Lecture 9: Gradient Descent

Introduction to Learning and Analysis of Big Data
Efficient learning algorithms

- How to implement learning algorithms for linear predictors efficiently?
- Is there a general method that works for many learning algorithms?
- Which types of learning algorithms can be implemented efficiently?
- How to make the implementation even more efficient in practice?
 - Run faster;
 - Use less RAM;
 - Work even if training examples cannot be stored.
Regularized Loss Minimization

- Many learning algorithms can be written as a **minimization** problem.
- Learning linear predictors.
 - ERM for some $\mathcal{H} = \mathcal{B} \subseteq \mathbb{R}^d$:
 \[
 \text{Minimize}_{w \in \mathcal{B}} \quad \text{err}(w, S).
 \]
 - Soft SVM:
 \[
 \text{Minimize}_{w \in \mathbb{R}^d} \quad \lambda\|w\|^2 + \ell^h(w, S).
 \]
 - Hard SVM:
 \[
 \text{Minimize}_{w \in \mathbb{R}^d : \forall i \leq m, y_i \langle w, x_i \rangle \geq 1} \quad \|w\|^2
 \]
- In general:
 \[
 \text{Minimize}_{w \in \mathcal{B}} \quad R(w) + \ell(w, S).
 \]
 - ℓ is a **loss function**, $\ell(w, S) = \frac{1}{m} \sum_{i=1}^{m} \ell(w, (x_i, y_i))$.
 - R is a **regularization term**: controls overfitting.
- Soft SVM: $\mathcal{B} = \mathbb{R}^d$, $R(h_w) := \lambda\|w\|^2$.
- Hard SVM: $\mathcal{B} = \{w \in \mathbb{R}^d : \forall i \leq m, y_i \langle w, x_i \rangle \geq 1\}$, $R(h_w) = \|w\|^2$.
Learning as Optimization

- Many learning algorithms on linear predictors can be written as a **minimization** problem.

 \[
 \text{Minimize}_{w \in \mathcal{B}} \quad R(w) + \ell(w, S).
 \]

- **Optimization algorithm**: Find the solution of a minimization problem.

- Efficient optimization \(\implies\) efficient learning.

- When can we have efficient optimization?

 - Not always: If \(\ell(w, S) = \text{err}(w, S)\) and \(\mathcal{H}\) is linear predictors, NP-hard.

- A convenient case: The objective function has a single minimum.

Good: \(\text{Good:} \)

Bad: \(\text{Bad:} \)

Really bad:
Convex Sets

- Which objective functions have this nice property?

Definition: Convex Sets

A set \(C \subseteq \mathbb{R}^n \) is convex if for any two vectors \(u, v \in C \), the straight line between them is also in \(C \):

\[
\forall \alpha \in [0, 1], \quad \alpha u + (1 - \alpha) v \in C.
\]

- Convex
- Not convex

- Is the set \(C = \mathbb{R}^n \) convex?
- Is a straight line in \(\mathbb{R}^n \) convex?
- Is a bent line in \(\mathbb{R}^n \) convex?
Convex Functions

Definition: Convex Functions

Let C be a convex set. Let $f : C \to \mathbb{R}$ be a function. f is convex if for every $u, v \in C$, $\alpha \in [0, 1],$

$$f(\alpha u + (1 - \alpha)v) \leq \alpha f(u) + (1 - \alpha)f(v).$$

- Geometric meaning:
 - A straight line between points on the graph of f is above (or on) the graph of f.
 - The area above the graph of f is a convex set.

![Graphs showing convex and non-convex functions](image-url)
Convex functions

Theorem

If $C \subseteq \mathbb{R}^n$ is convex and $f : C \rightarrow \mathbb{R}$ is convex, then every local minimum of f is also a global minimum.

