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Abstract

We provide a new proof that the expected error rate of consistent support
vector machines matches the minimax rate (up to a constant factor) in its
dependence on the sample size and margin. The upper bound was originally
established by [1], while the lower bound follows from an argument of [2] together
with reasoning about the VC dimension of large-margin classifiers. Our proof
differs from the original in that many of our steps concern reasoning about the
primal space, while the original carried out these steps by reasoning about the
dual space. Our approach provides a unified framework for analyzing both the
homogeneous and non-homogeneous cases, with slightly better results for the
former. The fact that our analysis explicitly handles the non-homogeneous case
offers significant improvements in the bounds compared to the usual textbook
approach of reducing to the homogeneous case. We also extend our proof to
provide a new upper bound on the error rate of transductive SVM, which yields
an improved constant factor compared to inductive SVM. In addition to these
bounds on the expected error rate, we also provide a simple proof of a margin-
based PAC-style bound for support vector machines, and an extension of the
agnostic PAC analysis that explicitly handles the non-homogeneous case.

Keywords: Statistical learning theory; Support vector machine; PAC
learning; Margin bound; Classification; Generalization bound

1. Introduction1

Margin and VC-dimension based sample complexity bounds are a crown2

jewel of the PAC theory of supervised binary classification. In particular, a con-3

siderable amount of theory has been devoted to linear classifiers. The agnostic4

case is well-understood: if all but a few of m labeled data points residing on the5

n-dimensional unit sphere are linearly separated with margin at least γ (the few6
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exceptions being treated as sample errors) then the expected excess risk decays7

as [3, 4] Θ
(√

min {n, 1/γ2}/m
)
. For the separable case, in which there exists8

a hyperplane in Rn consistent with the m sample points and having margin at9

least γ, it follows from known results that the best guarantee on the expected10

risk by any learning algorithm is lower-bounded by11

Ω(min{n, 1/γ2}/m). (1)

Similarly, any generalization bound that holds with probability 1 − δ is lower12

bounded by13

Ω
((

min{n, 1/γ2}+ log (1/δ)
)
/m
)
. (2)

For completeness, a proof sketch of the lower bound (1) is included in Ap-14

pendix Appendix C; it follows by combining a result of [2] with a simple shat-15

terability argument for 1/γ2 coordinate vectors by γ-margin separators. The16

proof of (2) follows from analogous arguments, except replacing the lower bound17

of [2] with that of [5].18

The work of [1] establishes that the support vector machine indeed achieves19

an expected error rate guarantee of the form (1), as its expected error rate on20

m samples is at most a value proportional to21

E[min{n+ 1, 1/γ2
m+1}]/(m+ 1), (3)

where γm+1 is the maximum margin achievable by a linear separator for m+ 122

random data points (which is a random variable). Standard results in vari-23

ous textbooks (e.g., [6]) also state an upper bound on the error rate for the24

homogeneous support vector machine holding with probability 1− δ:25

O

(
1

m

(
min{n, 1/γ2} log

(
m

min{n+ 1, 1/γ2}

)
log(m) + log

(
1

δ

)))
. (4)

Main results. Our present work serves to fill some of the gaps in the known26

results. First, we sharpen the upper bound (4), removing a factor log(m) from27

the first term in this bound to get1
28

O

(
1

m

(
min{n+ 1, 1/γ2} log

(
m

min{n+ 1, 1/γ2}

)
+ log

(
1

δ

)))
. (5)

It remains a major open problem to determine whether the SVM achieves an29

upper bound matching (2) up to constant factors. This stronger guarantee is30

1We note that proofs of this type of refinement have been known in “folklore” form for some
time. In particular, we thank John Shawe-Taylor [7] for sharing unpublished lecture notes on
a technique for achieving this (via bounding the covering numbers). However, we also note
that our proof is significantly simpler and leads to smaller constant factors, compared to these
folklore proofs.
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already known to hold for an algorithm based on the Perceptron learning rule.31

2
32

Second, our proof of the bound (5) directly addresses the presence of the33

bias term in the support vector machine. As is well known (both in prac-34

tice and in theory), the non-homogeneous linear separation problem (allowing35

a nonzero bias term) can be represented as a homogeneous linear separation36

problem in one additional dimension (augmenting each example with an addi-37

tional “dummy” feature, whose value is fixed to 1). The traditional approach to38

analyzing large margin separators focuses on homogeneous separators, suppos-39

ing that this transformation has already been applied. However, we note that40

the value of the margin can change dramatically under this transformation.41

The margin appearing in the bound is the geometric margin, which involves a42

normalized weight vector. By transforming to the homogeneous case, we must43

include the bias term in the vector being normalized, which can increase the44

norm by an arbitrary amount. In constrast, the (non-homogeneous) support45

vector machine maximizes the margin without including the bias term in the46

normalization. The margins appearing in our results correspond to this latter47

notion of margin, which therefore are better representations of the behavior of48

the SVM.49

Additionally, this work provides a new proof of the upper bound (3) on the50

expected error rate of SVM. Unlike the existing proof of [1], our proof treats51

both the homogeneous and non-homogeneous cases simultaneously, and in a52

unified way (and without reduction to the homogeneous case). Furthermore, the53

argument extends in a natural way to provide the first published bounds on the54

expected error rate of transductive SVM matching the form (3) (again, for both55

the homogeneous and non-homogeneous cases).3 The bounds for transductive56

SVM offer improvements over those for inductive SVM in the constant factors.57

In addition to these results for the realizable case, we also derive an agnostic PAC58

bound relevant to SVM. As with our results for the realizable case, our agnostic59

PAC bound differs from the standard treatment in that it explicitly accounts60

for the bias term in non-homogeneous SVM, and this fact offers significant61

quantifiable improvements in the bound, compared to the standard approach62

of reducing to the homogeneous case. These results for the agnostic case are63

presented in Section 8.64

2. Definitions and Notation65

We consistently use m to denote sample size, with [m] := {1, . . . ,m}, and66

n ≥ 2 to denote the dimension of the Euclidean instance space. Vectors are67

denoted in boldface (x = (x1, . . . , xn)), and are capitalized when random. The68

2In particular, Littlestone’s online-to-batch conversion [8] combined with Novikoff’s Per-
ceptron mistake bound [9] yields the upper bound matching (2).

3We note, however, that one can modify the argument of [1] to obtain a similar result
for transductive SVM (though again, that argument would only apply to non-homogeneous
SVM).
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standard inner product is denoted by 〈x, z〉 =
∑n
i=1 xizi, and induces the Eu-69

clidean norm ‖x‖2 = 〈x,x〉. We write xi to mean the ith vector in a sequence,70

and xij to denote its jth component, should the need ever arise. Sequences71

(x1, . . . ,xm) will occasionally be abbreviated to xm1 . Set cardinalities are de-72

noted by card(·) and 1[·] denotes the 0-1 truth value of the predicate inside the73

brackets. For α ∈ Rm, its support is defined by supp(α) = {i ∈ [m] : αi 6= 0}74

and ‖α‖0 := card(supp(α)). The nonnegative reals are denoted by R+ :=75

[0,∞), the extended reals are denoted by R̄ = R∪{−∞,∞}, and the Euclidean76

unit sphere is denoted by Sn = {x ∈ Rn : ‖x‖ = 1}. Additionally, for any t ∈ R̄,77

we denote sign(t) = 21[t ≥ 0]− 1.78

As per the standard consistent-PAC setting, X1,X2, . . . will be an i.i.d.79

sequence of data points, drawn from an arbitrary fixed distribution on Rn,80

and labeled by a target hyperplane. Throughout the paper, a dataset4 D is81

always understood to contain example-label pairs (x, y) ∈ Rn × {−1, 1}, either82

randomly generated (when capitalized) or else arbitrarily chosen, and will always83

be assumed to be strictly linearly separable (in a sense defined below), except84

in the results on agnostic learning. To indicate that the ith data point has been85

omitted, we will write D−i := D \ {(xi, yi)}. All probabilities and expectations86

will be with respect to the fixed distribution or its appropriate k-fold products,87

as will be clear from context.88

Homogeneous Case vs Non-homogeneous Case. The support vector ma-89

chine can be formulated in two distinct ways, depending on whether we allow90

a bias term. Specifically, in the homogeneous case, the support vector machine91

produces a vector w ∈ Rn, and classification of a point x ∈ Rn is determined by92

sign(〈w,x〉). In contrast, in the non-homogeneous case, the support vector ma-93

chine produces a vector w ∈ Rn and a value b ∈ R̄, and classification of a point94

x ∈ Rn is determined by sign(〈w,x〉+ b). As is well-known, the latter case can95

easily be represented as a special case of the former, simply by the addition of96

one dimension, by fixing all data points to have a constant nonzero component97

in that extra dimension. However, the addition of a bias term can significantly98

affect the support vector machine algorithm and margin-based analysis thereof.99

Specifically, the notion of the margin of a point x used in the definition of the100

support vector machine and analysis thereof is the geometric margin, 〈w,x〉+b‖w‖ ,101

corresponding to the Euclidean distance to the separating hyperplane. Since102

the bias term b is not included in the norm in the denominator, the definitions103

and results in the margin-based theory for non-homogeneous separators cannot104

quite be reduced to the homogeneous case by adding another dimension.105

For this reason, throughout the presentation below, we will treat both the106

homogeneous and non-homogeneous cases in a unified fashion, by introducing a107

global parameter c ∈ {0, 1}. The case c = 0 will correspond to the homoge-108

neous case, while c = 1 will correspond to the non-homogeneous case. In order109

to present both types of results simultaneously, we find it simplest to suppose110

