR(x_1, x_2, \ldots, x_n)$ by or. Note that $or = 1$ if and only if $k = |A| \geq 1$ implying it is sufficient to show that $or^{(i)} = 1$ if and only if $k = |A| \geq 1$. We break the proof into two cases.

- **$k = 0$.** In this case, we want to show that, for any i, holds that $or^{(i)} = 0$, with high probability. Consider an iteration j of Inquiry ($j \in [l_1 l_2]$). Observe that the identity id$_j^{(id)}$ broadcast by the leader is decoded correctly by all the active players except with probability n^{-29} (Lemma 7.4). Thus, the response would be collision free (Corollary 7.5) and all players would receive l_3 noisy copies of $x_{id_j^{(id)}}$. Lemma 7.6 guarantees that the majority of the l_3 copies of any player i, $b_j^{(i)}$, would be $x_{id_j^{(id)}} = 0$, except with probability at most n^{-99}. Coupling the above statements, for any player i, it holds that $b_j^{(i)} = 0$, with probability at least $1 - 2n^{-29}$. A union bound over all $l_1 l_2$ possible values for j gives that $or^{(i)} = 0$ for each i except with probability $2l_1 l_2 \leq \frac{1}{n^{29}}$ for large enough n.

- **$k \geq 1$.** In this case, we want to show that $or^{(i)} = 1$ for every i with high probability. Since $or^{(i)} = \vee_{j=1}^{l_1 l_2} b_j^{(i)}$, it is sufficient to show that there exists a j such that $b_j^{(i)} = 1$ for all i with high probability. Since $k \geq 1$, we can apply Theorem 7.3 to say the $\exists j_1, j_2 : |X_{j_1, j_2}| = 1$ with probability at least $1 - n^{-100}$. This means that in the (j_1, j_2)th iteration of Algorithm 8, exactly one 1-player, say $i' \in A$, broadcast their identity. The leader thus receives a noisy version of $E_{\log n, A}(i')$ which was decoded correctly with probability at least $1 - n^{-30}$ (Lemma 4.4). If this happens, the leader will broadcast $E_{\log n, A}(i')$ in the jth iteration of Algorithm 9 where $j = (j_1 - 1) l_2 + j_2$. By Corollary 7.5, with probability at least $1 - n^{-29}$, player i' would broadcast $x_{i'} = 1$ in response, and will be the only player broadcasting. His broadcast will be repeated l_3 times ensuring that all other players hear a majority of the responses correctly with probability at least $1 - n^{-99}$ (Lemma 7.6). Thus, for every i it holds that $b_j^{(i)} = 1$ with probability at least $1 - n^{-100} - n^{-30} - n^{-29} - n^{-99} \geq 1 - n^{-20}$ for large n, and the assertion follows.

25
8 The Longest Common Prefix Protocol

In the Longest Common Prefix (LCP) problem, \(n \) players are each holding a private input \(v_i \in \{0, 1\}^{\leq n} \). The goal is computing the longest prefix \(l(v_1, \ldots, v_n) \) common to all the strings in \(v_1, \ldots, v_n \) (see definition in section 4).

In this section, we design an adaptive protocol called \(\text{LCP}_n \), that computes the LCP of \(n \) bit strings belonging to \(n \) different participants connected by an \((n, \epsilon)\)-noisy broadcast network. Let \(m \in \mathbb{N} \) be the constant from Theorem 7.1, and assume without loss of generality that \(m \geq 2^{20} \). The protocol \(\text{LCP}_n \) for \(n \geq m \) is given in Algorithm 11. The protocol \(\text{LCP}_n \) for \(n < m \) is simple: Each player broadcasts each of his (at most \(m \)) input bits \(m^{1000} \) times. Then, players compute the LCP of the majorities by themselves.

Theorem 8.1. There exists a constant \(c_1 \in \mathbb{N} \) such that the following holds: Assume that \(n \) active players with inputs \(v_1, \ldots, v_n \in \{0, 1\}^{\leq n} \), a leader with input \(v \in \{0, 1\}^{\leq n} \), and any number of passive players, run the LCP protocol. Then, the output \(\text{lcp}^{(i)} \) of player \(i \) (active or passive) satisfies \(\text{lcp}^{(i)} = |l(v_1, \ldots, v_n, v)| \) with probability at least \(1 - \min\{n^{-9}, 2^{-9}\} \). The probability is over the noise of the channel and the randomness of the players.

The protocol LCP requires a fixed number of broadcast rounds, and this number is at most \(O(\log^4 n) \).

Theorem 8.1 clearly holds for \(n < m \). For the rest of the section we will assume that \(n \geq m \).

Applications of LCP. We first note that the OR function can be formulated as an LCP problem. In the case of OR, each of \(n \) players has a private input bit \(x_i \) that can be either 0 or 1 and the players want to know if there exists someone who has the bit 1. Each of these bits can be viewed as a string \(v_i \) of length 1. In this case, \(l(v_1, \ldots, v_n) \) has three possible values. It can either be the empty string \(\epsilon \), the string 1, or the string 0. If \(l(v_1, \ldots, v_n) \) is the empty string, it means that some of the \(v_i \) are 1 and others are 0. The OR in this case would be 1. If \(l(v_1, \ldots, v_n) \) is 1, it means that all the \(v_i \) are 1 and the OR is 1. Finally, if the LCP is 0, all the strings are 0 and so is the OR.

The LCP framework can also be used as a general purpose ‘progress-check’ subroutine in many scenarios. An example might be the identity problem. This problem considers \(n \) players, each holding a private input bit \(x_i \). The players communicate towards the common goal of each knowing all \(n \) input bits. Consider an adaptive protocol that runs in the following way. All the players \(i \) maintain a belief \(x_{ij} \) about the private input bit of every other player \(j \). These beliefs are random at the beginning of the protocol. As the players communicate, they transmit information about their input bits to the other participants who can then update their beliefs. We show how LCP can be used to quantify the progress.
made in such a scenario. Each participant i forms a string $v_i = x_{i1}x_{i2}\cdots x_{in}$. This string represents their current belief about the bits of all the other players. The ‘diagonal’ entries in the v_i are the correct input bits, i.e. $v_{ii} = x_i$. Suppose $|l(v_1, \ldots, v_n)| = l$. This means that $v_{ij} = v_{2j} = \cdots = v_{nj}$ for all $1 \leq j \leq l$. In particular, $v_{ij} = v_{2j} = x_j$ for all $i \in [n], j \in [l]$. In words, the first l players have successfully conveyed their bits to the other players. The output of the LCP protocol tells the players that they can now only focus on the rest of the $n - l$ bits\(^{11}\).

We are interested in solving the CPJ problem, which subsumes the identity problem. In this problem, each player i has a private function $f_i : \{0, 1\}^{i-1} \rightarrow \{0, 1\}$. Let $x_1 = f_1(\varepsilon), x_2 = f_2(x_1), x_3 = f_3(x_1x_2)$ and so on. The players mutual goal is computing the string $X = x_1x_2\cdots x_n$. Again, players i might have a belief $v_i = v_{i1}v_{i2}\cdots v_{in}$ about the entire string X. Since all the players know their private function, we can assume $f_i(v_i[1 : i-1]) = v_{ii}, \forall i$. If $l(V)$ has length l, the first l bits of the belief of all the n players match. Since every player i sets v_{ii} to be correct given the prefix preceding it, this also means that these l bits match the first l bits in X and the players only need to compute the remaining bits.

An Informal Description of the LCP Protocol. Having highlighted the importance of the LCP problem, we now describe an efficient broadcast protocol to compute the LCP. The protocol finds the longest common prefix by performing a binary search over all possible prefix lengths, i.e. 0 to n. In order to check whether a prefix of length l is common to all the strings, player 1 (the leader) broadcasts $O(\log n)$ hashes of $v_1[1 : l]$. This number is enough to ensure that except with polynomially small probability, any player j with $v_j[1 : l] \neq v_1[1 : l]$ will have a different set of hashes. These hashes are broadcasted multiple times to ensure correct reception (repetition code). A more efficient version of the protocol with constant rate codes can be described. However, we persist with the less efficient version because of its simplicity and the fact that broadcasting hashes is not the bottleneck in the broadcast complexity of our protocol.

