Lecture 8: Kernels

Introduction to Learning and Analysis of Big Data
Non-linear Classifiers

- SVM tries to find a good linear classifier on the training set.
- What if such a classifier does not exist?
- There might be a good non-linear classifier.
- Can we make this problem linearly separable?
- Change representations: Instead of $x \in \mathbb{R}$, use $\psi(x) = (x, x^2) \in \mathbb{R}^2$.

There is a linear separator in this new representation!
Feature maps

- \(\psi(x) = (x, x^2) \) maps examples from \(\mathbb{R} \) to \(\mathbb{R}^2 \).
- A linear predictor in new space is a **non-linear** predictor in original space.
- Many different **feature mappings** are possible.
- The feature mapping procedure:
 1. Given \(\mathcal{X} \) and some learning task, choose some feature mapping \(\psi : \mathcal{X} \rightarrow \mathcal{F} \).
 - \(\mathcal{F} \) is the **feature space**.
 - \(\mathcal{F} \) is usually \(\mathbb{R}^n \) for some \(n \). (later: \(n \) can also be infinite!)
 2. When given the training set \(S = \{(x_1, y_1), \ldots, (x_m, y_m)\} \), create an image of the set in the feature space:
 \[\hat{S} = \{ (\psi(x_1), y_1), \ldots, (\psi(x_m), y_m) \} \]
 3. Find a good linear predictor \(h_w : \mathcal{F} \rightarrow \mathcal{Y} \) on \(\hat{S} \).
 - \(w \) is a vector in the feature space \(\mathbb{R}^n \).
 4. For new examples \(x \in \mathcal{X} \), predict the label
 \[h_w(\psi(x)) = \text{sign}(\langle w, \psi(x) \rangle). \]
The feature mapping induces a new distribution.

\[\mathcal{D} \] is the original distribution over \(X \times Y \).

\[\mathcal{D}^\psi := \text{the new distribution on } \mathcal{F} \times Y, \text{ induced by } \psi \text{ and } \mathcal{D}. \]

For any \(h \), \(\text{err}(h, \mathcal{D}^\psi) = \text{err}(h \circ \psi, \mathcal{D}). \)

So, a good classifier on \(\mathcal{D}^\psi \) induces a good classifier on \(\mathcal{D} \).

Which feature map should we use?

Similar to selecting a hypothesis class:

- Low approximation error: There is a good predictor for \(\mathcal{D} \) in the mapped feature space.
- Low estimation error: A learning algorithm on \(\mathcal{D}^\psi \) will find a good predictor from the training set.

E.g., if there is a linear classifier with a \textbf{large margin} in the feature space.
General-purpose feature maps

- The feature mapping is selected **before** observing the training sample!
 - Otherwise we allow any function \rightarrow overfitting 😞.
- How to choose a good feature mapping?
 - Domain knowledge
 - A general-purpose feature mapping
- **Polynomial feature maps**: Allow polynomials as separators.
- For $x \in \mathbb{R}$ (one-dimensional), define $\psi : \mathbb{R} \rightarrow \mathbb{R}^{k+1}$
 \[
 \psi(x) = (1, x, x^2, \ldots, x^k).
 \]
- For $x \in \text{reals}$, can now learn any separators that are polynomials of degree $\leq k$:
 \[
 \text{sign} \left(\sum_{i=0}^{k} w_i x^i \right) = \text{sign}(\langle w, \psi(x) \rangle).
 \]
Polynomial feature maps in high dimensions

- For $x \in \mathbb{R}^d$: Allow multivariate polynomials.
 - Multivariate polynomial example:
 $$3 \cdot x(4)^6 \cdot x(16)^4 - 1.17 \cdot x(3)^{19} \cdot x(27)^{11} \cdot x(15) + 4.$$
 - k-degree multivariate polynomial: Each monomial’s powers sum to at most k.
 - Define all integer sequences of length d which sum to at most k:
 $$I^k_d := \left\{(t_1, t_2, \ldots, t_d) \mid \sum_{j=1}^{d} t_j \leq k\right\}$$
 - The set of all multivariate polynomials of degree k:
 $$\left\{ \sum_{z \in I^k_d} w(z) \prod_{i=1}^{d} x(i)^{z(i)} \mid w \in \mathbb{R}^{\left|I^k_d\right|} \right\}.$$
 - w_z are the coefficients of the polynomial.
Polynomial feature maps in high dimensions

- Define a feature mapping that allows all multivariate polynomials up to degree \(k \).
- Every coordinate in \(\psi(x) \) corresponds to one \(z \in I_d^k \).