4 We should more properly be referring to D as an ordered sequence of pairs (xi, yi), but
have opted for this slight imprecision to retain the familiar phrase “dataset”.
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the bias term b is always present, but that classification of a point x ∈ Rn is111

determined by sign(〈w,x〉+ cb), so that the bias term b is simply ignored in the112

homogeneous case.113

2.1. Max-Margin Hyperplanes114

Definition 1 (Max-Margin Hyperplanes). For m ∈ N, and a dataset D =

{(xi, yi) ∈ Rn × {−1, 1} : i ∈ [m]} , we will write (ŵ, b̂, γ) = MMH(D) to mean

that (ŵ, b̂) represents the maximum-margin separator,

(ŵ, b̂) = argmax
w∈Sn,b∈R

min
i∈[m]

yi (〈w,xi〉+ cb) ,

and γ is the margin, γ = mini∈[m] yi

(
〈ŵ,xi〉+ cb̂

)
. If c = 0, for simplicity we115

define b̂ = 0, and in this case MMH(D) is well-defined and unique as long as116

γ > 0. If c = 1, MMH(D) is well-defined and unique as long as {y : (x, y) ∈117

D} = {−1, 1}; for completeness, when this is not the case, we define ŵ ∈ Sn118

arbitrarily, b̂ = y1 · ∞, and γ =∞.119

Generally, if we wish to leave γ unspecified, we will simply write (ŵ, b̂) =120

MMH(D). Alternatively, if we wish to leave (ŵ, b̂) unspecified, we will write121

γ = marg(D).122

Throughout this paper (with the exception of Section 8 on agnostic learning),123

we assume that (by definition of the term “dataset”) any dataset D is strictly124

linearly separable — i.e., marg(D) > 0. When c = 1, this is equivalent to linear125

separability, but for c = 0 it imposes an additional restriction.126

Definition 2 (Marginal Vectors). Suppose that D is a dataset of m points, and127

(ŵ, b̂, γ) = MMH(D). We say that j ∈ [m] is a marginal index if yj(〈ŵ,xj〉 +128

cb̂) = γ, and write Dmarg ⊆ D to denote the set of all (xj , yj) ∈ D such that j129

is a marginal index; these are the marginal vectors. The marginal vectors are130

uniquely determined by D — an immediate consequence of (ŵ, b̂) being uniquely131

defined.132

3. Main Results133

This section summarizes the main results of this work.134

3.1. Inductive SVM Error Bounds135

Fix a distribution over Rn and a target (w?, b?) ∈ Sn×R̄. The latter induces136

the target concept f? : Rn → {−1, 1} via f?(x) = sign(〈w?,x〉 + cb?). Let137

X1, . . . ,Xm+1 be points be drawn i.i.d., labeled with Yi = f?(Xi), for i ∈ [m+1].138

Denote by Dm+1 the full dataset consisting of the m+ 1 labeled points and by139

Dm, this same dataset with the (m+1)th labeled example omitted. The inductive140
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SVM hypothesis ĥm predicts the label of Xm+1 based on Dm using the max-141

margin hyperplane: ĥm(x;Dm) = sign(〈ŵ,x〉+ cb̂), where (ŵ, b̂) = MMH(Dm).142

Associated with ĥm is its error143

err(ĥm) = P(ĥm(Xm+1;Dm) 6= Ym+1 |X1, . . .Xm) (6)

and its expected error E[err(ĥm)], where the expectation is over the X1, . . . ,Xm.144

So that this classifier is uniquely defined, and a margin-based bound on its error145

rate is meaningful, we assume that the distribution of the Xi samples is such146

that marg(Dm+1) > 0 almost surely. This is true of every distribution when147

c = 1 (and hence is not really an assumption at all in that case), but it does148

impose a restriction on the distribution when c = 0.149

We prove the following two results. The first provides a PAC generalization150

bound for the SVM, while the second bounds the expected error rate of the151

SVM.152

Theorem 3. Suppose that an iid sample D = {(xi, yi) ∈ Rn × {−1, 1} : i ∈ [m]}153

is contained in a ball of radius R and (ŵ, b̂, γ) = MMH(D). Then, with proba-154

bility at least 1− δ, we have155

err(ĥ) ≤ 2

m

(
5

⌈
R

γ

⌉2

log2

emγ2

R2
+ log2

(
π4

9δ

⌈
R

γ

⌉2
))

,

where ĥ : Rn → {−1, 1} is defined by ĥ(x) = sign(〈ŵ,x〉+ b̂).156

Remark:. To our knowledge, the bounds appearing in published literature have157

a log2(m)/m dependence on sample size, from which the above result shaves off158

a logarithmic factor. John Shawe-Taylor [7] informs us that such a result follows159

from Zhang’s bounds on covering numbers for linear function classes [10], but160

the argument we will give is considerably more elementary and yields better161

constants.162

Theorem 4. For Dm, Dm+1, and ĥm as defined above, let γm+1 = marg(Dm+1),
and let rm+1 = maxi∈[m+1] ‖Xi‖. Then

P
(
ĥm(Xm+1;Dm) 6= Ym+1

∣∣∣γm+1, rm+1

)
≤ 1

m+ 1
min

{
n+ c,

(2 + 6c)r2
m+1

γ2
m+1

}
,

(7)

E
[
err(ĥm)

]
≤ 1

m+ 1
E
[
min

{
n+ c,

(2 + 6c)r2
m+1

γ2
m+1

}]
. (8)

As discussed above, in the case c = 1, this result was first established by163

[1], via a different argument (see below for discussion of the differences). To164

our knowledge, this is the first publication establishing this result for the case165

c = 0, which (as discussed above) is in many respects quite a different setting.166

Our proof is able to handle both cases simultaneously. Our new proof of this167

result is presented in Section 6 below.168
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Deficiencies in Reducing the Non-homogeneous Case to the Homogeneous Case.169

As mentioned above, the margin analysis that one finds in most standard treat-170

ments only addresses the homogeneous case, reasoning that one can always171

reduce the non-homogeneous case to the homogeneous case simply by adding172

a dimention and fixing that coordinate to 1 in all the data points. With the173

above bounds in hand, we can now discuss quantitatively why that approach174

sometimes leads to significantly larger bounds on the error rate. Specifically,175

first consider a data set D′m of points (x′i, yi) with ‖x′i‖ = 1, such that for176

(w′, b′, γ′) = MMH(D′m), we have b′ = 0. Now Theorem 3 would supply a177

bound O
(

1
m

(
1

(γ′)2 log(m(γ′)2) + log 1
δ(γ′)2

))
, regardless of whether we treat178

this as the homogeneous or non-homogeneous solution (as both have zero bias).179

However, if we were to uniformly shift this dataset, without changing the ge-180

ometric margin of the SVM solution, we suddenly find a dramatic difference181

between the direct analysis of the non-homogeneous case in Theorem 3 and the182

näıve reduction technique implicit in the traditional analysis. Specifically, let183