- Learning with a minimization problem on linear predictors:
 \[
 \text{Minimize}_{w \in \mathcal{B}} f(w)
 \]

- If \mathcal{B} and f are convex, this is a convex minimization problem.
- The solution of a convex minimization problem can be found efficiently using the Gradient Descent algorithm.
 - We will see it soon.
- Which of our learning problems are convex minimization problems?
Identifying Convex functions

- Convexity: \(\forall \alpha \in [0, 1], u, v \in C, f(\alpha u + (1 - \alpha)v) \leq \alpha f(u) + (1 - \alpha)f(v). \)
- If \(C \subseteq \mathbb{R} \), and \(f \) is twice differentiable, then \(f \) is convex iff \(f'' \geq 0. \)
- (In higher dimensions \(f'' \) is a matrix and it should have non-negative eigenvalues)
- Linear functions are convex.
- **Conic combinations** of convex functions are convex:
 \[g(u) = \sum_{i=1}^{k} a_i f_i(u) \text{ for } a_i \geq 0 \]
- Maximum of two convex functions is convex.
 \[g(u) := \max\{f_1(u), f_2(u)\} \]
 \[g(\alpha u + (1 - \alpha)v) = \max\{f_1(\alpha u + (1 - \alpha)v), f_2(\alpha u + (1 - \alpha)v)\} \leq \max\{\alpha f_1(u) + (1 - \alpha)f_1(v), \alpha f_2(u) + (1 - \alpha)f_2(v)\} \leq \alpha \max\{f_1(u), f_2(u)\} + (1 - \alpha) \max\{f_1(v), f_2(v)\} = \alpha g(u) + (1 - \alpha)g(v). \]

- Let’s check some learning objectives.
Is ERM on linear predictors convex?

- ERM on linear predictors:

\[
\text{Minimize}_{w \in \mathbb{R}^d} \quad \text{err}(h_w, S) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{I}[y_i \langle w, x_i \rangle < 0].
\]

- \(f(w) = \text{err}(h_w, S) \), is it convex?
- Take \(d = 1, \ m = 1, \ y_1 = 1, \ x_1 = 1 \).
- Is \(f(w) = \mathbb{I}[w \leq 0] \) convex?

\[\begin{array}{c|c}
w & f(w) \\
\hline
1 & 1 \\
\end{array}\]

- No \(\mathbf{sad} \). (makes sense: this problem is NP-hard!)
Is Hard SVM Convex?

- Hard SVM:
 \[
 \text{Minimize } w \in \mathbb{R}^d : \forall i \leq m, y_i \langle w, x_i \rangle \geq 1 \quad \|w\|^2
 \]

- Is the set \(B = \{ w \in \mathbb{R}^d : \forall i \leq m, y_i \langle w, x_i \rangle \geq 1 \} \) convex?
 - Convex set: For all \(\alpha \in [0, 1], u, v \in B \), show \(\alpha u + (1 - \alpha) v \in B \).
 - \(u, v \in B \), then for \(i \leq m \), \(y_i \langle v, x_i \rangle \geq 1 \) and \(y_i \langle u, x_i \rangle \geq 1 \).
 \[
 y_i \langle \alpha u + (1 - \alpha) v, x_i \rangle = \alpha y_i \langle u, x_i \rangle + (1 - \alpha) y_i \langle v, x_i \rangle \geq 1.
 \]

- Is \(f(w) = \|w\|^2 \) convex?
 - \(f(w) = \sum_{i=1}^{d} w(i)^2 \).
 - For one dimensional \(z \), \(g(z) = z^2 \), \(g''(z) = 2 \geq 0 \), so \(g \) is convex.
 - Define \(f_i(w) = w(i)^2 = g(w(i)) \). Easy to show that \(f_i(w) \) is convex.
 - \(f(w) = \sum_{i=1}^{m} f_i(w) \), a conic combination of convex functions.

- Conclusion: Hard-SVM is a convex minimization problem. 😊
Is Soft SVM Convex?

- Soft-SVM minimization problem:
 \[
 \text{Minimize}_{w \in \mathbb{R}^d} \quad \lambda \|w\|^2 + \ell^h(w, S).
 \]

- Is \(f(w) = \lambda \|w\|^2 + \ell^h(w, S) \) convex?

