Lecture 19: Generative models, maximum likelihood, EM

Introduction to Learning and Analysis of Big Data
Generative models

- Can learning/knowing the distribution help?
- Yes! Recall Naive Bayes
- Assume conditional independence

\[P[X = x | Y = y] = \prod_{i=1}^{n} P[X_i = x_i | Y = y] \]

- **symmetric case**: \(p_i = P[X_i = Y] \) is probability of \(i \)th expert being correct, doesn’t depend on “truth” (true label)
- Bayes-optimal classifier
 - in general,
 \[h^*(x) = \arg\max_{y \in Y} P(X, Y) \sim \mathcal{D} [Y = y | X = x] \]
 - for symmetric Naive Bayes, \(h^*(x) = \text{sign} \left(\sum_{i=0}^{n} \log \frac{p_i}{1 - p_i} x_i \right) \)
 - \(2^n \) vs. \(n + 1 \) parameters — an exponential gap
Generative models

- Generative models: assume the distribution has some known form
- Some parameters of the distributions are unknown
- Goal is to find these parameters.
- Applications:
 - Better classification (e.g. Naive Bayes)
 - Inference: sometimes the parameters tell us something useful about the data generating process
 - Example: mixture of Gaussians — clustering (or soft clustering)
 - later: Hidden Markov Models — part of speech tagging
Generative models, example

- Distribution D_θ on \mathcal{X} determined by some parameter(s) $\theta \in \mathbb{R}^n$
- Get a sample $S \sim D_\theta^m$.
- Goal: recover θ (parametric density estimation)
- Example (one parameter): $\theta \in [0, 1]$, $D_\theta = \text{Bernoulli}(\theta)$ over $\{0, 1\}$.
- Get $S = (x_1, \ldots, x_m)$, define the estimator $\hat{\theta} = \frac{1}{m} \sum_{i=1}^m x_i$.
- Is this a good estimator?
- Properties of estimators:
 - unbiased: For any fixed m, $\mathbb{E}_{S \sim D_\theta^m}[\hat{\theta}] = \theta$.
 - consistent: $\hat{\theta} \rightarrow \theta$ as m grows. For any ϵ, $\lim_{m \to \infty} P[|\hat{\theta} - \theta| \leq \epsilon] = 0$.
- Is our $\hat{\theta}$ unbiased? Yes, $\mathbb{E}_{S \sim D_\theta^m}[\hat{\theta}] = \theta$.
- Is our $\hat{\theta}$ consistent?
- Yes, by Hoeffding’s inequality, $\mathbb{P}[|\hat{\theta} - \theta| \geq \epsilon] \leq \exp(-2m\epsilon^2)$.
- Next: Derive this estimator from the Maximum likelihood principle.
The Maximum likelihood estimator

- A family of possible parameter values $\Theta \subseteq \mathbb{R}^k$.
- A family of distributions $\{D_\theta \mid \theta \in \Theta\}$.
- Examples:
 - Bernoulli: $\Theta = [0, 1]$, $D_\theta = \text{Bernoulli}(\theta)$
 - Gaussian: $\Theta = \mathbb{R} \times \mathbb{R}_+$, $D_\theta = \mathcal{N}(\theta(1), \theta(2))$.
- The true $\theta^* \in \Theta$ is unknown
- Want to estimate θ^* from $S = (x_1, \ldots, x_m) \sim D_{\theta^*}^m$.
- For each $\theta \in \Theta$, what is the probability that the observed S would have been generated by D_θ?

$$\mathbb{P}_{S' \sim D_{\theta^*}^m}[S' = S] = \prod_{i=1}^m \mathbb{P}_{X \sim D_\theta}[X = x_i].$$

- For convenience, use the log of that: the Log Likelihood

$$L(S; \theta) = \log \mathbb{P}_{S' \sim D_{\theta}^m}[S' = S] = \sum_{i=1}^m \log(\mathbb{P}_{X \sim D_\theta}[X = x_i]).$$
The Maximum likelihood estimator

- **The Log Likelihood** of θ after observing S:

$$L(S; \theta) := \log P_{S' \sim D_\theta} [S' = S] = \sum_{i=1}^{m} \log(\mathbb{P}_{X \sim D_\theta} [X = x_i]).$$

- **The Maximum likelihood estimator**: Select the θ that maximizes the log likelihood.

$$\hat{\theta} := \arg\max_{\theta} L(S; \theta)$$

- Intuition: select the parameter $\hat{\theta}$ that would make the observed S the least surprising.
- We hope that with a high probability $\hat{\theta} \approx \theta^*$.
- Note: $\hat{\theta}$ is a function of S.
- $\hat{\theta}$ is **unbiased** if for all θ^*, $\mathbb{E}_{S \sim D_{\theta^*}} [\hat{\theta}] = \theta^*$.