Once all the players know the hashes of the leader’s string, they can compute the corresponding hashes of their own string and see if the two sets match. If the strings are the same in the first l bits, then the hashes would match. For two strings that differ in their first l bits, the hashes should be different. The players who find an inconsistency in any of the hashes assume a bit 1 and those who have the same set of hashes assume the bit 0. Let the bit assumed by player i be called b_i. If any of the b_i is 1, one of the players doesn’t agree with the set of hashes broadcast and thus, on the prefix of length l. If all the b_i are 0, all the players (hopefully) agree on the prefix of length l. By running the OR protocol with inputs b_1, \cdots, b_n, all players will know if $|l(V)|$ is at least l or not. In a binary search framework, this is sufficient to nail down $l(V)$.

\(^{11}\)This is possible only if the model is adaptive. Indeed, this is how we would use LCP in our protocols.
8.1 The Protocol

We formalize the ideas described. Every player i has a string v_i of length n. The set of all the n strings is V. The players together implement a binary search framework to compute $|l(V)|$. Once this length is known to all the players, the players can themselves compute $l(V) = v_i[1 : |l(V)|]$. Since $l(V)$ is common to all strings, the expression on the right is independent of i, as it should be.

All the n players operate the binary search framework in parallel. They execute the same protocol with independent ‘private’ variables. We exercise care in our description below, we use n_0 to denote the smallest integer such that $2^{n_0} > n$. We initialize our range for $|l(V)|$ to $[0, 2^{n_0} - 1] \supseteq [0, n]$. This helps avoiding inconsistencies due to rounding and in turn, keeping the number of broadcasts in our protocol independent of the output.

Protocols that are of a predetermined length are easier to handle as a subroutine because one doesn’t have to worry about players not knowing if the subroutine has finished execution (see subsection 6.4).

Let $H_k : \{0, 1\}^* \to \{0, 1\}^k$ be a (probabilistic) hash function satisfying $\forall x \neq y \in \{0, 1\}^*$ it holds that $H_k(x) = H_k(y)$ with probability 2^{-k}. The protocol will use $H = H_{20\log n}$.

Algorithm 11 The LCP$_n$ Protocol

Input: Player $i \in [n]$ is active and his input is a string $v_i \in \{0, 1\}^{\leq n}$. The leader has a string $v \in \{0, 1\}^{\leq n}$. Any number of other players may participate as passive players.

Output: The output of player i (active or passive) is an integer $lcp(i) \in \mathbb{N}$.

1: \texttt{beg}$(i) \leftarrow 0$.
2: \texttt{end}$(i) \leftarrow 2^{n_0} - 1$.
3: \textbf{while} \texttt{beg}$(i) < \texttt{end}$(i) \textbf{do}
4: \quad \texttt{mid}$(i) \leftarrow \left\lfloor \frac{\texttt{beg}$(i)+\texttt{end}$(i)}{2} \right\rfloor$.
5: \quad $H(i) \leftarrow H(v_i(\texttt{beg}$(i) : \texttt{mid}$(i)))$.
6: \quad The leader broadcasts $H(l_d)$, $c_1 \log n$ times.
7: \quad Each player i receives $c_1 \log n$ noisy copies of $H(l_d)$ and computes their majority $H^{(i)}_{l_d}$.
 (The jth bit of $H^{(i)}_{l_d}$ is obtained by taking the majority of the jth bits of the $c_1 \log n$ noisy copies received by player i.)
8: \quad $b(i) \leftarrow (H_{l_d}^{(i)} \neq H(i))$.
9: \quad Players execute OR$_n$. Player $i \in [n]$ are active and have inputs $b^{(1)}, b^{(2)}, \ldots, b^{(n)}$. All other players are passive. The output of player i (active or passive) is $or(i)$.
10: \textbf{if} $or(i) = 0$ \textbf{then}
11: \quad \texttt{beg}$(i) \leftarrow \texttt{mid}$(i)
12: \textbf{else}
13: \quad \texttt{end}$(i) \leftarrow \texttt{mid}$(i) − 1
14: \textbf{end if}
15: \textbf{end while}
16: Player i outputs \texttt{beg}(i).
8.2 Analysis

We fix c_1 to be 100 times the constant in Lemma 4.2. At a very high level, all the players in the protocol described try to find out $|l(V)|$. This value is all they need in order to compute $l(V)$. They do so by maintaining a range $[beg^{(i)}, end^{(i)}]$ containing the value $|l(V)|$. After every iteration of the while loop in line 3, the range $[beg^{(i)}, end^{(i)}]$ shrinks by 1/2. Lemma 8.7 formalizes these invariants. Before we prove that, however, we wish to write a few technical lemmas concerning our protocol.

Fact 8.2. The number of broadcast in any iteration of the while loop in LCP is fixed based on n. It is independent of the players’ inputs, randomness, or the noise in the channel.

Lemma 8.3. All players (active and passive) run the same number of iteration of the while loop and finish the execution of the protocol LCP after a fixed number of broadcast rounds.

Proof. To show this, we show that the following holds before the j^{th} iteration of the while loop for all players i.

$$end^{(i)} - beg^{(i)} = 2^{n_0+1-j} - 1.$$

We prove this using induction on j. For $j = 1$, the invariant holds trivially. Suppose the invariants hold till before iteration j. The j^{th} iteration would only take place if $n_0 \geq j$.

In the j^{th} iteration, player i computes $mid^{(i)} = \left\lceil \frac{beg^{(i)} + end^{(i)}}{2} \right\rceil = \left\lceil beg^{(i)} + \frac{2^n + 1 - j}{2} \right\rceil = beg^{(i)} + 2^{n_0-j}$ and either sets $beg^{(i)}$ to $mid^{(i)}$ or $end^{(i)}$ to $mid^{(i)} - 1$. We denote the values of beg and end after this iteration using primes. In the first case, $end^{(i)} - beg^{(i)} = end^{(i)} - mid^{(i)} = 2^{n_0+1-j} - 1 - 2^{n_0-j} = 2^{n_0-j} - 1$. In the second case, $end^{(i)} - beg^{(i)} = mid^{(i)} - 1 - beg^{(i)} = 2^{n_0-j} - 1$.

Thus, all the players take exactly n_0 iterations to finish execution. Since the number of broadcasts in any iteration is fixed (Fact 8.2), all the players finish execution after the same number of broadcasts.

Claim 8.4. All the invocations of OR are harmonious and all the leader’s broadcasts are adversary-free.

Proof. The total number (Lemma 8.3) and the size (Fact 8.2) of the iterations are predetermined. In each iteration, the communication rounds in which the leader is broadcasting during the execution of the protocol are pre-determined, and do not depend on players’ inputs, their randomness or the noise in the channel.

By Lemma 8.3, all players invoke OR the same number of times. Since all players participate in each invocation of OR, all invocations are harmonious.

Lemma 8.5. For any player $i \in [n]$ in any iteration of the while loop, $H_{ID}^{(i)} = H^{(id)}$ except with probability at most $\frac{20\log n}{n^{100}}$.

Proof. Since the leader’s broadcasts are adversary-free (Claim 8.4), all players i receive $c_1 \log n$ noisy copies of each of the leaders hashes. Lemma 4.2, for a coordinate $j \in [20 \log n]$,
the probability that the \(j \)th coordinate of \(H^{(i)}_{ld} \) is different from the \(j \)th coordinate of \(H^{(ld)} \), is at most \(\frac{1}{n^{10}} \). Taking a union bound over the 20 log \(n \) coordinates, we get that \(H^{(i)}_{ld} = H^{(ld)} \) except with probability at most \(\frac{20 \log n}{n^{100}} \).

Lemma 8.6. For any player \(i \in [n] \) and any iteration of the while loop, \(v_i(beg^{(i)} : mid^{(i)}) \neq v_{ld}(beg^{(ld)} : mid^{(ld)}) \) if and only if \(b^{(i)} = 1 \), except with probability at most \(\frac{1}{n^{10}} \).