Dm be the dataset of points (xi, yi), where xi = x′i + (R − 1)w′, where R is184

a large positive value. Then letting (ŵ, b̂, γ) = MMH(Dm), we may note that185

(ŵ, b̂, γ) = (w′, 1 − R, γ′). Thus, since the geometric margin is unchanged,186

and the samples are contained in a ball of radius R, Theorem 3 provides a187

bound O
(

1
m

(
R2

γ2 log mγ2

R2 + log R2

δγ2

))
. However, if we were instead to add a188

dimension, with coordinate value fixed to 1, and treat this scenario in the ho-189

mogeneous case, then the maximum margin separator would have weight vec-190

tor (ŵ,1−R)
‖(ŵ,1−R)‖ , and would have margin mini

∣∣∣ 1
‖(ŵ,1−R)‖ 〈(ŵ, 1−R), (xi, 1)〉

∣∣∣ =191

γ√
1+(1−R)2

. Thus, with this näıve reduction-to-homogeneous approach, for192

large R, the bound one obtains by plugging into a result such as Theorem 3193

is O
(

1
m

(
R4

γ2 log mγ2

R4 + log R4

δγ2

))
, which is larger than the result above directly194

analyzing the non-homogeneous case by roughly a factor of R2. Thus, we see195

that it can be extremely important to explicitly treat the bias term separately196

when bounding the error rate. Furthermore, as mentioned above, the value of197

the margin in the above bounds corresponds to the same value appearing in the198

objective function of the support vector machine (i.e., the geometric margin),199

while this is not the case if we treat the bias term as part of the weight vector (as200

in the reduction-to-homogeneous approach). Thus, in addition to sometimes be-201

ing quantitatively tighter, the bounds above obtained by treating the bias term202

separately directly motivate the support vector machine optimization problem.203

3.2. Transductive SVM Error Bounds204

Our strategy for the transductive error bound shares several features with205

the inductive case. We begin with the same setting as in Section 6.2: a target206

(w?, b?) ∈ Sn × R̄ with its induced target concept f? : Rn → {−1, 1}, and the207

i.i.d. dataset Dm+1 = {(Xi, Yi) : i ∈ [m+ 1]}, as well as its “abridged” version208

Dm. We also continue the assumption that, in the case c = 0, the distribution209

of Xi is such that marg(Dm+1) > 0 almost surely.210
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The transductive SVM hypothesis ĥm predicts the label of Xm+1 based on
Dm as follows:

ĥm(x;Dm) = argmax
y∈{−1,1}

sup
w∈Sn,b∈R

min

{
y (〈w,x〉+ cb) , min

i∈[m]
Yi (〈w,Xi〉+ cb)

}
.

The error rate, err(ĥm), of this classifier is defined as above in (6).211

We establish the following result bounding the expected error rate of the212

transductive SVM.213

Theorem 5. For Dm, Dm+1, ĥm as defined above, letting γm+1 = marg(Dm+1),
and rm+1 = maxi∈[m+1] ‖Xi‖, we have

P
(
ĥm(Xm+1;Dm) 6= Ym+1

∣∣∣γm+1, rm+1

)
≤ 1

m+ 1
min

{
n+ c,

(1 + 3c)r2
m+1

γ2
m+1

}
,

(9)

E
[
err(ĥm)

]
≤ 1

m+ 1
E
[
min

{
n+ c,

(1 + 3c)r2
m+1

γ2
m+1

}]
. (10)

The proof of this result follows a similar outline as the analysis of inductive214

SVM, and is presented in Section 7.215

In particular, recalling the lower bound (1), which applies to learning margin-216

γ homogeneous linear separators, the bound in Theorem 5 implies that in the217

homogeneous case, the transductive SVM is asymptotically minimax optimal.218

4. SVM PAC Generalization Bound219

The main result of this section is a proof of Theorem 3. To facilitate the220

proof, we define the following parametrized family of concepts. For R,Λ > 0,221

consider all h : Rn × {−1, 1} → {−1, 1} of the form222

(x, y) 7→

{
sign(y(〈w,x〉+ b)), ‖x‖ ≤ R, |〈w,x〉+ b| ≥ 1

−1, else,

where (w, b) ∈ Rn × R range over all ‖w‖ ≤ Λ (and b is arbitrary).223

A hypothesis h ∈ CR,Λ is said to be consistent with a labeled sample Dm =224

{(Xi, Yi) : i ∈ [m]} if h(Xi, Yi) = 1 for all i ∈ [m]. These are essentially the225

gap-tolerant classifiers [11].226

Lemma 6. The VC-dimension of CR,Λ is at most (2RΛ + 1)2.227

Remark: To establish this lemma, we will closely follow the proof of [4, Theo-228

rem 4.2]. The differences are that the latter (i) does not allow a bias term b, (ii)229

defines a sample-dependent concept class, which precludes invoking standard230

PAC bounds (which require that the concept class be fixed in advance of seeing231

the sample) and (iii) has a concept class defined over the points x as opposed232

to pairs (x, y).233
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Proof of Lemma 6. Suppose that CR,Λ shatters some set {(x1, y1), . . . , (xd, yd)}234

of pairs, for some d ∈ N. This implies, in particular, that ‖xi‖ ≤ R, i ∈ [d]. It235

also implies that, for all s ∈ {−1, 1}d, there is a (w, b) ∈ Rn×R, ‖w‖ ≤ Λ, such236

that237

1 ≤ si(yi(〈w,xi〉+ b)) = si(〈w, yixi〉+ byi), i ∈ [d].

Note that, for any (w, b) satisfying this inequality with ‖w‖ ≤ Λ, if b > RΛ + 1,
then 1 ≤ si(yi(〈w,xi〉 + RΛ + 1)) as well, and if b < −(RΛ + 1), then 1 ≤
si(yi(〈w,xi〉 − (RΛ + 1))) as well. Thus, without loss of generality, we may
suppose |b| ≤ RΛ + 1. Summing up the inequalities over i ∈ [d], we have

d ≤
∑
i∈[d]

si(〈w, yixi〉+ byi) =

〈
w,
∑
i∈[d]

siyixi

〉
+ b

∑
i∈[d]

siyi

≤ Λ

∥∥∥∥∥∥
∑
i∈[d]

siyixi

∥∥∥∥∥∥+ (RΛ + 1)

∣∣∣∣∣∣
∑
i∈[d]

siyi

∣∣∣∣∣∣ .
Letting s be uniformly drawn from {−1, 1}d and taking expectations (noting
that the {si} are independent and E[si] = 0), we have

d ≤ ΛE

∥∥∥∥∥∑
i

siyixi

∥∥∥∥∥+ (RΛ+1)E

∣∣∣∣∣∑
i

siyi

∣∣∣∣∣
≤ Λ

√√√√E

∥∥∥∥∥∑
i

siyixi

∥∥∥∥∥
2

+ (RΛ+1)

√√√√E

(∑
i

siyi

)2

= Λ

√∑
i

‖yixi‖2 + (RΛ + 1)

√∑
i

y2
i

≤ ΛR
√
d+ (RΛ + 1)

√
d = (2RΛ + 1)

√
d.

Solving, d ≤ (2RΛ + 1)2.238

Proof of Theorem 3. Recall a classic VC-based generalization bound for consis-239

tent binary classifiers [12]: with probability at least 1− δ, a classifier consistent240

with a sample of size m chosen from a concept class with VC-dimension d241

achieves generalization error at most 2
m

(
d log2

2em
d + log2

2
δ

)
.242

Our learner’s task is to match the function f : Rn×{−1, 1} → {−1, 1} given243

by f(x, y) = 1 on the labeled sample using concepts h ∈ CR,Λ. We are going244

to invoke a standard (double) stratification argument [13] over ‖w‖ and ‖x‖.245

Define the lattice of concept classes Ci,j , where Ci,j ⊆ Ci′,j′ whenever i ≤ i′ and246

j ≤ j′. This lattice is defined in advance of seeing any sample. Now consider a247

learner who receives a training sample S ⊂ Rn, contained in some ball of radius248

R. There exists a consistent hyperplane with margin γ iff there is a consistent249

h ∈ CdRe,d1/γe. Define pi = 6/(πi)2, for i = 1, 2, . . ., and qj analogously.250
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Then, by the stratification argument, with probability at least 1 − δ, any251