- \(f \) is a conic combination of \(g_1(w) := \|w\|^2 \) and \(g_2(w) := \ell^h(w, S) \).

 - \(g_1 \) is convex.

 - \(g_2(w) = \frac{1}{m} \sum_{i=1}^m \max\{0, 1 - y_i \langle w, x_i \rangle\} \). Is it convex?

 - \(g_2 \) is a conic combination of functions: \(z_i(w) := \max\{0, 1 - y_i \langle w, x_i \rangle\} \).

 - \(z_i \) is the maximum of two functions:
 - \(z_{i,1}(w) = 0 \): linear in \(w \), hence convex
 - \(z_{i,2}(w) = 1 - y_i \langle w, x_i \rangle = 1 - \langle w, y_i x_i \rangle \): linear in \(w \), hence convex.

 - \(z_i \) is convex \(\implies \) \(g_2 \) is convex \(\implies \) \(f \) is convex 😊.
Efficient convex minimization: Gradient Descent

\[
\text{Minimize}_{w \in B} f(w)
\]

- \(f\) is convex, hence any local minimum it has is also global.

- Idea:
 - Start with some \(w\)
 - Do in iterations:
 - Move \(w\) slightly in a direction that decreases \(f(w)\).
 - Stop and return some average of the \(w\)'s.

- What is a **direction that decreases** \(f(w)\)?

- One-dimensional case (\(w \in \mathbb{R}\)): Move in direction of \(-f'(w)\).

- Multi-dimensional case: Move in direction of the negative **gradient**.
Gradient of function

- Assume $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is differentiable.
- Partial derivative of f according to $w(i)$: $\frac{\partial f(w)}{\partial w(i)}$.
- Example: $f(w) = \|w\|^2$. Then $\frac{\partial f(w)}{\partial w(i)} = 2w(i)$.
- The gradient of f at w is $\nabla f(w) := \left(\frac{\partial f(w)}{\partial w(1)}, \ldots, \frac{\partial f(w)}{\partial w(d)} \right)$.
- Example: $f(w) = \|w\|^2$. Then $\nabla f(w) = (2w(1), \ldots, 2w(d))$.
- If f is one-dimensional, $\nabla f(w) = f'(w)$.
- $\nabla f(w)$ is the direction that would increase $f(w)$ the most.
- To get closer to the minimum of f, move in the direction $-\nabla f(w)$.
The gradient descent algorithm

- \(\nabla f(w) \) is the direction that would **increase** \(f(w) \) the most.
- To get closer to the minimum of \(f \), move in the direction \(-\nabla f(w)\).
- We show here Gradient Descent for \(B = \mathbb{R}^d \).

Gradient Descent

input Number of iterations \(T \), step size \(\eta > 0 \)

output \(w \in \mathbb{R}^d \) that (approximately) solves Minimize\(_{w \in \mathbb{R}^d} f(w)\)

1: \(w^{(1)} \leftarrow (0, \ldots, 0) \).
2: **for** \(t = 1 : T \) **do**
3: \(w^{(t+1)} \leftarrow w^{(t)} - \eta \nabla f(w^{(t)}) \).
4: **end for**
5: Return \(\bar{w} = \frac{1}{T} \sum_{t=1}^{T} w^{(t)} \).

- Can also return \(w^{(T)} \) or average of a few \(w \)'s. Depends on properties of \(f \).
- For \(B \subsetneq \mathbb{R}^d \), an extra **projection step** is needed (see book).
The gradient descent algorithm

- Update step: \(w^{(t+1)} \leftarrow w^{(t)} - \eta \nabla f(w^{(t)}) \).
- Step size \(\eta \) is important:
 - Too small: will take a long time to get close to the minimum
 - Too large: might oscillate and miss the minimum.