Proof. Note that \(b^{(i)} = 1 \) if and only if \(H^{(i)}_{ld} \neq H^{(i)} \) and break the proof into the following two cases.

- \(v_i(beg^{(i)} : mid^{(i)}) = v_{ld}(beg^{(ld)} : mid^{(ld)}) \). In this case, we want to prove that \(b^{(i)} = 0 \) with high probability. Since \(v_i(beg^{(i)} : mid^{(i)}) = v_{ld}(beg^{(ld)} : mid^{(ld)}) \), we have \(H^{(i)} = H^{(ld)} \). **Lemma 8.5** implies that \(H^{(i)}_{ld} = H^{(ld)} = H^{(i)} \) except with probability at most \(\frac{20 \log n}{n^{100}} \). Thus, \(b^{(i)} = 0 \) with probability at least \(1 - \frac{20 \log n}{n^{100}} \).

- \(v_i(beg^{(i)} : mid^{(i)}) \neq v_{ld}(beg^{(ld)} : mid^{(ld)}) \). In this case, we want to prove that \(b^{(i)} = 1 \) with high probability. \(H^{(i)} \) and \(H^{(ld)} \) consist of 20 log \(n \) independent hashes of two different strings. Thus, the probability that \(H^{(i)} \neq H^{(ld)} \) is \(1 - \frac{1}{n^{10}} \). Again, **Lemma 8.5** gives us \(H^{(i)}_{ld} = H^{(ld)} \neq H^{(i)} \) with probability at least \(1 - \frac{1}{n^{10}} - \frac{20 \log n}{n^{100}} \) (recall that we assume \(n \geq m \)). Thus, \(b^{(i)} = 1 \) with the same probability.

Combining the two cases above gives the result.

Let \(V = \{v_1, \ldots, v_n\} \). **Lemma 8.6** says that the bits \(b^{(i)} \) correctly capture whether or not player \(i \) agrees with the leader on the coordinates in the range \((beg^{(i)} : mid^{(i)}) \). If any one of the \(b^{(i)} \) is 1, then not all the strings in \(V \) agree on these coordinates. In turn, this says that \(|l(V)| \) has to be strictly less than \(mid^{(i)} \). On the other hand, if all the \(b^{(i)} \) are 0, all the strings match on these coordinates and \(|l(V)| \) is at least \(mid^{(i)} \). Thus, \(l(V) \) either contains all the coordinates \((beg^{(i)} : mid^{(i)}) \) or none of the coordinates \((mid^{(i)} : end^{(i)}) \). Our update of the variables \(beg^{(i)} \) and \(end^{(i)} \) maintains the following invariant.

Lemma 8.7. With probability at least \(1 - \frac{1}{n^{10}} \) over the noise in the channel and the players randomness, the following invariant holds before every iteration of the while loop: For \(i \in [n] \), all \(beg^{(i)} \) have a common value \(beg \) and all \(end^{(i)} \) have a common value \(end \) such that \(beg \leq |l(V)| \leq end \).

Furthermore, for any passive player \(i \notin [n] \), the value of \((beg^{(i)}, end^{(i)}) = (beg, end) \) in all the iterations except with probability at most \(1 - \frac{1}{n^{10}} \).

Proof. We proceed via induction on the iteration number. The invariant trivially holds before the first execution of the loop as \(2^{no} - 1 \geq n \), by definition. Suppose it holds before the \(j \)th iteration.

Consider the \(j \)th iteration. Let \(E_i \) be the event that \(v_i(beg^{(i)} : mid^{(i)}) \neq v_{ld}(beg^{(ld)} : mid^{(ld)}) \). **Lemma 8.6** says that \(b^{(i)} = 1 \) if and only if \(E_i \) occurs, except with probability at most \(\frac{1}{n^{10}} \). Taking a union bound over all the \(n \) active players, we get that for all \(i \in [n] \),
\[b(i) = 1 \] if and only if \(E_i \) occurs, except with probability at most \(\frac{1}{n^{15}} \). Therefore, except probability at most \(\frac{1}{n^{15}} \), it holds that \(\forall_{i=1}^{n} b(i) = 1 \) if and only if \(\exists i \in [n] \) such that \(E_i \) occurs.

Since all the invocations of OR are harmonious (Claim 8.4), we can apply Theorem 7.1 to conclude that for any \(i \in [n] \), \(or(i) = \forall_{i=1}^{n} b(i) \) except with probability at most \(\frac{1}{n^{20}} \). We union bound over all the \(n \) active players to get that, except with probability at most \(\frac{1}{n^{19}} \), it holds that \(\forall i \in [n] \), \(or(i) = \forall_{i=1}^{n} b(i) \).

Combining the two results, we get with probability at least \(1 - \frac{1}{n^{15}} - \frac{1}{n^{19}} \geq 1 - \frac{1}{n^{15}} \), all the \(or(i) \) are the same value \(or' \) and \(or' \) is 1 if and only if \(\exists i \in [n] \) such that \(E_i \) occurs. Since the values of \(or(i) \) are the same for all \(i \), the players update \(beg(i) \) and \(end(i) \) identically and the first part of the invariant is maintained.

For the second part of the invariant, note that if \(\exists i \in [n] \) such that \(E_i \) occurs, then \(|l(V)| < mid \), where \(mid \) is the common value of \(mid(i) \) (observe that since \(mid(i) = \lceil \frac{beg(i) + end(i)}{2} \rceil \), and since \(beg(i) \) and \(end(i) \) have common values, so do \(mid(i) \)). Thus, setting \(end \) to \(mid - 1 \) preserves the invariant (\(or' = 1 \)). Similarly, if \(v_i(beg(i) : mid(i)) \) is the same for all \(i \) and \(|l(V)| \geq beg \), we have \(|l(V)| \geq mid \) and setting \(beg \) to \(mid \) preserves the invariant (\(or' = 0 \)).

We observe that the while loop is executed at most \(1 + \log n \) times. Thus, the total error probability is bounded by \(\frac{\log n}{n^{15}} \leq \frac{1}{n^{15}} \).

For the last part, we note that (Theorem 7.1) any passive player has the correct result of any execution of the OR protocol except with probability \(1 - \frac{1}{n^{20}} \). If a passive player \(i \) has the correct result of all the \(\log n + 1 \) invocations of OR, their updates to \(beg(i) \) and \(end(i) \) will match the updates made by the active players. Thus, their final values of \(beg(i) \) and \(end(i) \) will also be the same. The probability that player \(i \) has the correct result for \(\log n + 1 \) executions is, by a union bound, at least \(1 - \frac{1+\log n}{n^{20}} \geq 1 - \frac{1}{n^{15}} \). \(\Box \)

Lemma 8.8. When the loop defined at Line 3 ends for any player \(i \) (active or passive), \(\text{beg}(i) = \text{end}(i) \).

Proof. In every execution of the loop, \(\text{beg}(i) < \text{end}(i) \) which implies \(mid(i) > \text{beg}(i) \) and \(\text{end}(i) \geq mid(i) \). Let \(\text{beg}(i) \) and \(\text{end}(i) \) be the values of \(\text{beg}(i) \) and \(\text{end}(i) \) after an iteration ends. It is sufficient to prove that \(\text{beg}(i) \leq \text{end}(i) \). This follows because either \(\text{beg}(i) = \text{beg}(i) \) and \(\text{end}(i) = mid(i) - 1 \) or \(\text{beg}(i) = mid(i) \) and \(\text{end}(i) = \text{end}(i) \). In the first case, \(\text{beg}(i) = \text{beg}(i) < \text{mid}(i) = \text{end}(i) + 1 \). In the second, \(\text{beg}(i) = \text{mid}(i) \leq \text{end}(i) = \text{end}(i) \). \(\Box \)

Proof of Theorem 8.1. The complexity of the LCP protocol is \(O(\log^4 n) \), as the while loop is executed at most \(1 + \log n \) times, and in each iteration, the OR protocol is called (see Theorem 7.1). The broadcasts in the OR protocol constitute the dominant term in the number of broadcasts.