γ-margin hyperplane consistent with a sample of size m contained in radius R252

achieves generalization error at most253

2
m

((
2 dRe

⌈
1
γ

⌉
+ 1
)2

log2
2em

(2dRed1/γe+1)2 +log2
2

δqdRepd1/γe,

)
,

from which the stated bound follows immediately, using 2uv ≤ 2 due dve + 1 ≤254

5 duve, which is valid for all u, v ≥ 0.255

5. Representation by Lagrange multipliers256

The following lemma summarizes some well-known facts about max-margin257

hyperplanes and their induced support vectors. They may be seen as conse-258

quences of the strong duality and complementary slackness [14, 15], see also259

[16, 4]. The representation of MMH(D) in terms of Lagrange multipliers α,260

and properties thereof, as described in this lemma, will be vital to our analysis261

below.262

Lemma 7. For any m ∈ N, consider a data set D = {(x1, y1), . . . , (xm, ym)},263

and put zi := yixi ∈ Rn, i ∈ [m]. Suppose that (ŵ, b̂, γ) = MMH(D) with264

0 < γ <∞. Then:265

(i) There exists an α ∈ Rm+ such that ŵ =
∑m
i=1 αizi266

(meaning: the normal vector ŵ of the max-margin hyperplane lies in the267

conical hull of the data vectors).268

(ii) The α in (i) may be chosen to satisfy αi 6= 0 =⇒ 〈ŵ, zi〉+yicb̂ = γ, i∈ [m]269

(meaning: the margin is achieved at the support vectors).270

(iii) The α in (i,ii) may be chosen to satisfy c
∑m
i=1 αiyi = 0271

(meaning: in the non-homogeneous case, the sums of α multipliers for272

positive and negative examples are equal).273

(iv) For any α as in (i,ii,iii), putting Dsupp = {(xi, yi) : i ∈ supp(α)}, we have274

(ŵ, b̂, γ) = MMH(Dsupp)275

(meaning: the non-support vectors may be omitted from the data set with-276

out affecting the max-margin hyperplane).277

(v) Assuming m > 1, choose i ∈ [m] and let (ŵ−i, b̂−i, γ−i) = MMH(D−i).
Then

γ−i>γ ⇐⇒ (ŵ−i, b̂−i) 6=(ŵ, b̂) =⇒ yi(〈ŵ,xi〉+cb̂)=γ ⇐⇒ (xi, yi)∈Dmarg

(meaning: omitting the ith example increases the margin iff it changes the278

optimal hyperplane, and this implies that the omitted point was a marginal279

vector).280

Given any α ∈ Rm as described in Lemma 7(i, iv), we generally denote281

Dsupp = {(xi, yi) : i ∈ supp(α)}, the set of support vectors (with respect to α).282

Note, however, that as the vector α in Lemma 7 is not guaranteed to be unique,283

or even to have unique support, the set Dsupp is generally not uniquely defined.284
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6. Inductive SVM Expected Error Bound285

Before getting into the details of our proof, we first briefly discuss some286

important similarities and differences in our approach compared to the previous287

proof of [1]. The proof of [1] studies the leave-one-out cross validation error of288

the algorithm, which is known to be an unbiased estimator of the error rate.289

They bound this value in terms of the number of “essential” support vectors290

(whose inclusion is required by any solution to the SVM optimization problem),291

and then bound this number by 1/γ2
m+1. The proof of this latter bound lower-292

bounds the Lagrange multiplier for any data point counted as a mistake in the293

leave-one-out estimator. It does so by considering the effect on the Lagrange294

multipliers of the other points induced by fixing that point’s multiplier to 0295

in the SVM dual optimization problem, and analyzing the effect on the dual296

objective function.297

Like the original proof of [1], our new proof also examines the leave-one-out298

cross validation error of the SVM, and relates this to the number of essential299

support vectors, which we then bound by a value ∝ 1/γ2
m+1 by lower-bounding300

the Lagrange multipliers of points counted as a mistake in the leave-one-out301

estimator. However, our proof diverges from that of [1] in this last step. Specif-302

ically, rather than analyzing the Lagrange multipliers of the solution to the SVM303

dual optimization problem with the point held out, we are able to lower-bound304

the Lagrange multipliers of mistake points by analyzing the effect of leaving out305

that point, in terms of the weight vector in the solution to the primal optimiza-306

tion problem. This yields new insights into the behavior of the primal solutions307

in support vector machines, which may themselves be of interest.308

Our approach is also quite flexible, and in particular allows us to simultane-309

ously analyze the homogeneous (zero bias term) and non-homogeneous variants310

of SVM, yielding smaller constant factors in the former case, which was not311

covered by the original proof of [1].312

As we will see in the next section, the approach also easily extends to the313

analysis of transductive SVM, where we also obtain bounds on the expected314

error rate, for both the homogeneous and non-homogeneous cases, which match315

the lower bound (1) up to constant factors. To our knowledge, this is the first316

publication of a proof that transductive SVM obtains the minimax rate. We317

note, however, that one can modify the argument of [1] to obtain a similar result318

for transductive SVM, though again only for the non-homogeneous case.319

6.1. Bounding the Number of Leave-one-out Mistake Vectors320

As mentioned, our basic strategy toward bounding the expected error rate321

of the SVM is to analyze its leave-one-out cross validation error rate, which322

(when the test point is included in the data set) is known to be an unbiased323

estimator of the expected error rate. Toward this end, we now define the set of324

leave-one-out mistake vectors — corresponding to the data points on which a325

11



mistake is made when they are held out. 5
326

Definition 8 (Leave-one-out Mistake Vectors). Given a dataset D as above, we327

say that ` ∈ [m] is a leave-one-out mistake index if (ŵ−`, b̂−`) = MMH(D−`)328

satisfies y`

(
〈ŵ−`,x`〉+ cb̂−`

)
≤ 0. In other words, upon removing x` from D,329

the resulting maximum margin separator misclassifies x` (or possibly has x` on330

the separator). Let DLOOM ⊆ D denote the set of all (x`, y`) ∈ D such that331

` ∈ [m] is a leave-one-out mistake index; these are the leave-one-out mistake332

vectors.333

The rest of this section is devoted to proving the following theorem, which334

bounds the number of leave-one-out mistake vectors in terms of the dimension335

n and the margin γ.336

Theorem 9. Fix any m ∈ N with m ≥ 2, and any D = {(x1, y1), . . . , (xm, ym)},337

and let (ŵ, b̂, γ) = MMH(D). Let r ∈ R+ be such that maxi∈[m] ‖xi‖ ≤ r.338

Assuming γ > 0, we have card(DLOOM) ≤ min
{
n+ c, (2+6c)r2

γ2

}
.339

The proof of this theorem relies on the following lemma, which lower-bounds340

the Lagrange multipliers α from Lemma 7 associated with vectors whose margin341

can be reduced without reducing the margin on the remaining points.342

Lemma 10. Let D, {zi}, (ŵ, b̂), γ, and α be as in Lemma 7(i,ii,iii), and343

suppose 0 < γ < ∞. Let r ∈ (0,∞) be such that maxi∈[m] ‖xi‖ ≤ r. Fix344

any ε ∈ (−∞, γ), and if c = 1, then also suppose ε ≥ γ − 4r2/γ. For any345

d ∈ [m], if there exists (wd, bd) ∈ Sn × R such that yd (〈wd,xd〉+ cbd) ≤ ε and346

minj∈[m]\{d} yj (〈wd,xj〉+ cbd) ≥ γ, then αd ≥ 1
(2+6c)r2 (γ − ε).347

Proof. Let γd = yd (〈wd,xd〉+ cbd), and note that γd ≤ ε < γ. Lemma 7(i,iii)
and Lemma 18 imply that

〈ŵ,wd〉 =

m∑
j=1

αj 〈wd, zj〉 = αd 〈wd, zd〉+
∑

j∈[m]\{d}

αj 〈wd, zj〉

= αd(γd − ydcbd) +
∑

j∈[m]\{d}

αj 〈wd, zj〉 ≥ αd(γd − ydcbd) +
∑

j∈[m]\{d}

αj(γ − yjcbd)

= αd(γd − γ) + γ

m∑
j=1

αj − bdc
m∑
j=1

αjyj = αd(γd − γ) + 1.

If it is also true that 〈ŵ,wd〉 ≤ 1− 1
(2+6c)r2 (γ − γd)2, then altogether we have

αd ≥
1

(2 + 6c)r2
(γ − γd) ≥

1

(2 + 6c)r2
(γ − ε).