\[
I_d^k := \{(t_1, t_2, \ldots, t_d) \mid \sum_{j=1}^{d} t_j \leq k\}
\]

Examples:

- \(d = 2, k = 2: \psi(x) = (1, x(1), x(2), x(1)x(2), x(1)^2, x(2)^2). \)
- \(d = 6, k = 7: \)
 - Coordinate \((3, 0, 0, 2, 2, 0)\) in \(\psi(x) \) corresponds to \(x(1)^3 \cdot x(4)^2 \cdot x(5)^2. \)
 - Coordinate \((0, 0, 5, 0, 0, 0)\) corresponds to \(x(3)^5. \)
 - If \(w \) has 7 in coordinate \((0, 0, 5, 0, 1, 0)\) and the rest is zero, the polynomial represented by \(w \) is \(7 \cdot x(3)^5 \cdot x(5). \)
Learning with feature maps

- Feature maps can be in a very high dimension.
 - Polynomial map in degree k: If $\mathcal{X} = \mathbb{R}^d$, number of features in $\mathcal{F} = \mathbb{R}^n$, needs to be $n \approx k^d$.
 - E.g. text documents with the bag-of-words representation: $d = 100,000$ (English words), $k = 10$, n = enormous.

- Two problems:
 - High dimension \implies need a lot of training examples for ERM.
 - Solution: use a large-margin algorithm such as SVM.
 - High dimension \implies heavy computation and memory consumption.
 - Even representing examples and w in memory can be impossible!
 - Solution for computational issues: kernels.
The Kernel Trick

- If ψ maps to a very high dimension, it can be computationally expensive to use the representations $\psi(x_i)$ directly.

- Define $K(x, x') := \langle \psi(x), \psi(x') \rangle$.

- The function K is also called a kernel.

- The Kernel Trick: Many learning algorithms for linear separators can be implemented using only the function $K(x, x')$, and never $\psi(x)$.

- Advantage: $\psi(x)$ can be huge-dimensional or even infinite-dimensional, while $K(x, x')$ might be easy to compute.
The Kernel Trick

- How can the algorithm find and output w when the dimension is huge or infinite?
- We need an alternative representation for w.
- Claim: The hard/soft SVM objectives on ψ can be rewritten as:

$$\text{Minimize } f(\langle w, \psi(x_1) \rangle, \ldots, \langle w, \psi(x_m) \rangle) + R(\|w\|),$$

where $f : \mathbb{R}^m \rightarrow \mathbb{R}$ is a function, and $R : \mathbb{R}_+ \rightarrow \mathbb{R}$ is a monotonic non-decreasing function.

- SVM objectives:
 - Soft SVM:
 $$\text{Minimize } \lambda \|w\|^2 + \ell^h(w, \hat{S}) \equiv$$
 $$\text{Minimize } \lambda \|w\|^2 + \frac{1}{m} \sum_{i=1}^{m} \max\{0, 1 - y_i \langle w, \psi(x_i) \rangle\}.$$
 Define $R(a) := \lambda a^2$ and $f(a_1, \ldots, a_m) = \frac{1}{m} \sum_{i=1}^{m} \max\{0, 1 - y_i a_i\}$.

 - Hard SVM: Minimize $\|w\|^2$ s.t. $\forall i, y_i \langle w, \psi(x_i) \rangle \geq 1$.
 Define $R(a) := a^2$ and
 $$f(a_1, \ldots, a_m) := \begin{cases} 0 & \forall i, y_i a_i \geq 1, \\ \infty & \text{otherwise.} \end{cases}$$

- There are other SVM-like algorithms with the same form.
The representer theorem

- Many popular objectives on ψ can be rewritten as:

\[
\text{Minimize } f(\langle w, \psi(x_1) \rangle, \ldots, \langle w, \psi(x_m) \rangle) + R(\|w\|),
\]

where $f: \mathbb{R}^m \rightarrow \mathbb{R}$ is a function, and
$R: \mathbb{R}_+ \rightarrow \mathbb{R}$ is a monotonic non-decreasing function.