With probability at least \(1 - \frac{1}{n^{15}} \), the invariants in Lemma 8.7 hold before every iteration of the while loop. This fact along with Lemma 8.8 implies that the output \(lcp(i) \) (which is set to \(\text{beg}(i) \)) of player \(i \) (active or passive) satisfies \(lcp(i) = |l(v_1, \ldots, v_n)| \) with probability at least \(1 - \frac{1}{n^{15}} \).
For the passive players, Lemma 8.7 says that any such player i has the same (correct) value of $\text{lcp}^{(i)}$ as the active players except with probability at most $\frac{1}{n^{15}}$. This completes the proof.

9 Protocol for Correlated Pointer Jumping

This section contains our main result - a linear adaptive broadcast protocol for solving the correlated pointer jumping (CPJ) problem for n players. In the CPJ setting, every player $i \in [n]$ has a private function $f_i : \{0, 1\}^{i-1} \rightarrow \{0, 1\}$. For $i = 1$, this is just a constant which we denote using $f_1(\epsilon)$ (here, ϵ is the empty string). The functions can be ‘composed’ to define strings $\sigma_i \in \{0, 1\}^i$ as follows,

$$
\begin{align*}
\sigma_0 &= \epsilon \\
\sigma_{i+1} &= \sigma_i \Vert f_{i+1}(\sigma_i), \forall i \in [n].
\end{align*}
$$

(Recall that ‘\Vert’ denotes the string concatenation operator). We define $\text{CPJ}(f_1, \cdots, f_n)$ to be the string σ_n defined above.

9.1 Informal Discussion

Consider the following (optimal) protocol for solving the CPJ problem when the network is noise free: In round i, player i computes and broadcasts the value $f_i(\sigma_{i-1})$, where σ_{i-1} is the transcript received so far. In other words, player 1 knows his function f_1 and can thus compute σ_1 on its own. After computing, it broadcasts σ_1 to all other players. This then allows player 2 to compute σ_2. Player 2 can then broadcast σ_2. The process continues until the last player computes and broadcasts σ_n. Since σ_{i+1} is just σ_i plus an additional bit, player 2 in the protocol above doesn’t need to transmit both the bits of σ_2. Only the last bit would suffice. The same argument can be applied to all the players implying that the number of broadcasts in this protocol is exactly n.

If we want to simulate this protocol in a noisy environment, the first thing that comes to mind is that each bit can be repeated enough times so that a majority of the copies received by every player is correct with high probability. Since the total number of players is n, we would need to repeat each bit roughly $\log n$ times. We are then guaranteed that the protocol would compute σ_n correctly except with small (inverse polynomial in n) error probability.

At first, this appears to be the best one can hope for. Indeed, every player i has to know the bit (the function output) of all the players $j < i$ in order to compute their bit. Thus, $n - 1$ players need to know σ_1, $n - 2$ players need to know σ_2 and so on. This implies the first $n/2$ bits need to be known by at least $n/2$ players. The first $n/2$ players would thus have to repeat their bit $\Theta(\log n)$ times and the $\log n$ blowup cannot be avoided.

The chink in this armor is that all the players do not need to know the bits immediately after they are broadcast. If i is large, player i has to listen to a lot of people before
getting a chance to speak. At first, this doesn’t seem to give any leverage. This is because the \(i\) transmissions that happen before player \(i\) gets a chance to speak may be completely unrelated. What we want is to somehow have each subsequent transmission reinforce the confidence in all the previous transmissions.

This is exactly where tree codes come into the picture. The idea behind this construction is to have an error-correcting code that can be computed online. Theorem 4.7 says that for any string of length \(k\) broadcast on the tree code, the probability that a player with a noisy version of the encoding of these \(k\) bits, decodes a suffix of length \(l\) incorrectly is exponentially small in \(l\).

With this new insight, one can consider the following protocol. Player 1 broadcasts their bit \(\sigma_1\) once (or any constant number of times). However, this time they do this by encoding their bit over a tree code and broadcasting the encoding. Theorem 4.6 promises that there exist tree codes for which this encoding is constant-length. With constant probability, player 2 would decode this correctly. After they do that, they can send the next bit in \(\sigma_2\) over the tree code. Player 3 would then decode both these bits correctly with the same constant probability. They can then send \(f_3(\sigma_2)\) over the tree code. This process can go on till all the \(n\) players have broadcasted their inputs.

Note that each of the \(O(n)\) transmissions in this protocol can be wrong with constant probability. The probability that this protocol goes through is thus exponentially small in \(n\). One way to avoid this is to periodically check whether the bits transmitted so far were correct. If the transmissions are correct, we can carry on with the rest of the protocol. Otherwise, the best thing to do is to repeat the part that hasn’t been received correctly. In other words, such a protocol should have (at least) two types of broadcasts, regular broadcasts (regular rounds) and check broadcasts (check rounds). The regular broadcasts would serve to compute \(\sigma_i\) for higher and higher \(i\)'s while the check rounds would make sure that our computation this far is reliable. Furthermore, we would want that the check rounds don’t involve too many broadcasts. Our aim is to implement all the check rounds using \(O(n)\) broadcasts.

We prove that such a protocol actually works. In what follows, we recursively define a sequence \(\{A_j\}_{j \geq 0}\) of protocols. The protocol \(A_j\) would compute the string \(\sigma_{2^j}\). At a very high level, the protocol \(A_{j+1}\) would first run \(A_j\) to compute \(\sigma_{2^j}\). Assuming that this string is known to \(2^{i+1}\) players, it would then invoke \(A_j\) again to compute the last \(2^i\) bits in \(\sigma_{2^{j+1}}\). These two executions are identical because assuming all players in \([2^{i+1}]\) know \(\sigma_{2^i}\), player \(2^j + 1\) can compute \(f_{2^{j+1}}(\sigma_{2^i})\) without any extra information (just like player 1 in the first execution). Similarly, player \(2^i + i\) only needs to know the bits output by the \(i - 1\) players \([2^{i+1}, \ldots, 2^i + i - 1]\) to compute \(f_{2^{j+1}}(\sigma_{2^{i+1}})\) (exactly like player \(i\) in the first execution). Thus, this procedure is just \(A_j\) run with an offset (or better, a ‘history string’) of length \(2^j\). After these two executions, it would check which portions were received correctly. We defer more details about \(A_j\) to the future sections.
9.2 The Protocol \mathcal{A}_0

In Algorithm 12, we describe \mathcal{A}_0, the first protocol in our recursive sequence. This protocol serves to compute one step in the induction described in Equation 1.

To compute and broadcast the first string σ_1, only player 1 interacts with the leader. Player 1 broadcasts $\sigma_1 = f_1(\varepsilon)$. Let b^{ld} be the noisy copy of σ_1 received by the leader. The leader broadcasts b^{ld} over the tree code. Herein lies a very important feature of our protocol.

On the face of it, the idea of the leader repeating the first player’s transmission over the tree code doesn’t seem very productive. Why not just have player 1 broadcast over the tree code directly? The answer is that making the leader repeat the broadcast allows us to make the tree-code adversary free. Throughout our CPJ protocol, it will only be the leader who would broadcast on the tree code and furthermore, they would do so in predetermined rounds (see subsection 6.1). All the other players would be silent in these rounds and receive a noisy copy of the leaders broadcast. This would set the stage up for Theorem 4.7 which requires players to receive a noisy version of the bits sent on the tree code.

There is a subtlety here. It is totally possible that the bit the leader sent on the tree code was adversarial. This can happen, for instance, when the round before the leader transmitted encountered a collision and the bit received by everyone (including the leader’s bit b^{ld}) in this round was adversarial. When we say that the tree code is adversary free, all we mean is that this (possibly adversarial) bit was broadcast non-adversarially. This means that (almost) all the other players would decode the tree code to the same adversarial bit. This way of avoiding the situation where different players get different adversarial bits in the same broadcast round, with only a constant factor slowdown, might be of independent interest.