5For simplicity, we also include data points (xi, yi) which, when held out, are borderline
predictions (i.e., those on the MMH(D−i) separator). Since our purpose below is to upper
bound the number of leave-one-out mistakes, this relaxation is benign.
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Otherwise, if 〈ŵ,wd〉 > 1 − 1
(2+6c)r2 (γ − γd)

2, then supposing ‖xd‖ > 0,348

1 − 1
(2+6c)r2 (γ − γd)2 ≥ 1 − 1

(2+6c)‖xd‖2 (γ − γd)2, so that Lemma 16 from Ap-349

pendix Appendix A implies350

〈ŵ, zd〉 − 〈wd, zd〉 <
1

1 + c
(γ − γd).

This inequality is also trivially satisfied if ‖xd‖ = 0. But since 〈ŵ, zd〉+ydcb̂ ≥ γ351

and 〈wd, zd〉+ ydcbd = γd, this implies352

ydc(b̂− bd) > (〈ŵ, zd〉+ ydcb̂)− (〈wd, zd〉+ ydcbd)−
1

1 + c
(γ − γd)

≥ (γ − γd)−
1

1 + c
(γ − γd) =

c

1 + c
(γ − γd).

In particular, since this can only occur with c = 1, this completes the proof
for the case c = 0. Now for the case c = 1, suppose j ∈ [m] \ {d} is such that
yj = yd. If ‖xj‖ > 0, then since 〈ŵ,wd〉 > 1− 1

8r2 (γ−γd)2 ≥ 1− 1
8‖xj‖2 (γ−γd)2,

Lemma 16 from Appendix Appendix A implies 〈wd, zj〉 − 〈ŵ, zj〉 < 1
2 (γ − γd).

This inequality is also trivially satisfied if ‖xj‖ = 0. Thus, we have

〈ŵ, zj〉+ yj b̂ = 〈ŵ, zj〉+ ydb̂ >

(
〈wd, zj〉 −

1

2
(γ − γd)

)
+

(
ydbd +

1

2
(γ − γd)

)
= 〈wd, zj〉+ yjbd ≥ γ.

In particular, this implies (xj , yj) /∈ Dmarg. Together with Lemma 7(ii), this353

implies (xj , yj) /∈ Dsupp (defined with respect to α). Thus, if 〈ŵ,wd〉 > 1 −354

1
8r2 (γ − γd)2, then every j ∈ [m] \ {d} with αj > 0 has yj 6= yd. But together355

with Lemma 7(iii) and Lemma 18, this implies356

αd =
∑

j∈[m]\{d}

αj = −αd +

m∑
j=1

αj =
1

γ
− αd,

so that αd = 1
2γ ≥

1
8r2 (γ − ε).357

In particular, this straightforwardly implies the following corollary, lower-358

bounding the α` values for leave-one-out mistake indices `.359

Corollary 11. Let D, {zi}, (ŵ, b̂), γ, α, and r be as in Lemma 10. Then360

(x`, y`) ∈ DLOOM =⇒ α` ≥ 1
(2+6c)r2 γ, ` ∈ [m].361

Proof. The claim is vacuously true if DLOOM = ∅ or γ = 0 (since α ∈ Rm+ ), so362

suppose that DLOOM contains some (x`, y`), and that γ > 0. Next, note that363

the fact that γ < ∞ implies that there exist j, j′ ∈ [m] with yj 6= yj′ . In364

particular, this means ∃τ ∈ [0, 1] such that, denoting xτ = τxj + (1 − τ)xj′ ,365

〈ŵ,xτ 〉+ cb̂ = 0. Thus, since x 7→ | 〈ŵ,x〉+ cb̂| is the Euclidean distance from366

x to the closest point x0 with 〈ŵ,x0〉 + cb̂ = 0, a triangle inequality implies367
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| 〈ŵ,xj〉 + cb̂| + | 〈ŵ,xj′〉 + cb̂| ≤ ‖xj − xτ‖ + ‖xj′ − xτ‖ = ‖xj − xj′‖ ≤368

‖xj‖+‖xj′‖ ≤ 2r. Since | 〈ŵ,xj〉+cb̂|+ | 〈ŵ,xj′〉+cb̂| ≥ 2γ, this implies γ ≤ r.369

Let (ŵ−`, b̂−`) = MMH(D−`), and note (from Definition 8) that

y`

(
〈ŵ−`,x`〉+ cb̂−`

)
≤ 0,

and, since removing a point cannot decrease the maximum achievable margin,

min
j∈[m]\{`}

yj

(
〈ŵ−`,xj〉+ cb̂−`

)
≥ γ.

Thus, since 0 < γ ≤ r implies 0 ∈ [γ − 4r2/γ, γ), the result follows from370

Lemma 10 (taking ε = 0).371

We are now ready for the proof of Theorem 9.372

Proof of Theorem 9. If γ = ∞ (which can only happen if c = 1), then it must373

be that every (xi, yi) ∈ D has the same yi. Since m ≥ 2, this implies that374

every i ∈ [m] has (ŵ−i, b̂−i) = MMH(D−i) with b̂−i = y1∞ = yi∞, so that375

yi

(
〈ŵ−i,xi〉+ cb̂−i

)
=∞ > 0, and hence (xi, yi) /∈ DLOOM: that is, DLOOM = ∅.376

The result trivially follows in this case. Furthermore, note that if r = 0 (which377

again can only happen if c = 1, due to the γ > 0 assumption), then every378

(xi, yi) ∈ D has the same xi. Together with the linear separability assumption,379

this again implies that every (xi, yi) ∈ D has the same yi, so that γ = ∞, and380

hence, as just established, the result trivially holds in this case.381

For the remaining case, suppose 0 < γ < ∞ and r > 0, and put k =
card (DLOOM). The claim is trivial if k = 0, so assume k ≥ 1 and let {i1, . . . , ik} ⊆
[m] be the leave-one-out mistake indices:

DLOOM = {(xi1 , yi1), . . . , (xik , yik)}.

Put zi = yixi, i ∈ [m]. Lemma 17 implies the existence of α ∈ Rm+ satisfying
the conditions (i,ii,iii) of Lemma 7, such that the vectors {(xi, c) : i ∈ supp(α)}
are linearly independent. Furthermore, Corollary 11 implies that for any such
α, αij ≥ 1

(2+6c)r2 γ > 0, j ∈ [k]. Thus, any leave-one-out mistake index ij
must be in supp(α), and hence

{(xi, c) : (xi, yi) ∈ DLOOM} ⊆ {(xi, c) : i ∈ supp(α)} .

This implies that the vectors {(xi, c) : (xi, yi) ∈ DLOOM} are linearly indepen-
dent; since these are contained in Rn×{c}, which has a span of dimension n+c,
we obtain that k ≤ n+ c. Invoking Lemma 18, we have

1

γ
=

m∑
i=1

αi ≥
k∑
j=1

αij ≥
k∑
j=1

1

(2 + 6c)r2
γ = k

1

(2 + 6c)r2
γ,

which implies k ≤ (2+6c)r2

γ2 .382
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6.2. Proof of the error bound383

We are now ready for the proof of Theorem 4.384

Proof of Theorem 4. Define the function ψ : (Rn)m+1 → {0, 1} by

ψ(xm+1
1 ) = 1

[
ĥm(xm+1; {(xi, f?(xi)) : i ∈ [m]}) 6= f?(xm+1)

]
≤ 1

[
(xm+1, f

?(xm+1)) ∈ D̃LOOM

]
,

where D̃ = {(xi, f?(xi)) : i ∈ [m+ 1]} is determined by the arguments into ψ
(the formal dependence of ψ on the values yi = f?(xi) is suppressed, since these
are determined by the xi points and the fixed target f?). For each t ∈ [m+ 1],
define the permutation σt : [m + 1] → [m + 1] to be the one that swaps t and
m + 1 while leaving the remaining elements fixed (and in particular, σm+1 is
the identity map and σ(Xm+1

1 ) ≡ (Xσt(1), . . . ,Xσt(m+1))). Since X1, . . . ,Xm+1

are exchangeable, and marg(Dm+1) and max(x,y)∈Dm+1
‖x‖ are invariant under

permutations,

P
(
ĥm(Xm+1;Dm) 6= Ym+1

∣∣∣γm+1, rm+1

)
= E

[
ψ(Xm+1

1 )
∣∣γm+1, rm+1

]
=

1

m+ 1
E

[
m+1∑
t=1

ψ(σ(Xm+1
1 ))

∣∣∣∣∣γm+1, rm+1

]
. (11)

Since for any dataset, the mistake vectors DLOOM are invariant under permuta-
tions of D, the last expression in (11) is at most 1/(m+ 1) times

E

[∑
t

1
[
Xσt(m+1) ∈ DLOOM

m+1

]∣∣∣∣∣γm+1, rm+1

]
= E

[∑
t

1
[
Xt ∈ DLOOM

m+1

]∣∣∣∣∣γm+1, rm+1

]
= E

[
card

(
DLOOM

m+1

)∣∣γm+1, rm+1

]
.