Theorem (The representer theorem)

If ψ maps the data to \mathbb{R}^n for some n, and the objective has the form above, then the optimal solution to the objective can be written as

\[
w = \sum_{i=1}^{m} \alpha(i)\psi(x_i), \quad \text{where } \alpha = (\alpha(1), \ldots, \alpha(m)) \in \mathbb{R}^m.
\]

- This allows kernel-SVM algorithms to represent w using $\alpha(1), \ldots, \alpha(m)$ instead of $w(1), \ldots, w(n)$.
- If $n \gg m$, this is a huge improvement!
- x_i with $\alpha(i) \neq 0$ are the support vectors of w.
The representer theorem

Objective: Minimize \(f(\langle w, \psi(x_1) \rangle, \ldots, \langle w, \psi(x_m) \rangle) + R(\|w\|) \)
where \(f : \mathbb{R}^m \to \mathbb{R} \) is a function, and
\(R : \mathbb{R}_+ \to \mathbb{R} \) is a monotonic non-decreasing function.

Need to show that there is an optimal solution with the form: \(w = \sum_{i=1}^{m} \alpha(i)\psi(x_i) \).

Note: \(w \in \mathbb{R}^n \), the feature space.

Proof.

Let \(w^* \) be the optimal solution to the objective.

\(w^* \in \mathbb{R}^n \) and so are \(\psi(x_i) \), so we can write: \(w^* = \sum_{i=1}^{m} \alpha(i)\psi(x_i) + u \), where \(\forall i \leq m, \langle u, \psi(x_i) \rangle = 0 \).

Let \(w := w^* - u \). Note \(w = \sum_{i=1}^{m} \alpha(i)\psi(x_i) \).

Then \(\|w^*\|^2 = \|w\|^2 + \|u\|^2 + 2\langle w, u \rangle \).

\(\langle w, u \rangle = \langle \sum_{i=1}^{m} \alpha(i)\psi(x_i), u \rangle = 0 \). So \(\|w^*\|^2 = \|w\|^2 + \|u\|^2 \).

Therefore \(\|w\| \leq \|w^*\| \), so \(R(\|w\|) \leq R(\|w^*\|) \).

For all \(i \), \(\langle w, \psi(x_i) \rangle = \langle w^* - u, \psi(x_i) \rangle = \langle w^*, \psi(x_i) \rangle \).

Therefore, \(f(\langle w, \psi(x_1) \rangle, \ldots, \langle w, \psi(x_m) \rangle) = f(\langle w^*, \psi(x_1) \rangle, \ldots, \langle w^*, \psi(x_m) \rangle) \).

So \(w \) is also an optimal solution, and it has the wanted representation.
Rewriting the objective

- **Objective:** Minimize \(f(\langle w, \psi(x_1) \rangle, \ldots, \langle w, \psi(x_m) \rangle) + R(\|w\|) \)

- **Solution** has the form \(w = \sum_{i=1}^{m} \alpha(i)\psi(x_i) \) for some vector \(\alpha \in \mathbb{R}^m \).

- To avoid representing \(w \) directly, rewrite everything using \(\alpha \) instead:
 \[
 \langle w, \psi(x_i) \rangle = \left\langle \sum_{j=1}^{m} \alpha(j)\psi(x_j), \psi(x_i) \right\rangle = \sum_{j=1}^{m} \alpha(j) \langle \psi(x_j), \psi(x_i) \rangle
 \]
 \[
 \|w\|^2 = \left\langle \sum_{j=1}^{m} \alpha(j)\psi(x_j), \sum_{j=1}^{m} \alpha(j)\psi(x_j) \right\rangle = \sum_{i,j=1}^{m} \alpha(i) \alpha(j) \langle \psi(x_i), \psi(x_j) \rangle
 \]

- Recall \(K(x, x') := \langle \psi(x), \psi(x') \rangle \).

- So, we can rewrite the objective as:
 \[
 \text{Minimize } f \left(\sum_{j=1}^{m} \alpha(j)K(x_j, x_1), \ldots, \sum_{j=1}^{m} \alpha(j)K(x_j, x_m) \right) + R \left(\sum_{i,j=1}^{m} \alpha(i) \alpha(j)K(x_i, x_j) \right).
 \]
Solving the objective using the kernel function

- **Objective:** Minimize $f(\langle w, \psi(x_1) \rangle, \ldots, \langle w, \psi(x_m) \rangle) + R(\| w \|)$

- Rewriting the objective using the kernel function:

 $$
 \text{Minimize } f \left(\sum_{j=1}^{m} \alpha(j) K(x_j, x_1), \ldots, \sum_{j=1}^{m} \alpha(j) K(x_j, x_m) \right) + R \left(\sqrt{\sum_{i,j=1}^{m} \alpha(i) \alpha(j) K(x_i, x_j)} \right).
 $$

- To solve this objective, the algorithm needs **only the values of** $K(x_i, x_j)$ **for all** $i, j \leq m$.