Theorem

Let \(w^* \in \arg\min_{w \in \mathbb{R}^d} f(w) \). If \(f \) is a convex function, and \(\eta := \frac{C}{\sqrt{T}} \) \((C > 0 \text{ depends on } f\)), then

\[
f(\bar{w}) - f(w^*) \leq O\left(\frac{1}{\sqrt{T}}\right).
\]
Subgradients

- Gradient descent uses $\nabla f(w) := \left(\frac{\partial f(w)}{\partial w(1)}, \ldots, \frac{\partial f(w)}{\partial w(d)} \right)$.
- What if f is not differentiable?
- Example: Hinge-loss.

$$\text{Minimize}_{w \in \mathbb{R}^d} \quad \lambda \|w\|^2 + \ell^h(w, S).$$

- $\ell^h(w, S) = \frac{1}{m} \sum_{i=1}^{m} \max\{0, 1 - y_i \langle w, x_i \rangle\}$.
- $f(w) = \ell^h(w, S)$ is not differentiable at w if $\exists i \leq m, y_i \langle w, x_i \rangle = 1$.
- $w \in \mathbb{R}, m = 1, y_1 = 1, x_1 = 1$:
Subgradients

- What to do when $\nabla f(w)$ does not exist? (f is not differentiable at w)

- $v \in \mathbb{R}^n$ is a **sub-gradient** of $f : C \to \mathbb{R}$ at w if

 $$\forall u \in C, f(u) \geq f(w) + \langle v, u - w \rangle.$$

- A sub-gradient of f at w is a direction that is always below $f(w)$.

- Set of sub-gradients at w: $\partial f(w)$.

- If $f : C \to \mathbb{R}$ is convex, $\partial f(w) \neq \emptyset$ for all $w \in C$. (even if f is not differentiable!)

- When $\nabla f(w)$ exists, $\partial f(w) = \{\nabla f(w)\}$. (no other sub-gradients)

- Any $v \in \partial f(w)$ can be used in Gradient Descent instead of $\nabla f(w)$.

- **Theorem**: w is a minimizer of $f \iff (0, \ldots, 0) \in \partial f(w)$.
Subgradients for soft-SVM

- For the case of hinge-loss, we can use the following rule:

Subgradients for maximum functions

Let $f(w) := \max\{g_1(w), g_2(w)\}$, where g_1, g_2 are convex differentiable.
If $f(w) = g_i(w)$, then $\nabla g_i(w) \in \partial f(w)$.

- In gradient descent algorithm, choose some $v_w \in \partial f(w)$ instead of $\nabla f(w)$.
- What should v_w be for soft-SVM?

$$f(w) = \lambda \|w\|^2 + \frac{1}{m} \sum_{i=1}^{m} \max\{0, 1 - y_i \langle w, x_i \rangle\}$$

- Define: $g(w) := \lambda \|w\|^2$, $z_i(w) := 1 - y_i \langle w, x_i \rangle$, $g_i(w) := \max\{0, z_i(w)\}$.
- So

$$f(w) = g(w) + \frac{1}{m} \sum_{i=1}^{m} g_i(w).$$

- $\nabla g(w) = 2\lambda w$.
- $\nabla z_i(w) = -y_i x_i$.
- Choose $v_i(w) \in \partial g_i(w)$ according to the maximum rule:

$$v_i(w) := \begin{cases}
0 & y_i \langle w, x_i \rangle \geq 1 \\
-y_i x_i & \text{otherwise}
\end{cases}$$

- Set $v_w := 2\lambda w + \frac{1}{m} \sum_{i=1}^{m} v_i(w)$. Use instead of $\nabla f(w)$ in GD algorithm.
Stochastic Gradient Descent

- Recall the general learning minimization problem for linear predictors:
 \[
 \text{Minimize}_{w \in B} \quad R(w) + \ell(w, S).
 \]
- In Gradient Descent, \(\nabla f(w^{(t)}) = \nabla R(w^{(t)}) + \nabla \ell(w^{(t)}, S) \) is calculated in every round.
- Calculating \(\nabla \ell(w, S) \) in the GD algorithm can be computationally heavy:
 - Each iteration costs \(O(m) \) calculations
 - Each iteration requires retrieving \(O(m) \) examples into the RAM.
- Solution: **Stochastic Gradient Descent** (SGD).
- Idea: In each iteration estimate \(\nabla \ell(w, S) \).