After the leader’s transmission, player 1 and the leader check, using the $\text{LCP} = \text{LCP}_1$ protocol, whether the leader’s reception was correct. If so, the leader broadcasts the bit 1 over the tree code. In the other case, where the leader’s reception was flipped, the leader broadcasts the bit 0. This bit broadcast, b_2, tells the other players whether or not the first bit broadcast was reliable.\footnote{The LCP in this case would only offer a constant probability of success which could have been achieved by repeating the broadcasts a constant number of times. We, however, keep the LCP version because it mirrors the subsequent protocols we will describe.}

We now describe the protocol (see Algorithm 12). There are two participants, player 1 and the leader. Player 1 has a bit (a constant function) that he communicates to the leader. The leader then repeats this bit over the tree code. This is followed by a call to LCP where player 1 and the leader check if the bit was sent by player 1 was received correctly. The output of this call to LCP is broadcast by the leader over the tree code. The encoder for the tree code used by the leader is denoted by C (see subsection 6.2), and the decoder used by the players to decode the relevant information from the tree code is denoted by DECODE (see subsection 9.4).
Algorithm 12 \(A_0\)

Input: Player 1 is active and his input is a function \(f_1: \{0, 1\}^0 \rightarrow \{0, 1\}\). Players \(i \in [n]\setminus\{1\}\) are passive.

Output: The output of player \(i \in [n]\) is a string \(s^{(i)}\), where \(|s^{(i)}| \leq 1\).

1. Player 1 broadcasts \(b = f(\varepsilon)\). The leader receives \(b^{(ld)}\).
2. The leader broadcasts \(C(b^{(ld)})\).
3. Player 1 and the leader run \(\text{LCP}_1\) with inputs \(b\) and \(b^{(ld)}\) (respectively). Denote the leader’s output by \(\text{lcp}^{(ld)}\).
4. The leader broadcasts a padded version of his output \(C(\text{lcp}^{(ld)}\|0^{c_0+1})\).
5. Each player \(i \in [n]\) computes and outputs \(\text{DECODE}^{(i)}(0)\).

9.3 The Protocol \(A_j\)

The protocol \(A_j\) involves \(2^j\) players other than leader. It is designed to compute (up-to) \(2^j\) steps of the induction described in Equation 1.

The protocol \(A_j\) does this using two successive invocations of \(A_{j-1}\) followed by a check round, implemented using \(\text{LCP} = \text{LCP}_{2^j}\). The first invocation of \(A_{j-1}\) would compute the first \(2^{j-1}\) steps of the induction. The output of this invocation would be a string \(s^{(i)}_{1}\) for each player \(i\) that records the steps that were computed correctly. Thus, \(|s^{(i)}_{1}| \leq 2^{j-1}\).

All the players \(i \in [2^j]\) believe that the bits in \(s^{(i)}_{1}\) were computed correctly. Accordingly, they proceed to compute the rest of the bits. This is done using a second invocation of \(A_{j-1}\). Because the \(i^{th}\) player assumed that \(s^{(i)}_{1}\) was correct, they would participate as player \(i - |s^{(i)}_{1}|\) in this invocation. We denote player \(i\)’s view of the output of this invocation by \(s^{(i)}_{2}\). As for the first invocation, \(|s^{(i)}_{2}| \leq 2^{j-1}\).

Up until now, all the players assumed that the values of \(s^{(i)}_{1}\) and \(s^{(i)}_{2}\) they computed were correct. Since the channel is noisy, this will not always hold. To ensure that the strings they computed are indeed correct, players use the protocol \(\text{LCP}\) with the strings \(s^{(i)}_{1}\|s^{(i)}_{2}\) as input. The leader’s output for this invocation, \(\text{lcp}^{(ld)}\), is broadcast over the tree code. \(\text{lcp}^{(ld)}\) gives the length of the prefix that was computed correctly in the two invocation of \(A_{j-1}\). Since \(\text{lcp}^{(ld)}\) is broadcast over the tree code by the leader, the players run \(\text{DECODE}\) to compute the final output.

Observe that the role of player \(i\) in the second execution depends on their output \(s^{(i)}_{1}\) of the first execution. Since \(s^{(i)}_{1}\) is correct only with high probability (and not all the time), the second invocation of \(A_{j-1}\) may not be harmonious in every run of the protocol \(A_j\). We choose our parameter \(c_0\) to ensure that the second invocation of \(A_{j-1}\) is harmonious a large fraction of the times. For all other times, we rely on \(\text{LCP}\) to detect and correct the errors introduced. The invocation of \(\text{LCP}\) is always harmonious.

The protocol \(A_j\) is described in Algorithm 13.
9.4 Parsing the Tree Code

We motivated why using tree codes in our protocol might be a good idea. In this section, we focus on how participants parse the information broadcasted by the leader over the tree code. This has two parts. Firstly, the participants are required to decode the path we focus on how participants parse the information broadcasted by the leader over the tree code. We motivated why using tree codes in our protocol might be a good idea. In this section, we focus on how participants parse the information broadcasted by the leader over the tree code.

We now turn to the second part. Recall that during the execution of \(\mathcal{A}_b \), the leader first broadcasts \(b^{(ld)} \), the value he received when player 1 broadcast \(b \). He then broadcasts \(lcp^{(ld)} \), the result of the LCP execution on \(b \) and \(b^{(ld)} \). This value is either 0 or 1, where 1 indicates that \(b^{(ld)} = b \) with high probability, while a 0 values means that the reception was faulty. Both \(b^{(ld)} \) and \(lcp^{(ld)} \) are broadcast over the tree code. Let \(i \in [n] \). Assume that the decoded value of \(b^{(ld)} \) by player \(i \) is \(b' \), and that the decoded value of \(lcp^{(ld)} \) by player \(i \) is \(lcp' \). The function \(\text{DECODE}^{(i)}(0) \) is computed by player \(i \) (alone), as follows: If \(lcp' = 1 \) output \(b' \). Otherwise output \(\varepsilon \) (the empty string).

\footnote{The leader also pads the LCP result with a constant number of bits. This is not relevant to the discussion here.}
Recall that during the execution of the protocol \(A_j \), the protocol \(A_{j-1} \) is called twice, and in each of these executions, the leader is broadcasting messages over the tree code. Then, the LCP protocol is executed to get the LCP of the strings \(s_1^{(i)} \parallel s_2^{(i)} \) (\(i \in [2^j] \)). The leader broadcasts his result of the LCP execution, \(lcp^{(ld)} \), over the tree code. Since \(lcp^{(ld)} \in [2^j] \), we may assume that \(lcp^{(ld)} \) is written over the tree code as a bit string of length exactly \(j \).

Let \(i \in [n] \). Since during the executions of \(A_{j-1} \), a fixed number of bits are written over the tree code, we may view the underlying transcript decoded from the tree code by player \(i \) as composed of three parts: The first two, \(T_1 \) and \(T_2 \), consist of the values decoded by player \(i \) of the messages that the leader broadcasts over the tree code during the first and second execution of \(A_{j-1} \) (respectively). The third part, \(lcp^{(i)} \), is the decoded value of \(lcp^{(ld)} \) by player \(i \). The function \(\text{DECODE}^{(i)}(j) \) is computed by player \(i \) (alone), as suggested by Algorithm 14. We also write this using the equation:

\[
\text{DECODE}^{(i)}(j) = (\text{DECODE}^{(i)}(j-1)_1 \parallel \text{DECODE}^{(i)}(j-1)_2)[1 : lcp^{(i)}] \quad (2)
\]

Algorithm 14 DECODE\(^{(i)}(j)\)

1: Run \(\text{DECODE}^{(i)}(j - 1) \) where the underlying string decoded from the tree code is \(T_1 \) to get the output string \(r_1 \).
2: Run \(\text{DECODE}^{(i)}(j - 1) \) where the underlying string decoded from the tree code is \(T_2 \) to get the output string \(r_2 \).
3: Output \((r_1 \parallel r_2)[1 : lcp^{(i)}] \).

10 Analysis of the CPJ Protocol

We first claim that the length of an execution of each of the protocols \(A_j \) is fixed.

Lemma 10.1. The protocol \(A_j \) (\(j \geq 0 \)) require a fixed number of broadcasts, regardless of whether or not it is executed harmoniously.