- The algorithm never needs to see the examples x_i or to calculate ψ.

- The kernel values form an $m \times m$ matrix called the **Gram matrix**.

- The gram matrix is G, where $G_{i,j} = K(x_i, x_j)$.
Example: Kernel soft-SVM

- The soft-SVM objective for the feature mapping ψ:

$$\text{Minimize } \lambda \|w\|^2 + \frac{1}{m} \sum_{i=1}^{m} \xi_i$$

s.t. $\forall i, y_i \langle w, \psi(x_i) \rangle \geq 1 - \xi_i$, and $\xi_i \geq 0$.

- How is it implemented using a kernel?
- Recall: $\langle w, \psi(x_i) \rangle = \sum_{j=1}^{m} \alpha(j) K(x_j, x_i)$, $\|w\|^2 = \sum_{i,j=1}^{m} \alpha(i) \alpha(j) K(x_i, x_j)$.

Kernel Soft-SVM

input The training sample Gram matrix $G \in \mathbb{R}^{m \times m}$, the training labels y_1, \ldots, y_m, parameter $\lambda > 0$.

output $\alpha \in \mathbb{R}^m$

1: Find w that solves the following problem:

$$\text{Minimize } \lambda \alpha^T G \alpha + \frac{1}{m} \sum_{i=1}^{m} \xi_i$$

s.t. $\forall i, y_i \langle \alpha, G[i] \rangle \geq 1 - \xi_i$, and $\xi_i \geq 0$.

($G[i]$ is row i of G)

2: Return α.
The output of a kernel algorithm

- The output of a kernel algorithm is $\alpha \in \mathbb{R}^m$ instead of w.
- How do we use this to predict new labels?
- Solution is $w = \sum_{i=1}^{m} \alpha(i)\psi(x_i)$.
- For any example x,

$$h_w(\psi(x)) = \text{sign}(\langle w, \psi(x) \rangle) = \text{sign} \left(\sum_{j=1}^{m} \alpha(j)K(x_j, x) \right).$$

- Calculate $K(x_1, x), \ldots, K(x_m, x)$, and use α to get the label $h_w(\psi(x))$.

•
Calculating the kernel function

- Kernel algorithms never need to represent x or w.
- But to run them we need to provide $K(x_i, x_j)$.
- Also, to predict using α we need $K(x_i, x)$.
- A simple option to calculate K: use $K(x, x') = \langle \psi(x), \psi(x') \rangle$.

Problem: ψ could be huge dimensional, or even infinite dimensional!

Solution: There are several useful functions K (kernels) which can be calculated without representing ψ.
Polynomial kernels

The k-degree polynomial kernel is

$$K(x, x') = (1 + \langle x, x' \rangle)^k.$$

- **Claim**: This is a kernel function.
- In other words: There exists a ψ such that $K(x, x') = \langle \psi(x), \psi(x') \rangle$.

Proof (first part)

- An example vector is $x = (x(1), \ldots, x(d))$. Denote $x(0) = 1$.
- Then $1 + \langle x, x' \rangle = \sum_{j=0}^{d} x(j)x'(j)$.
- The polynomial kernel is:

$$K(x, x') = (1 + \langle x, x' \rangle)^k = \left(\sum_{i=0}^{d} x(j)x'(j) \right)^k$$

- The set of possible k-tuples is: $\{0, \ldots, d\}^k$.

$$K(x, x') = \sum_{z \in \{0, \ldots, d\}^k} \prod_{i=1}^{k} x(z(i)) \cdot x'(z(i)) = \sum_{z \in \{0, \ldots, d\}^k} \left(\prod_{i=1}^{k} x(z(i)) \right) \left(\prod_{i=1}^{k} x'(z(i)) \right).$$
Polynomial kernels

The \(k \)-degree polynomial kernel is

\[
K(x, x') = (1 + \langle x, x' \rangle)^k.
\]

Claim: This is a kernel function.

In other words: There exists a \(\psi \) such that \(K(x, x') = \langle \psi(x), \psi(x') \rangle \).

Proof (Second part).

The polynomial kernel is:

\[
K(x, x') = \sum_{z \in \{0, \ldots, d\}^k} \left(\prod_{i=1}^k x(z(i)) \right) \left(\prod_{i=1}^k x'(z(i)) \right).
\]

Define \(\psi : \mathbb{R}^d \to \mathbb{R}^{(d+1)^k} \):

- Map the \(k \)-tuples \(z \in \{0, \ldots, d\}^k \) to coordinates in \(\mathbb{R}^{(d+1)^k} \).
- Coordinate \(z \) of \(\psi(x) \) is \(\prod_{i=1}^k x(z(i)) \).