\[
\ell(w, S) = \frac{1}{m} \sum_{i=1}^{m} \ell(w, (x_i, y_i)) \quad \implies \quad \nabla \ell(w, S) = \frac{1}{m} \sum_{i=1}^{m} \nabla \ell(w, (x_i, y_i))
\]

\[
\implies \quad \nabla \ell(w, S) = \mathbb{E}_{(X, Y) \sim S}[\nabla \ell(w, (X, Y))].
\]

- \((X, Y)\) is a random pair selected uniformly from \(S \).
- SGD: Select a random \(i \in \{1, \ldots, m\} \), and use \(\nabla \ell(w, (x_i, y_i)) \) instead of \(\nabla \ell(w, S) \).
Stochastic Gradient Descent

- SGD: Select a random $i \in \{1, \ldots, m\}$, and use $\nabla \ell(w, (x_i, y_i))$ instead of $\nabla \ell(w, S)$.

Stochastic Gradient Descent

<table>
<thead>
<tr>
<th>input</th>
<th>Number of iterations T, step size $\eta > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>$w \in \mathbb{R}^d$ that (approximately) solves $\text{Minimize}_{w \in \mathbb{R}^d} R(w) + \ell(w, S)$</td>
</tr>
</tbody>
</table>

1: \(w^{(1)} \leftarrow (0, \ldots, 0) \).
2: for \(t = 1 : T \) do
3: \(\text{Draw a random } i \text{ uniformly from } \{1, \ldots, m\} \)
4: \(w^{(t+1)} \leftarrow w^{(t)} - \eta(\nabla R(w^{(t)}) + \nabla \ell(w^{(t)}, (x_i, y_i))) \).
5: end for
6: Return $\bar{w} = \frac{1}{T} \sum_{t=1}^{T} w^{(t)}$.

- As in Gradient Descent, can use sub-gradients instead of gradients.
Stochastic Gradient Descent

Theorem

Let $w^* \in \text{argmin}_{w \in \mathbb{R}^d} f(w)$, where $f(w) = R(w) + \ell(w, S)$. If f is a convex function, and the step size is set to $\eta = \frac{C}{\sqrt{T}}$ ($C > 0$ depends on f), then

$$\mathbb{E}[f(\bar{w})] - f(w^*) \leq O\left(\frac{1}{\sqrt{T}}\right).$$

- The same guarantee as for GD, except “in expectation”
- Hidden constants are also the same
- \implies same #iterations, each iteration is $O(1)$ instead of $O(m)$. 😊
- SGD is used in practice for optimization with Big Data.
- What if f is not convex?
 - SGD can converge to a local minimum.
SGD update step for soft-SVM

- The objective: \(\text{Minimize}_{w \in \mathbb{R}^d} R(w) + \ell(w, S) \)
- The update step:
 \[
 w^{(t+1)} \leftarrow w^{(t)} - \eta (\nabla R(w^{(t)}) + \nabla \ell(w^{(t)}, (x_i, y_i))).
 \]
- Soft-SVM objective:
 \[
 \text{Minimize}_{w \in \mathbb{R}^d} \lambda \|w\|^2 + \ell^h(w, S)
 \]
 \[
 R(w) := \lambda \|w\|^2
 \]
 \[
 \ell(w, (x_i, y_i)) = \max\{0, 1 - y_i \langle w, x_i \rangle\}.
 \]
- We showed: \(\nabla R(w) = 2\lambda w \).
- And can choose \(v_i(w) \in \partial \ell^h(w, (x_i, y_i)) \), where
 \[
 v_i(w) := \begin{cases}
 0 & y_i \langle w, x_i \rangle \geq 1 \\
 -y_i x_i & \text{otherwise}
 \end{cases}
 \]
- Soft SVM SGD update step: for a random \(i \in \{1, \ldots, m\} \),
 \[
 w^{(t+1)} \leftarrow w^{(t)} - \eta (2\lambda w^{(t)} + v_i(w^{(t)})).
 \]
SGD update step for soft-SVM