Proof. First recall that an invocation of \(\text{LCP}_m \) requires a fixed number of broadcasts for every \(m \in \mathbb{N} \) (Lemma 8.3). Observe that this holds even if the invocation is not harmonious. Thus, if players start an invocation of \(\text{LCP}_m \) at the same time, they will end their execution together. The protocol \(A_0 \) consists of constant number of broadcasts, as well as an execution of \(\text{LCP}_1 \). Thus, \(A_0 \) is of fixed length. For \(j \geq 1 \), the protocol \(A_j \) is two successive invocations to \(A_{j-1} \) followed an execution of \(\text{LCP}_{2^j} \) and by the leader broadcasting the LCP output (requiring \(j + 1 \) bits) and \((c_0 + 1)(j + 1)\) bits of padding over the tree code. Since these numbers are fixed, if we assume that \(A_{j-1} \) is fixed length, then so is the length of \(A_j \). Thus, we can show by induction on \(j \) that the executions of \(A_j \) are of a fixed number of rounds. \(\square \)

Using Lemma 10.1, it can be shown that during the execution of the protocol \(A_j \) (\(j \geq 0 \)), the leader is broadcasting in pre-determined rounds. All players know these
Corollary 10.2. During the execution of the protocol \mathcal{A}_j ($j \geq 0$), the rounds in which the leader is broadcasting are adversary free.

Let Σ be the set of labels for the edges in our tree code. We assume, without loss of generality, that $\Sigma = \{0, 1\}^{\varsigma}$ for some $\varsigma \in \mathbb{N}$. At any stage of the execution of the protocol \mathcal{A}_j ($j \geq 0$), the leader would have broadcast the encoding of a sequence of k bits over the tree code, for some k (see subsection 6.2). Saying it differently, the leader broadcasts the labels on k edges on some path in the tree code. Denote these list of edges broadcast by the leader by $\pi^{(ld)} = \Sigma^k = \{0, 1\}^{\varsigma k}$. Corollary 10.2 implies that each player receives a noisy copy of the edges. Let $\pi^{(i)} = \{0, 1\}^{\varsigma k}$ be the copy of $\pi^{(ld)}$ received by player $i \in [n]$. Let D be the Hamming distance based decoder for the tree code defined in subsection 4.4, so that $D(\pi^{(i)})$ is a string in $\{0, 1\}^*$.

Lemma 10.3. At any point in the execution of the protocol \mathcal{A}_j ($j \geq 0$), for any player $i \in [n]$, if $\pi^{(ld)}, \pi^{(i)} \in \Sigma^k$, then for any $k_0 \in \mathbb{N}$,

$$\Pr \left[|l(D(\pi^{(ld)}), D(\pi^{(i)}))| \leq k - k_0 \right] \leq K_1 \exp(-K_2 k_0),$$

for some constants K_1 and K_2.

Proof. We assume that the encoding function C used in our protocol defines a $(2, \alpha = \frac{1}{2}, \Sigma)$-tree code for a constant size Σ. Such a tree code exists by Theorem 4.6. Thus, each transmission on the tree code is of a constant size. Denote this size by ς. Suppose the noise in the channel is less than $1/4\varsigma$, so that the probability that one symbol on the tree code is corrupted by noise is at most $1/4 = \alpha/2$. This is without loss of generality, as it can be ensured by repeating every communicated bit constant number of times.

Since the leader knows their own broadcast, $\pi^{(ld)}$ is noise-free. This implies that $\pi^{(ld)} = \overline{C}(D(\pi^{(ld)}))$ (recall Definition 4.5). By Corollary 10.2, we also know that $\pi^{(i)}$ is a δ-noisy version of $\pi^{(ld)}$ with $\delta < \alpha/2$. The assertion follows for applying Theorem 4.7 with $s = D(\pi^{(ld)})$.

We analyze protocols \mathcal{A}_j sequentially in the following subsections. The high level idea is to use the analysis of \mathcal{A}_{j-1} twice to get bounds for \mathcal{A}_j. We will prove that with high probability both the calls to \mathcal{A}_{j-1} within \mathcal{A}_j are harmonious, and that harmonious executions result in large expected progress. Thus, the progress roughly doubles at every step to remain within a constant factor of the number of transmissions.

10.1 Analyzing \mathcal{A}_0

In this section, we assume that the execution of \mathcal{A}_0 is harmonious. Since \mathcal{A}_0 involves only one player other than the leader, the definition of harmonious reduces to exactly one player
broadcasting in line 1 of the description. Of course, this player will also participate in the execution of LCP$_1$ which will be harmonious.

Lemma 10.4 (Progress). With probability at least $1 - \varepsilon - \frac{1}{2^9}$, a harmonious execution of A_0 will have $b^{(ld)} = b$ and $lcp^{(ld)} = 1$, where the probability is over the noise of the channel and the randomness of the players.

Proof. Since the execution is harmonious, there no collision in line 1 and the bit received by the leader is just an ε-noisy copy of b. The leader’s noisy version $b^{(ld)}$ is the same as b except with probability ε. If indeed $b^{(ld)} = b$, then $l(b, b^{(ld)}) = b$. Apply Theorem 8.1 to conclude that $\Pr(lcp^{(ld)} = 1) \geq 1 - \frac{1}{2^9}$ when $l(b, b^{(ld)}) = b$. However, $l(b, b^{(ld)}) = b$ happens with probability at least $1 - \varepsilon$. Thus, $\Pr(lcp^{(ld)} = 1) \geq 1 - \frac{1}{2^9} - \varepsilon$.

We measure the progress made by our algorithm using the variable $lcp^{(ld)}$. The foregoing lemma shows that the expected progress made by a harmonious invocation of A_0 is large. We now prove that this progress is ‘correct’ with high probability. Our notion of correctness is that strings $s^{(i)}$ output by player i when A_0 ends, satisfies $s^{(i)} = \sigma_{|s^{(i)}|}$ (see Equation 1).

Lemma 10.5 (Correctness). There exists a constant $c_0 \in \mathbb{N}$ such that the following holds: For any player $i \in [n]$, at the end of a harmonious execution of A_0, it holds that $|s^{(i)}| = lcp^{(ld)}$ and $s^{(i)} = \sigma_{|s^{(i)}|}$, with probability at least $1 - \frac{1}{2^9}$, where the probability is over the noise of the channel and the randomness of the players.

Proof. Consider the messages $C(b^{(ld)})$ and $C(lcp^{(ld)})$ broadcast by the leader over the tree code. The players decode after these messages are broadcast. The probability that all the bits that are not a part of the padding are decoded correctly is at least $1 - K_1 \exp(-K_2(c_0 + 1))$ by Lemma 10.3. We can set c_0 to a constant value large enough so that $K_1 \exp(-K_2(c_0 + 1)) \leq 1/2^{10}$. For the rest of this proof, we condition on the event E that the decoding of non-padding bits by player i is correct.

When E occurs, the output of the $\text{DECODE}^{(i)}(0)$ procedure is $s^{(i)} = b^{(ld)}[1 : lcp^{(ld)}]$ (here we view $b^{(ld)}$ as a string of length 1). If $lcp^{(ld)} = 0$, player i sets $s^{(i)} = \varepsilon$. Recall that $\sigma_0 = \varepsilon$, thus $s^{(i)} = \sigma_0$. Now assume that $lcp^{(ld)} = 1$. Since the LCP invocation was harmonious, by Theorem 8.1, its output is incorrect with probability at most $1/2^9$. Then, with probability at least $1 - \frac{1}{2^9} - \Pr(E)$, we have $\sigma_1 = b = b^{(ld)} = s^{(i)}$, and the assertion follows.