Then

\[
K(x, x') = \langle \psi(x), \psi(x') \rangle.
\]
Polynomial kernels

The k-degree polynomial kernel is

$$K(x, x') = (1 + \langle x, x' \rangle)^k.$$

- We showed that this is a kernel function.
- The coordinates in the feature map are $\prod_{i=1}^{k} x(z(i))$ for all $z \in \{0, \ldots, d\}^k$.
- Every monomial of degree up to k has a coordinate in the feature map.
- For degrees smaller than k, use z with several 0's.
- This representation causes many duplicate coordinates.
- E.g. $(1, 2, 1)$ and $(2, 1, 1)$ give the same value $x(1)^2 \cdot x(2)$.
- The identical coordinates can be “collapsed” to a single coordinate (it will have a coefficient which is the number of duplicates).
Polynomial Kernels

- The polynomial kernel $K(x, x') = (1 + \langle x, x' \rangle)^k$:

- Any **multivariate polynomial** in x of degree up to k is a **linear function** in the feature map that matches K.

- So, kernel SVM with the polynomial kernel looks for a predictor on \mathcal{X} which is defined by a polynomial.

- Without the **kernel trick**, need to calculate ψ, which would cost $O(d^k)$. 😞

- Using the kernel trick, only calculate $K(x, x')$, which costs $O(d)$. 😊
The Gaussian kernel with a parameter $\sigma > 0$ is $K(x, x') = e^{-\frac{\|x-x'\|^2}{2\sigma}}$.

- **Claim**: This is a kernel function.
- **Proof** for $\mathcal{X} = \mathbb{R}$ (one dimensional examples):
 - Define $\psi(x)$ such that the n'th coordinate of $\psi(x)$ is: $\frac{1}{\sqrt{n!}} e^{-\frac{x^2}{2\sigma}} \cdot (x/\sqrt{\sigma})^n$.
 - **Allow an infinite dimension**: all coordinates in $\{0, 1, 2, \ldots\}$.
 - A “nice” infinite-dimensional inner-product space is called a **Hilbert space**.
 - Then
 $$\langle \psi(x), \psi(x') \rangle = \sum_{n=0}^{\infty} \left(\frac{1}{\sqrt{n!}} e^{-\frac{x^2}{2\sigma}} \cdot (x/\sqrt{\sigma})^n \right) \cdot \left(\frac{1}{\sqrt{n!}} e^{-\frac{x'^2}{2\sigma}} \cdot (x'/\sqrt{\sigma})^n \right)$$
 $$= e^{-\frac{x^2}{2\sigma}} e^{-\frac{x'^2}{2\sigma}} \sum_{n=0}^{\infty} \frac{(xx')^n}{\sigma^n n!}$$
 $$= e^{-\frac{x^2-x'^2}{2\sigma}} \cdot xx'/\sigma = e^{-(x-x')^2/2\sigma} = e^{-\|x-x'\|^2/2\sigma}.$$
 - If $\mathcal{X} = \mathbb{R}^d$: $\psi(x)$ has a coordinate for every sequence z of integers in $\{1, \ldots, d\}$ of any length n.
 - The coordinate z (for z of size n) is $\frac{1}{\sqrt{n!}} e^{-\frac{\|x\|^2}{2\sigma}} \cdot \prod_{i=1}^{n} x(z(i))/\sigma$.
Gaussian kernels

The Gaussian kernel with a parameter $\sigma > 0$ is $K(x, x') = e^{-\frac{\|x-x'\|^2}{2\sigma}}$.

- The coordinate z is $\frac{1}{\sqrt{n!}} e^{-\frac{\|x\|^2}{2\sigma}} \cdot \prod_{i=1}^{n} x(z(i))/\sigma$.
- So, every multivariate polynomial (of any degree!) can be used as a linear predictor with this kernel.
- What does the predictor look like in the original space?

$$h_w(\psi(x)) = \text{sign}(\langle w, \psi(x) \rangle) = \text{sign} \left(\sum_{j=1}^{m} \alpha(j) K(x_j, x) \right) = \text{sign} \left(\sum_{j=1}^{m} \alpha(j) e^{-\frac{\|x-x_j\|^2}{2\sigma}} \right).$$

- Predict the label of x based on the distance of x from each of the x_j with $\alpha(j) \neq 0$.
- If x is close enough to x_j, sign of $\alpha(j)$ determines label of x.
- $\sigma \approx$ “radius of influence” of each x_j.
- Can illustrate the predictor as “circles” around some of the x_j’s.