To show (7), we invoke Theorem 9 (recalling γm+1 > 0 almost surely), to385

obtain E
[
card

(
DLOOM
m+1

)∣∣γm+1, rm+1

]
≤ min

{
n+ c,

(2+6c)r2
m+1

γ2
m+1

}
. The validity386

of (8) then follows by the law of total expectation and monotonicity of the387

expectation.388

7. Transductive SVM Expected Error Bound389

7.1. Bounding the number of pivotal vectors390

Similarly to the above, our strategy for bounding the expected error rate of391

the transductive SVM is to bound the number of leave-one-out cross validation392

errors. In this case, however, the specification of which points correspond to393

such mistakes is slightly different. We refer to such points as pivotal vectors,394

and define them formally as follows.6395

6As in the definition of leave-one-out mistake vectors, we also include the borderline points
in this set, which suffices for our purposes of obtaining an upper bound on the number of
leave-one-out prediction mistakes.
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Definition 12 (Pivotal Vectors). Given a dataset D with γ = marg(D), we say
that p ∈ [m] is a pivotal index if

max
w∈Sn,b∈R

min
i∈[m]

(−1)1[i=p]yi (〈w,xi〉+ cb) ≥ γ.

In other words, upon flipping the label of xp, the data remains linearly separable396

with margin at least γ. Let Dpivot ⊆ D denote the set of all (xp, yp) ∈ D such397

that p ∈ [m] is a pivotal index; these are the pivotal vectors.398

The rest of this section is devoted to proving the following theorem, which399

bounds the number of pivotal vectors in terms of the dimension n and the margin400

γ. The proof follows the same outline as that of Theorem 9 above.401

Theorem 13. Fix any m ∈ N with m ≥ 2, and D = {(x1, y1), . . . , (xm, ym)},402

and let (ŵ, b̂, γ) = MMH(D). Let r ∈ R+ be such that maxi∈[m] ‖xi‖ ≤ r.403

Assuming γ > 0, we have card(Dpivot) ≤ min
{
n+ c, (1+3c)r2

γ2

}
.404

To prove this, we first note the following corollary, lower-bounding the αp405

values for pivotal indices p; it follows straightforwardly from Lemma 10.406

Corollary 14. Let D, {zi}, (ŵ, b̂), γ, α, and r be as in Lemma 10. If γ <∞,407

then (xp, yp) ∈ Dpivot =⇒ αp ≥ 1
(1+3c)r2 γ, p ∈ [m].408

Proof. Suppose γ < ∞. The claim is vacuously true if Dpivot = ∅ or γ = 0409

(since α ∈ Rm+ ), so suppose that Dpivot contains some (xp, yp), and that γ > 0.410

Also, recall from the proof of Corollary 11 that γ <∞ =⇒ γ ≤ r.411

From Definition 12, ∃(wp, bp) ∈ Sn × R such that412

yp (〈wp,xp〉+ cbp) ≤ −γ

and413

min
j∈[m]\{p}

yj (〈wp,xj〉+ cbp) ≥ γ.

Thus, since 0 < γ ≤ r implies −γ ∈ [γ − 4r2/γ, γ), the result follows from414

Lemma 10 (taking ε = −γ).415

We are now ready for the proof of Theorem 13.416

Proof of Theorem 13. If γ = ∞ (which can only happen if c = 1), then it417

must be that every (xi, yi) ∈ D has the same yi. Since m ≥ 2, flipping any418

label yields a data set with at least one of each label, and hence finite margin:419

that is, ∀i ∈ [m], marg((D \ {(xi, yi)}) ∪ {(xi,−yi)}) < ∞ = γ. Thus, if420

γ =∞, Dpivot = ∅, so that the result trivially follows in this case. Furthermore,421

note that if r = 0 (which again can only happen if c = 1, due to the γ > 0422

assumption), then every (xi, yi) ∈ D has the same xi. Together with the linear423

separability assumption, this again implies that every (xi, yi) ∈ D has the same424
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yi, so that γ = ∞, and hence, as just established, the result trivially holds in425

this case.426

For the remaining case, suppose 0 < γ < ∞ and r > 0, and put k =
card

(
Dpivot

)
. The claim is trivial if k = 0, so assume k ≥ 1 and let {i1, . . . , ik} ⊆

[m] be the pivotal indices: Dpivot = {(xi1 , yi1), . . . , (xik , yik)}. Put zi = yixi,
i ∈ [m]. Lemma 17 implies the existence of α ∈ Rm+ satisfying the conditions
(i,ii,iii) of Lemma 7, such that the vectors {(xi, c) : i ∈ supp(α)} are linearly
independent. Furthermore, Corollary 14 implies that for any such α, αij ≥

1
(1+3c)r2 γ > 0, j ∈ [k]. Thus, any pivotal index ij must be in supp(α), and

hence {(xi, c) : (xi, yi) ∈ Dpivot} ⊆ {(xi, c) : i ∈ supp(α)}. This implies that
the vectors {(xi, c) : (xi, yi) ∈ Dpivot} are linearly independent; since these are
contained in Rn × {c}, which has a span of dimension n + c, we obtain that
k ≤ n+ c. Invoking Lemma 18, we have

1

γ
=

m∑
i=1

αi ≥
k∑
j=1

αij ≥
k∑
j=1

1

(1 + 3c)r2
γ = k

1

(1 + 3c)r2
γ,

which implies k ≤ (1+3c)r2

γ2 .427

7.2. Proof of the transductive SVM error bound428

We are now ready for the proof of Theorem 5.429

Proof of Theorem 5. The proof is nearly identical to that of Theorem 4, except
based on pivotal vectors instead of leave-one-out mistake vectors. Define the
function ψ : (Rn)m+1 → {0, 1} by

ψ(x1, . . . ,xm+1) = 1

[
ĥm(xm+1; {(xi, f?(xi)) : i ∈ [m]}) 6= f?(xm+1)

]
≤ 1

[
(xm+1, f

?(xm+1)) ∈ D̃pivot
]
,

where D̃ = {(xi, f?(xi)) : i ∈ [m+ 1]} is determined by the arguments into ψ.430

Define the permutation σt : [m + 1] → [m + 1], t ∈ [m + 1], as in the proof of431

Theorem 4.432

Since X1, . . . ,Xm+1 are exchangeable random variables, and both marg(Dm+1)
and max(x,y)∈Dm+1

‖x‖ are invariant under permutations,

P
(
ĥm(Xm+1;Dm) 6= Ym+1

∣∣∣γm+1, rm+1

)
= E [ψ(X1, . . . ,Xm+1)|γm+1, rm+1]

=
1

m+ 1

m+1∑
t=1

E
[
ψ(Xσt(1), . . . ,Xσt(m+1))

∣∣γm+1, rm+1

]
=

1

m+ 1
E

[
m+1∑
t=1

ψ(Xσt(1), . . . ,Xσt(m+1))

∣∣∣∣∣γm+1, rm+1

]
. (12)
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Since for any dataset, the pivotal vectors Dpivot are invariant under permuta-
tions of D, the last expression in (12) is at most

1

m+ 1
E

[
m+1∑
t=1

1

[
Xσt(m+1) ∈ Dpivot

m+1

]∣∣∣∣∣γm+1, rm+1

]

=
1

m+ 1
E

[
m+1∑
t=1

1

[
Xt ∈ Dpivot

m+1

]∣∣∣∣∣γm+1, rm+1

]

=
1

m+ 1
E
[
card

(
Dpivot
m+1

)∣∣∣γm+1, rm+1

]
.

To show (9), we invoke Theorem 13 (recalling that γm+1 > 0 almost surely) to
obtain

E
[
card

(
Dpivot
m+1

)∣∣∣γm+1, rm+1

]
≤ min

{
n+ c,

(1 + 3c)r2
m+1

γ2
m+1

}
.