10.2 Analyzing A_j

Our goal in this section is to prove analogues of Lemma 10.4 and Lemma 10.5 for A_j, $j \geq 1$. We would rely on the following reasoning. Consider a harmonious execution of A_1. This would involve two players, say player 1 and 2, as well as the leader. Player 1 (and the leader) will first run A_0 harmoniously. The output $s_1^{(i)}$ of this execution will be of length $lcp_1^{(ld)}$ and be correct for both the players with high probability. We assume for now that this execution is indeed correct for both players. If the outputs $s_1^{(i)}$ are of the same length for $i \in [2]$, then
second execution would be harmonious and we can re-apply Lemma 10.5 to conclude that the output of the second execution is also correct with high probability. If both the outputs are correct, the subsequent LCP should output the concatenation of the two outputs. Thus, the length of the (correct) output would double at every step to stay larger than a constant fraction of the number of players. We extend this reasoning to general A_j in the following lemmas.

Lemma 10.6 (Progress). There exists a constant $c_0 \in \mathbb{N}$ such that the following holds: In a harmonious execution of A_j, for $j \leq \lfloor \log n \rfloor$, we have

$$
\mathbb{E} [lcp^{(ld)}] \geq 2^j \left(1 - \frac{1}{2^9} - \epsilon - 6 \sum_{i=1}^{j} 2^{-7i} \right).
$$

Lemma 10.7 (Correctness). Let $c_0 \in \mathbb{N}$ be the constant from Lemma 10.6. The following holds: For any player $i \in [n]$, at the end of a harmonious execution of A_j (for $j \leq \lfloor \log n \rfloor$), it holds that $|s^{(i)}| = lcp^{(ld)}$ and $s^{(i)} = \sigma_{|s^{(i)}|}$, with probability at least $1 - 2^{-8j-8}$, where the probability is over the noise of the channel and the randomness of the players.

We prove Lemma 10.6 and Lemma 10.7 in subsubsection 10.2.1.

10.2.1 Proof of Lemma 10.6 and Lemma 10.7

In this section we next prove Lemma 10.6 and Lemma 10.7 together via induction on j. The base case ($j = 0$) is given by Lemma 10.4 and Lemma 10.5 respectively. We assume both the results for $j - 1$ and reason about A_j.

A_j begins with a call to A_{j-1} on the first half of the players. Since these players are pre-specified, this call is harmonious and, by the induction hypothesis (correctness), both of the following holds for any $i \in [n]$, except with probability $1 - 2^{-8j}$,

\begin{align*}
|s^{(i)}_1| &= lcp^{(ld)}_1, \quad (3) \\
\sigma_i^{(i)} &= \sigma_{|s^{(i)}_1|}. \quad (4)
\end{align*}

Here $lcp^{(ld)}_1$ denotes the value of $lcp^{(ld)}$ in this execution of A_{j-1}. Let E_1 be the event that $s^{(i)}_1 = \sigma_{lcp^{(ld)}_1} = \sigma'$ for all $i \in [2^j]$. By union bound over Equation 3 and Equation 4 for all players in $[2^j]$, we get that $\Pr[E_1] \geq 1 - 2^{-7j}$.

Claim 10.8. Assuming that E_1 occurs, the second execution of A_{j-1} is harmonious.

Proof. We will only use the fact that the strings $s^{(i)}_1$ are of the same length, for all $i \in [2^j]$. In the second execution of A_{j-1}, if $i \in \left[|s^{(i)}_1| + 1, |s^{(i)}_1| + 2^{j-1}\right]$, then player i takes the role of active player $i - |s^{(i)}_1|$. Since $|s^{(i)}_1| \leq 2^{j-1}$, it holds that $\left[|s^{(i)}_1| + 1, |s^{(i)}_1| + 2^{j-1}\right] \subseteq [2^j]$. Since $|s^{(i)}_1| = |\sigma'|$ for every $i \in [2^j]$, it holds that every player $i \in [|\sigma'| + 1, |\sigma'| + 2^{j-1}]$ takes the role of player $i - |\sigma'|$. Since the function $i \mapsto i - |\sigma'|$ is a bijection between the set of
active players participating and the set of roles, the second execution of A_{j-1} is harmonious. (Note that all players $i \in [n] \setminus [2^j]$ will always participate in this execution A_{j-1} as passive players.)

Assume that E_1 occurs. The second execution of A_{j-1} involves the functions g_i. The functions g_i were defined in a way so that their domain is consistent with the role of player i. Since this execution is also harmonious, we again apply the induction hypothesis (correctness) to conclude that for any $i \in [n]$, except with probability 2^{-8j},

$$|s_2^{(i)}| = lcp_2^{(i)}, \quad (5)$$

$$s_2^{(i)} = \tau_{|s_2^{(i)}|}^i. \quad (6)$$

Here $lcp_2^{(i)}$ denotes the value of $lcp^{(i)}$ in this (second) execution of A_{j-1}, and $\tau_{|s_2^{(i)}|}$ is the string obtained by replacing all f_i by g_i in Equation 1. Let E_2 be the event that $s_2^{(i)} = \tau_{lcp_2^{(i)}}^i = \tau'$ for all $i \in [2^j]$. By union bound over Equation 4 for all players in $[2^j]$, we get that $\Pr[E_2|E_1] \geq 1 - 2^{-7j}$. If we denote $\sigma'\|\tau'$ by ν, we get

Claim 10.9. Assuming that E_1 and E_2 occur, it holds that $\nu = \sigma_{|\nu|}$.

Proof. Since $\sigma' = \sigma_{|\sigma'|}$ (definition of E_1 and Equation 4), it is sufficient to show that the i^{th} bit of τ' is the same as the i^{th} bit of $\sigma_{|\nu|}[|\sigma'| + 1 : |\nu|]$. Or, in other words, the i^{th} bit of τ' is the $(|\sigma'| + i)^{th}$ bits of $\sigma_{|\nu|}$. We prove this by induction on i. The statement holds for $i = 0$. Assume it holds for all values up to $i - 1$. The i^{th} bit of $\tau' = \tau_{lcp_2^{(i)}}$ is $g_{\sigma_{|\nu|}^{(i)}}(\tau'[1 : i - 1]) = f_{\sigma_{|\nu|}^{(i)}}(\tau'\|\tau'[1 : i - 1])$ by definition. By the induction hypothesis, this is the same as $f_{\sigma_{|\nu|}^{(i)}}(\sigma_{|\nu|}[\sigma' + 1 : |\sigma'| + i - 1]) = f_{\sigma_{|\nu|}^{(i)}}(\sigma_{|\nu|}[1 : |\sigma'| + i - 1])$ which is the $(|\sigma'| + i)^{th}$ bit of $\sigma_{|\nu|}$. \hfill \square

Assume that E_1 and E_2 occur. Then, $s_1^{(i)}||s_2^{(i)} = \sigma_{|\nu|}$ for all the players $i \in [2^j]$, and coordinate i of $s_1^{(i)}||s_2^{(i)}$ is $f_i(v_i[1 : i - 1])$. Therefore, Line 3 sets v_i to $v_i = s_1^{(i)}||s_2^{(i)} = \sigma_{|\nu|}$ for all the players $i \in [2^j]$ (as the replacing part of Line 3 doesn’t have any effect). Since $l(v_1, \ldots, v_{2j}) = |\nu| = lcp_1^{(i)} + lcp_2^{(i)}$, and since the LCP call is harmonious, Theorem 8.1 implies that $lcp^{(i)} \geq lcp_1^{(i)} + lcp_2^{(i)}$ except with probability at most 2^{-9j}. Let E_3 be the event that $lcp^{(i)} \geq lcp_1^{(i)} + lcp_2^{(i)}$. We have $\Pr(E_3 \mid E_1, E_2) \geq 1 - 2^{-9j}$. The following claim proves Lemma 10.6.