- A trade-off in the size of σ:
 - Small σ: Can have a very fine-tuned boundary. Larger estimation error
 - Large σ: Function is more smooth. Larger approximation error
- σ is usually selected using cross validation.
- Gaussian kernel is also called Radial Basis Function (RBF) kernel.
Using kernels to encode a hypothesis class

- If we have prior knowledge on the problem, we might know which hypotheses make sense.
- Use a kernel to convert hypotheses to linear predictors.

Example: Learn to identify executable files that contain a virus

- Viruses are identified by a signature: a substring in the executable file.
- \(\mathcal{X} \) is the set of all possible files of length at most \(n \): strings in \(\Sigma^{\leq n} \), where \(\Sigma \) is the alphabet.
- We would like to find the most predictive substring in the file:
 - For each substring \(\nu \), \(h_\nu(x) \) is positive iff \(\nu \) is a substring of \(x \).
 - The hypothesis class: \(\mathcal{H} = \{ h_\nu \mid \nu \in \Sigma^{\leq k} \} \).
- How to make \(\mathcal{H} \) into a set of linear predictors?
Using kernels to encode a hypothesis class

- $h_v(x)$ is positive iff v is a substring of x, $\mathcal{H} = \{ h_v \mid v \in \Sigma^*, |v| \leq k \}$.

- The feature space $\mathcal{F} = \mathbb{R}^d$:
 - A feature v for every possible string $|v| \leq k$.
 - $\psi(x)(v) = \mathbb{I}[v \text{ is a substring of } x]$.
 - An extra feature 0 that is always 1 (for bias): $\psi(x)(0) = 1$.

- $w_v \in \mathbb{R}^d$: A vector with $w_v(v) = 2$, $w_v(0) = -1$, other coordinates are zero.

- $h_v(x) = \text{sign}(\langle w_v, \psi(x) \rangle)$.

- d (number of features) is exponential in k: $d = \Theta(|\Sigma|^k)$.

- But we have
 \[
 K(x, x') = 1 + \sum_{v \in \Sigma^*, |v| \leq k} \mathbb{I}[v \text{ is a substring of } x] \cdot \mathbb{I}[v \text{ is a substring of } x']
 = 1 + \text{number of common substrings of } x, x' \text{ of length } \leq k.
 \]

- $K(x, x')$ can be calculated in $O(n^2k^2)$.
Using kernels to encode a hypothesis class

- We saw that this kernel can be efficiently calculated.
- Computational complexity: Good.
- What about the sample complexity?
 - Sample complexity of SVM is $O(\min(d, 1/\gamma^2_*))$.
 - Dimension is huge: $d = \Theta(|\Sigma|^k)$.
 - Let’s check the margin.
 - Suppose there is a single substring v that separates the input.

 \[w = (-1, 0, \ldots, 0, 2, 0, \ldots, 0) \]

 \[
 \gamma_D(w) := "\text{the largest value such that } \mathbb{P}_{(X,Y) \sim D} \left[\frac{1}{R_D} \frac{|\langle w, \psi(X) \rangle|}{\|w\|} \geq \gamma_D(w) \right] = 1"
 \]

 \[
 R_D := "\text{the smallest value such that } \mathbb{P}[\|\psi(X)\| \leq R_D] = 1" \leq \sqrt{1 + nk}.
 \]

 \[
 \forall x, |\langle w, x \rangle| = 1, \|w\| = \sqrt{5} \implies \gamma_* \geq \gamma_D(w) \geq \frac{1}{\sqrt{5nk}}.
 \]

- Conclusion: The sample complexity is $O\left(\frac{1}{\gamma_*^2}\right) \leq O(nk)$.
- Note: the kernel-SVM uses a richer class than the original \mathcal{H}.

Kernels: Summary

- Feature maps allow using SVM to learn non-linear classifiers.
- Kernel functions can be used to represent large and infinite dimensional feature maps.
- The kernel trick: run SVM without representing ψ directly.
- If the kernel can be calculated efficiently, this can improve computational complexity.
- The sample complexity will depend mainly on the margin.
- There are general-purpose kernels, such as
 - Polynomial kernel
 - Gaussian kernel
- Special-purpose kernels can encode a specific hypothesis class.
- This can work even if the examples are not vectors at all.