The validity of (10) then follows by the law of total expectation and monotonic-433

ity of the expectation.434

Remark. The above argument can equivalently be interpreted as arguing that435

transductive SVM corresponds to predicting with the one-inclusion graph pre-436

diction strategy of [2], with an orientation of the graph having out-degree of the437

target node at most min{n+ c, (1 + 3c)/γ2
m+1}.438

8. Agnostic Case439

Here we extend the results above to the agnostic case. In this case, there is a440

distribution PXY over Rn×{−1, 1}, the data (Xi, Yi) are i.i.d. PXY -distributed441

samples, and the error rate err(h) of a classifier h is defined as P(h(X) 6= Y )442

for (X, Y ) ∼ PXY . Again, the advantage of the results here over the standard443

treatment in textbooks is the explicit handling of the nonhomogeneous case. As444

discussed above, this explicit treatment of the bias term can dramatically im-445

prove the bounds compared to the näıve approach of adding an extra dimension446

and bounding the risk in terms of the homogeneous-case margin bounds in the447

resulting n+ 1 dimensional problem: specifically, improving the dependence on448

R, the magnitude of the data.449

In the agnostic case, the support vector machine corresponds to the following
optimization problem.

minimize ‖w‖2 + C

m∑
i=1

ξi

subject to Yi(〈w,Xi〉+ b) ≥ 1− ξi,∀i ≤ m
ξi ≥ 0,∀i ≤ m.

We are therefore interested in expressing the generalization bound in terms of450

‖w‖2 and
∑m
i=1 ξi at the solution. In particular, we have the following theorem.451
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Theorem 15. Let (ŵ, b̂, ξ̂) denote the values at the solution of the above opti-

mization problem, and let ĥm denote the resulting classifier x 7→ sign(〈ŵ,x〉+b̂).
Then with probability at least 1− δ, letting R = maxi∈[m] ‖Xi‖,

err(ĥm) ≤ 1

m

m∑
i=1

ξ̂i + 4

√
(dRed‖ŵ‖e+ 1)

2

m
+ 3

√√√√ ln
(
π4dRe2d‖ŵ‖e2

18δ

)
m

.

Proof. The proof of this follows a standard argument (see e.g., [4]), with a few452

modifications to explicitly account for the bias term (which does not appear in453

the bound). First, for any w ∈ Rn and b ∈ R, for (x, y) ∈ Rn × {−1, 1}, define454

hw,b(x) = sign(〈w,x〉 + b) and `w,b(x, y) = min{max{1 − y(〈w,x〉 + b), 0}, 1}.455

Then define HΛ = {`w,b : ‖w‖ ≤ Λ, b ∈ R} for any Λ > 0. Now we note that,456

for any w, b, err(hw,b) ≤ E[`w,b(X, Y )] for (X, Y ) ∼ PXY . Thus, it suffices to457

bound E[`ŵ,b̂(X, Y )|ŵ, b̂].458

Fix any Λ, R > 0. Theorem 3.1 of [4] implies that, with probability at least
1− δ′, every `w,b ∈ HΛ satisfies

E[`w,b(X, Y )] ≤ 1

m

m∑
i=1

`w,b(Xi, Yi) + 2Rademacher(HΛ) + 3

√
ln
(

2
δ′

)
m

,

where

Rademacher(HΛ) = E

[
sup

fw,b∈HΛ

1

m

m∑
i=1

εifw,b(Xi, Yi)

∣∣∣∣∣{(Xi, Yi)}i∈[m]

]
and ε1, . . . , εm are independent Uniform({−1, 1}) random variables, independent
from {(Xi, Yi)}i∈[m]. Now note that, if maxi∈[m] ‖Xi‖ ≤ R, then for any w ∈ Rn
with ‖w‖ ≤ Λ, for any b > RΛ + 1, `w,b(Xi, Yi) = `w,RΛ+1(Xi, Yi), and for any
b < −(RΛ+1), `w,b(Xi, Yi) = `w,−(RΛ+1)(Xi, Yi). Thus, when maxi∈[m] ‖Xi‖ ≤
R, HΛ can equivalently be defined as {`w,b : ‖w‖ ≤ Λ, |b| ≤ RΛ + 1}. Also note
that the function `w,b(x, y) is 1-Lipschitz in (x, y) 7→ y(〈w,x〉+ b). Combining
these two facts with Lemma 4.2 of [4] implies Rademacher(HΛ) is at most

E

[
sup

w,b:‖w‖≤Λ,|b|≤RΛ+1

1

m

m∑
i=1

εiYi(〈w,Xi〉+ b)

∣∣∣∣∣{(Xi, Yi)}i∈[m]

]

= E

[
sup

w,b:‖w‖≤Λ,|b|≤RΛ+1

1

m

m∑
i=1

εi(〈w,Xi〉+ b)

∣∣∣∣∣{Xi}i∈[m]

]

=
1

m
E

[
sup

w:‖w‖≤Λ

〈
w,

m∑
i=1

εiXi

〉
+ sup
b:|b|≤RΛ+1

b

m∑
i=1

εi

∣∣∣∣∣{Xi}i∈[m]

]

=
1

m
E

[
sup

w:‖w‖≤Λ

〈
w,

m∑
i=1

εiXi

〉∣∣∣∣∣{Xi}i∈[m]

]
+
RΛ + 1

m
E

[∣∣∣∣∣
m∑
i=1

εi

∣∣∣∣∣
]

≤ 1

m
E

[
Λ

∥∥∥∥∥
m∑
i=1

εiXi

∥∥∥∥∥
∣∣∣∣∣{Xi}i∈[m]

]
+
RΛ + 1

m
E

[∣∣∣∣∣
m∑
i=1

εi

∣∣∣∣∣
]
.
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Jensen’s inequality implies this is at most

Λ

m
E

∥∥∥∥∥
m∑
i=1

εiXi

∥∥∥∥∥
2
∣∣∣∣∣∣{Xi}i∈[m]

1/2

+
RΛ + 1

m
E

∣∣∣∣∣
m∑
i=1

εi

∣∣∣∣∣
2
1/2

,

and the fact that the εi variables have zero mean and are independent implies
this is equal

Λ

m
E

[
m∑
i=1

ε2i ‖Xi‖2
∣∣∣∣∣{Xi}i∈[m]

]1/2

+
RΛ + 1

m
E

[
m∑
i=1

ε2i

]1/2

=
Λ

m

(
m∑
i=1

ε2i ‖Xi‖2
)1/2

+
RΛ + 1

m

√
m ≤ Λ

m

√
mR2 +

RΛ + 1√
m

≤ 2

√
(RΛ + 1)2

m
.

Thus, for any δR,Λ ∈ (0, 1), with probability at least 1−δR,Λ, if maxi∈[m] ‖Xi‖ ≤
R, then every (w, b) ∈ Rn × R with ‖w‖ ≤ Λ satisfies

err(hw,b) ≤
1

m

m∑
i=1

`w,b(Xi, Yi) + 4

√
(RΛ + 1)2

m
+ 3

√√√√ ln
(

2
δR,Λ

)
m

.

Now let pi = qi = 6/(πi)2 for i ∈ N, and define δR,Λ = pRqΛδ for R,Λ ∈ N.
Then by a union bound, with probability at least 1−

∑
R∈N

∑
Λ∈N δR,Λ = 1− δ,

the above claim holds simultaneously for all R,Λ ∈ N. In particular, on this
event, taking R =

⌈
maxi∈[m] ‖Xi‖

⌉
and Λ = d‖ŵ‖e, we have

err(hŵ,b̂) ≤
1

m

m∑
i=1

`ŵ,b̂(Xi, Yi) + 4

√
(RΛ + 1)2

m
+ 3

√
ln
(
π4R2Λ2

18δ

)
m

.

The result then follows from this by noting that ĥm = hŵ,b̂, and that `ŵ,b̂(Xi, Yi)459

≤ max{1−Yi(〈ŵ,Xi〉+ b̂), 0}, and by the constraints in the optimization prob-460

lem, we know ξ̂i ≥ max{1− Yi(〈ŵ,Xi〉+ b̂), 0}, so that 1
m

∑m
i=1 `ŵ,b̂(Xi, Yi) ≤461

1
m

∑m
i=1 ξ̂i.462
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Appendix A. Technical lemmas508

Lemma 16. ∀u ∈ Rn, ∀v,w ∈ Sn, ∀δ > 0,

|〈u,v〉 − 〈u,w〉| ≥ δ =⇒ 〈v,w〉 ≤ 1− δ2

2‖u‖2
.