- Soft SVM SGD update step: for a random $i \in \{1, \ldots, m\}$,

$$w^{(t+1)} \leftarrow w^{(t)} - \eta (2\lambda w^{(t)} + v_i(w^{(t)})),$$

Definition of $v_i(w)$:

$$v_i(w) := \begin{cases} 0 & y_i \langle w, x_i \rangle \geq 1 \\ -y_i x_i & \text{otherwise} \end{cases}$$

- Recall the **Perceptron** update rule:
 For i such that $y_i \langle w, x_i \rangle \leq 0$,

$$w^{(t+1)} \leftarrow w^{(t)} + y_i x_i.$$

- The Perceptron update rule is the soft SVM update rule, with $\eta = 1$ and $\lambda = 0$.

SGD step size

- The optimal step size η depends on the objective function f.
- For some f, it is better to use a variable step size η_t.
- Update step: $w^{(t+1)} \leftarrow w^{(t)} - \eta_t(\nabla R(w^{(t)}) + \nabla \ell(w^{(t)}, (x_i, y_i)))$.
- For soft-SVM, a step size of $\eta_t = \frac{1}{\lambda t}$ gives better guarantees.
An infinite training sample?

- A server on the Internet accepts requests from users.
- Rate of requests: 100,000 per second.
- Learning problem: Identify faulty requests.
- What is the size of our training sample?
 - We can keep updating $w^{(t)}$ forever.
 - When need to predict, use the current \bar{w}.
- Cannot store all training examples.
- Think of this as an infinite training sample $S = ((x_1, y_1), (x_2, y_2), \ldots)$
- Can still apply SGD!
Stochastic Gradient Descent on a stream of examples

1: \(w^{(1)} \leftarrow (0, \ldots, 0) \).
2: \textbf{while} true \textbf{do}
3: \hspace{1em} Get next sample \((x_t, y_t)\)
4: \hspace{1em} \(w^{(t+1)} \leftarrow w^{(t)} - \eta_t(\nabla R(w^{(t)}) + \nabla \ell(w^{(t)}, (x_t, y_t))) \).
5: \textbf{end while}

- Input is constantly fed to the algorithm: can be infinite 😊
- Output: whenever we want, we can use current \(\bar{w}_t = \frac{1}{t} \sum_{i=1}^{t} w^{(i)} \).
- No need to store examples 😊.
Stochastic Gradient Descent on a stream of examples

- Compare to non-stream SGD:
 - In non-stream, \((x_i, y_i)\) is a random example from \(S\).
 - In stream version, \((x_t, y_t)\) is a random example from \(D\).

Theorem

Let \(w^* \in \arg\min_{w \in \mathbb{R}^d} f(w) \), where \(f(w) = R(w) + \ell(w, D) \). If \(f \) is a convex function, and the step size is set to \(\eta_t = O\left(\frac{C}{t}\right) \), then at time \(t \),

\[
\mathbb{E}[f(\bar{w})] - f(w^*) \leq O\left(\frac{1}{\sqrt{t}}\right).
\]

- There are better guarantees for some cases, such as soft-SVM.
- Sample complexity of soft-SVM SGD \(\approx \) sample complexity of standard soft-SVM.
Gradient Descent: Summary

- Many learning algorithms can be written as minimization objectives.
- Some of these objectives are **convex**, including soft-SVM.
- Gradient Descent iteratively moves the linear predictor w in the direction of the negative gradient.
- For convex functions, there is always a **sub-gradient** that can be used, even if the function is not differentiable.
- For convex objectives, Gradient Descent gets close to the optimal solution.
- Stochastic Gradient Descent uses a **single example** in each iteration to **estimate** the gradient.
- SGD is faster, requires less memory, and has similar guarantees to GD.
- SGD can also be used to learn from an infinite training stream.