Claim 10.10.

$$\mathbb{E}[lcp^{(i)}] \geq 2^j \left(1 - \frac{1}{2^9} - \epsilon - \sum_{i=1}^{j} 2^{-7i}\right).$$

Proof. We first condition on the events E_1, E_2, E_3 to use the bounds for $lcp_1^{(i)}$ and $lcp_2^{(i)}$ give by the induction hypothesis.

$$\mathbb{E}[lcp^{(i)}] \geq \Pr[E_1, E_2, E_3] \cdot \mathbb{E}[lcp^{(i)} \mid E_1, E_2, E_3] + (1 - \Pr[E_1, E_2, E_3]) \cdot 0$$

41
\[\geq (1 - 2 \cdot 2^{-7j} - 2^{-9j}) \cdot \mathbb{E}[lcp^{(id)} | E_1, E_2, E_3] \]
\[\geq (1 - 3 \cdot 2^{-7j}) \cdot \left(\mathbb{E}[lcp_1^{(id)} + lcp_2^{(id)} | E_1, E_2, E_3] \right). \]

Next we prove bounds on \(\mathbb{E}[lcp_1^{(id)} | E_1, E_2, E_3] \) and \(\mathbb{E}[lcp_2^{(id)} | E_1, E_2, E_3] \):
\[\mathbb{E}[lcp_1^{(id)} | E_1, E_2, E_3] \geq \mathbb{E}[lcp_1^{(id)}] - \mathbb{E}[lcp_1^{(id)} | \bar{E}_1 \lor \bar{E}_2 \lor \bar{E}_3] \Pr(\bar{E}_1 \lor \bar{E}_2 \lor \bar{E}_3) \]
\[\geq \mathbb{E}[lcp_1^{(id)}] - 2^{j-1} \Pr(\bar{E}_1 \lor \bar{E}_2 \lor \bar{E}_3) \]
\[\geq \mathbb{E}[lcp_1^{(id)}] - 2^{j-1} \left(\Pr(\bar{E}_1) + \Pr(\bar{E}_2 | E_1) + \Pr(\bar{E}_3 | E_1, E_2) \right) \]
\[\geq \mathbb{E}[lcp_1^{(id)}] - 3 \cdot 2^{-6j-1}. \]

Also,
\[\mathbb{E}[lcp_2^{(id)} | E_1, E_2, E_3] \geq \mathbb{E}[lcp_2^{(id)} | E_1] - \mathbb{E}[lcp_2^{(id)} | E_1, \bar{E}_2 \lor \bar{E}_3] \Pr(\bar{E}_2 \lor \bar{E}_3 | E_1) \]
\[\geq \mathbb{E}[lcp_2^{(id)} | E_1] - 2^{j-1} \Pr(\bar{E}_2 \lor \bar{E}_3 | E_1) \]
\[\geq \mathbb{E}[lcp_2^{(id)} | E_1] - 2^{j-1} \left(\Pr(\bar{E}_2 | E_1) + \Pr(\bar{E}_3 | E_1, E_2) \right) \]
\[\geq \mathbb{E}[lcp_2^{(id)} | E_1] - 2 \cdot 2^{-6j-1}. \]

Using these bounds and the induction hypothesis, we get
\[\mathbb{E}[lcp^{(id)}] \geq (1 - 3 \cdot 2^{-7j}) \cdot \left(\mathbb{E}[lcp_1^{(id)} + lcp_2^{(id)} | E_1, E_2, E_3] \right) \]
\[\geq (1 - 3 \cdot 2^{-7j}) \cdot \left(\mathbb{E}[lcp_1^{(id)}] + \mathbb{E}[lcp_2^{(id)} | E_1] - 5 \cdot 2^{-6j-1} \right) \]
\[\geq (1 - 3 \cdot 2^{-7j}) \cdot \left(2^j \left(1 - \frac{1}{2^9} - \epsilon - 6 \sum_{i=1}^{j-1} 2^{-7i} \right) - 5 \cdot 2^{-6j-1} \right) \]
\[\geq 2^j \left(1 - \frac{1}{2^9} - \epsilon - 6 \sum_{i=1}^{j} 2^{-7i} \right). \]

For Lemma 10.7, note that the input to the LCP call in Algorithm 13 are the strings \(v_i \) calculated in Line 3. These strings satisfy the property that their \(i \)th bit is equal to \(f_i \) applied to their first \(i - 1 \) bits. The following claim proves that strings that satisfy this property have a ‘correct’ LCP.

Claim 10.11. If \(V = \{v_i\}_{i \in [m]} \) is a set of strings that satisfies \(v_i[i] = f_i(v_i[1 : i - 1]) \) for every \(i \in [\lceil l(V) \rceil] \), then \(l(V) = \sigma_{\lceil l(V) \rceil} \).

Proof. We prove by induction on \(i \) that the first \(i \leq |l(V)| \) bits of \(l(V) \) and \(\sigma_{\lceil l(V) \rceil} \) match. The 0th bit matches trivially. Assume all bits up to \(i - 1 \) match and consider bit \(i \leq |l(V)| \). Since \(l(V) \) is a prefix of \(v_i \), the \(i \)th bit of \(l(V) \) is the same as the \(i \)th bit of \(v_i \). But, \(v_i[i] = f_i(v_i[1 : i - 1]) = f_i(\sigma_{i-1}) \) by the induction hypothesis. By definition, \(f_i(\sigma_{i-1}) = \sigma_i[i] \), and the assertion follows. \(\square \)
Recall that the leader’s input to the \(\text{LCP}_2 \) execution is \(v^{(ld)} = s_1^{(ld)} \parallel s_2^{(ld)} \). Let \(V = \{v_1, \ldots, v_n, v\} \). By Theorem 8.1 and Claim 10.11, except with probability at most \(2^{-9j} \), the result of the \(\text{LCP}_2 \) execution, \(lcp^{(ld)} \), satisfies
\[
v^{(ld)}[1 : lcp^{(ld)}] = l(V) = \sigma_{|l(V)|} = \sigma_{lcp^{(ld)}}.
\]

Fix a player \(i \in [n] \). We show that player \(i \)'s output is correct and of length \(lcp^{(ld)} \), by showing that it matches the output of the leader with high probability. First, note that the leader’s output \(s^{(ld)} \) satisfies
\[
s^{(ld)} = \text{DECODE}^{(ld)}(j) = (\text{DECODE}^{(ld)}(j-1) \parallel \text{DECODE}^{(ld)}(j-2)) [1 : lcp^{(ld)}] \quad \text{(by Equation 2)}
\]
\[
= (s_1^{(ld)} \parallel s_2^{(ld)}) [1 : lcp^{(ld)}]
\]
\[
= v^{(ld)}[1 : lcp^{(ld)}]
\]
\[
= \sigma_{lcp^{(ld)}} = \sigma_{|s^{(ld)}|}
\]

We finish the proof of Lemma 10.7 by proving that the output \(s^{(i)} \) of any player \(i \), is the same as \(s^{(ld)} \) with high probability.

Claim 10.12. For any player \(i \), the output \(s^{(i)} = s^{(ld)} \) except with probability at most \(2^{-8j-9} \).

Proof. The leader broadcasts \(lcp^{(ld)} \) on the tree code with \((c_0 + 1)(j + 1) \) bits of padding. For any player \(i \), the result of \(\text{DECODE}^{(i)}(j) \) will differ from the result of the leader only if the size of the incorrect suffix is more than the size of the padding. We upper bound this probability using Lemma 10.3 by \(K_1 \exp(-K_2(c_0 + 1)(j + 1)) \leq 2^{-8j-9} \) for a sufficiently large \(c_0 \). \(\square \)

By a union bound, except with probability at most \(2^{-9j} + 2^{-8j-9} \leq 2^{-8j-8} \), both Equation 7 and Claim 10.12 hold. Note that the inequality holds for \(j > 9 \). For smaller \(j \), we just repeat \(\text{LCP} \) a constant number of times to force the result. This finishes the proof.

References

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Venue</th>
<th>Page Range</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>on exponential sums.</td>
<td>computer science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[New04]</td>
<td>Ilan Newman.</td>
<td>CCC</td>
<td>113–122</td>
<td>2004</td>
</tr>
<tr>
<td>[Pel07]</td>
<td>David Peleg.</td>
<td>Distributed Computing and Internet Technology ICDCIT</td>
<td>1–18</td>
<td>2007</td>
</tr>
<tr>
<td></td>
<td>distributed computation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Communication on noisy channels: A coding theorem for computation.</td>
<td>Symposium on Theory of computing, ACM symposium on Theory of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>computing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deterministic coding for interactive communication.</td>
<td>computing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2

3