Proof. Suppose |〈u,v〉 − 〈u,w〉| ≥ δ > 0. First note that, in particular, this

implies ‖u‖ > 0, so that δ2

2‖u‖2 is well-defined. Denote σ = ‖u‖. By rotational

symmetry, there is no loss of generality in assuming u = σe1, where e1 denotes
the first canonical orthonormal basis vector. Hence, 〈u,v〉 = σv1 and 〈u,w〉 =
σw1, so that we have that

|v1 − w1| ≥ δ/σ. (A.1)

Furthermore, since ‖v‖ = ‖w‖ = 1, the Cauchy-Schwarz inequality implies

〈v,w〉 ≤ v1w1 +
√

(1− v2
1)(1− w2

1).

It remains to show that the right-hand side of the above display is at most509

1 − (v1 − w1)2/2; together with (A.1), this will imply 〈v,w〉 ≤ 1 − δ2

2σ2 , as510

claimed. To this end, we claim that511

st+
√

(1− s2)(1− t2) ≤ 1− 1

2
(s− t)2, 0 ≤ s, t ≤ 1. (A.2)

Put L =
√

(1− s2)(1− t2) and R = 1−(s−t)2/2−st; clearly, (A.2) is equivalent
to the assertion that L2 ≤ R2. Now

R2 − L2 =
(s2 − t2)2

4
≥ 0.

This proves (A.2).512

Appendix B. Facts about support vectors513

The next two results are known, but we reprove them here to establish them514

in the particular form we require for their use in the proofs of our other results.515

Lemma 17. Let D, {zi}, (ŵ, b̂), and γ be as in Lemma 7. Then the α ∈ Rm+516

in Lemma 7(i,ii,iii) may be chosen so that the vectors {(xi, c) : i ∈ supp(α)}517

are linearly independent.518

Remark: Obviously, whenever (ŵ, 0) ∈ span({(zi, cyi)}), there exist linearly519

independent {(z′i, cy′i)} ⊆ {(zi, cyi)} such that (ŵ, 0) ∈ span({(z′i, cy′i)}). What520

makes the claim nontrivial is the extra condition of nonnegativity on α.521
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Proof. This argument is essentially taken from [17]. Let α ∈ Rm+ be such that
‖α‖0 is minimal, subject to the conditions in Lemma 7(i,ii,iii). Put k = ‖α‖0
and let {i1, . . . , ik} = supp(α). For the sake of obtaining a contradiction, sup-
pose the vectors (xi1 , c), . . . , (xik , c) are not linearly independent. This implies
that (zi1 , yi1c), . . . , (zik , yikc) are also not linearly independent. Thus, there
exist scalars βi` ∈ R, ` ∈ [k], not all equal zero, such that∑

`∈[k]

βi`(zi` , yi`c) = 0,

where here 0 is the (n+1)-dimensional vector of 0’s. Now for each t ∈ R, define522

α(t) ∈ Rm as523

α
(t)
i =

{
0, i /∈ {i1, . . . , ik}
αi − tβi, i ∈ {i1, . . . , ik}

.

Then524

m∑
i=1

α
(t)
i (zi, yic) =

∑
`∈[k]

αi`(zi` , yi`c)− t
∑
`∈[k]

βi`(zi` , yi`c) = (ŵ, 0)− 0 = (ŵ, 0),

so that α(t) also satisfies the conditions (i,iii) of Lemma 7, aside from the non-525

negativity requirement (α(t) ∈ Rm+ ). Furthermore, any i ∈ [m] with α
(t)
i 6= 0526

has i ∈ {i1, . . . , ik}, so that αi > 0, and hence condition (ii) of Lemma 7 implies527

(xi, yi) ∈ Dmarg; therefore, α(t) also satisfies condition (ii) of Lemma 7.528

Next, for each ` ∈ [k] with βi` 6= 0 (of which there is at least one), define529

t` = αi`/βi` . Since each αi` is strictly greater than 0, and βi` is finite, each530

of these values t` is a nonzero finite value. Let t∗ denote the value t`∗ for the531

value `∗ ∈ [k] with smallest |t`| among ` ∈ [k] with βi` 6= 0. Then note that532

every ` ∈ [k] has α
(t∗)
i`

= αi` − t∗βi` ≥ 0, so that α(t∗) ∈ Rm+ . Furthermore,533

α
(t∗)
i`∗

= αi`∗ − t`∗βi`∗ = 0. Thus, α(t∗) ∈ Rm+ . However,
∥∥α(t∗)

∥∥
0
≤ ‖α‖0 − 1.534

Altogether, we have that α(t∗) ∈ Rm+ satisfies the conditions (i,ii,iii) of Lemma 7,535

while
∥∥α(t∗)

∥∥
0
< ‖α‖0. This violates the minimality of ‖α‖0 stipulated in our536

choice of α, resulting in a contradiction. We therefore conclude that, for any537

α ∈ Rm+ with minimal ‖α‖0 subject to the constraints in Lemma 7(i,ii,iii), the538

vectors {(xi, c) : i ∈ supp(α)} are linearly independent. Since the existence of539

such α is guaranteed by Lemma 7(i,ii,iii) (and the fact that ‖α‖0 can take only540

finitely many different values), the result follows.541

The following result establishes a connection between the Lagrange multi-542

pliers α and the margin γ. The result is well known, but we include a proof543

(taken from [4]) for completeness, and since our definitions are slightly different544

(in the normalization).545
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Lemma 18. Let {zi}, (ŵ, b̂), and γ be as in Lemma 7, with α ∈ Rm+ satisfying
(i,ii,iii) therein. Then

m∑
i=1

αi =
1

γ
.

Proof. This proof is taken from [4]. Conditions (i,ii) of Lemma 7 imply that,
for any i ∈ supp(α),

cb̂+

m∑
j=1

αjyj 〈xj ,xi〉 = cb̂+ 〈ŵ,xi〉+ cb̂ = yiγ.

Multiplying by αiyi, we have

cb̂αiyi +

m∑
j=1

αjαiyjyi 〈xj ,xi〉 = αiy
2
i γ = αiγ.

Furthermore, this is trivially also satisfied for any i /∈ supp(α), since the ex-
pressions are all equal zero in that case. Thus, summing over all i ∈ [m], we
obtain

b̂c

m∑
i=1

αiyi +

m∑
i=1

m∑
j=1

αjαiyjyi 〈xj ,xi〉 = γ

m∑
i=1

αi.

Conditions (i,iii) of Lemma 7 imply that the left hand side of the above equals546

0 + 〈ŵ, ŵ〉 = 1, so that γ
∑m
i=1 αi = 1, or equivalently,

∑m
i=1 αi = 1

γ .547

Appendix C. Lower Bounds548

Here we sketch a proof of the lower bound (1). In particular, combined with549

the above upper bounds, this establishes that the support vector machine (in550

both the inductive and transductive variant) achieves the minimax expected551

error rate in the limit, up to constant factors.552

Theorem 19. For any learning algorithm A, there exists a data distribution and
target function such that the maximum margin homogeneous linear separator for
m samples has margin at least γ (almost surely), and the expected error rate of
A (with these m samples as input) is at least

min{1/γ2, n} − 1

2e(m+ 1)
.

Proof Sketch. It was proven in [2] that, for any space X and any concept space553

H of a given VC dimension d, there exists a distribution on X such that, for554

any learning algorithm A, there exists a choice of target function in H such that555

the expected error rate of A is at least (d−1)/(2e(m+1)), given m iid samples.556

Furthermore, the distribution of the data in that proof can be supported on557

an arbitrary shatterable set of size d. We establish our result by reduction to558
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this one. Specifically, we note that the first k = min{1/γ2, n} basis vectors559

are shatterable by homogeneous linear separators having margin at least γ with560

respect to these k points. Thus, restricting to a concept space of 2k homogeneous561

linear separators with margin at least γ on these k points, the VC dimension562

is k, which establishes a lower bound (k − 1)/(2e(m + 1)) for this subspace.563

Since these separators are contained in the larger space of all linear separators,564

and the lower bound also applies to improper learning algorithms, this lower565

bound also holds for the full space of linear separators. Furthermore, we have566

established this lower bound while restricting the target concept to be among567

these 2k separators, each of which has margin at least γ on the points in the568

support of the data distribution, and therefore (almost surely) has margin at569

least γ on the m data points.570
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