Maximum likelihood estimator for Bernoulli distributions

- $\Theta = [0, 1]$, $D_{\theta} = \text{Bernoulli}(\theta)$
- Observe $S = (x_1, \ldots, x_m)$.
- $\mathbb{P}_{S' \sim D_{\theta}^m}[S' = S] = \prod_{i=1}^{m} \theta^{x_i} (1 - \theta)^{1-x_i} = \theta^{\sum_i x_i} (1 - \theta)^{\sum_i (1-x_i)}$

The log-likelihood:
\[L(S; \theta) = \log \mathbb{P}_{S' \sim D_{\theta}^m}[S' = S] = \log(\theta) \sum_i x_i + \log(1 - \theta) \sum_i (1 - x_i). \]

The maximum likelihood estimator:
\[\hat{\theta} := \arg \max_{\theta} L(S; \theta) \]

Differentiate and set to zero:
\[\frac{d}{d\theta} L(S; \theta) = \frac{\sum_i x_i}{\theta} - \frac{\sum_i (1 - x_i)}{1 - \theta} \]

Solving $\frac{d}{d\theta} L(S; \theta) = 0$ yields $\hat{\theta} = \frac{1}{m} \sum_{i=1}^{m} x_i$.
Maximum Likelihood for continuous densities

- Consider continuous distributions \mathcal{D}_θ. E.g., Gaussian.
- **Density**: A function $f : \mathbb{R}^d \rightarrow \mathbb{R}_+$ such that $\int_{\mathbb{R}^d} f(x) dx = 1$.
- A density f defines a distribution \mathcal{D}:

$$\mathbb{P}_{X \sim \mathcal{D}}[X \in A] = \int_A f(x) dx.$$

- Parametric family of densities: $\{f_\theta : \theta \in \Theta\}$, f_θ determines \mathcal{D}_θ.
- In this case $\mathbb{P}_{S' \sim \mathcal{D}_\theta}[S' = S] = 0$ always!
- How to do Maximum Likelihood?
- Redefine Log-Likelihood using densities: for $S = (x_1, \ldots, x_m)$,

$$L(S; \theta) := \sum_{i=1}^m \log f_\theta(x_i).$$
Example: Maximum Likelihood for Gaussian distributions

- \(\theta := (\mu, \sigma), \mathcal{D}_\theta = \mathcal{N}(\mu, \sigma^2). \)
- Parametric density:
 \[
 f_\theta(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right)
 \]
- Log-likelihood: for \(S \sim \mathcal{N}(\mu, \sigma^2)^m \)
 \[
 L(S; \theta) = \sum_{i=1}^{m} \log f_\theta(x_i) = -m \log(\sigma \sqrt{2\pi}) - \frac{1}{2\sigma^2} \sum_{i=1}^{m} (x_i - \mu)^2
 \]
- To find \(\hat{\theta} \), differentiate by \(\sigma \) and \(\mu \) and set \(\nabla L = 0. \)
 \[
 \frac{\partial}{\partial \mu} L(S; \theta) = \frac{1}{\sigma^2} \sum_{i} (x_i - \mu) = 0
 \]
 \[
 \frac{\partial}{\partial \sigma} L(S; \theta) = \frac{1}{\sigma^3} \sum_{i} (x_i - \mu)^2 - \frac{m}{\sigma} = 0
 \]
 \(\hat{\mu} = \frac{1}{m} \sum_{i} x_i \) (unbiased), \(\hat{\sigma} = \sqrt{\frac{1}{m} \sum_{i} (x_i - \hat{\mu})^2} \) (biased)
Consistency of the Maximum Likelihood Estimator

- How does the Maximum Likelihood Estimator (MLE) behave as we increase the sample size?
- Denote \(S_m \sim D^{m}_{\theta^{*}} \)
- Log-likelihood (for densities): \(L(S_m; \theta) = \sum_{i=1}^{m} \log f_{\theta}(x_i) \)
- \(\hat{\theta}_m = \arg\max_{\theta} L(S_m; \theta) \)
- Want **consistency**: \(\hat{\theta}_m \rightarrow \theta^{*} \) when \(m \rightarrow \infty \).
- Note: \(\hat{\theta}_m \) is a random variable! (A function of \(S_m \))
- What is the **distribution** of \(\hat{\theta}_m \)?
- Under some regularity conditions, \(\hat{\theta}_m \rightarrow \mathcal{N}(\theta^{*}, \sigma_{MLE}^{2}/m) \) for \(m \rightarrow \infty \).
- \(\sigma_{MLE} \) measures the sensitivity of \(f_{\theta}(x) \) to small changes in \(\theta \).
- This property is called the **asymptotic normality of the MLE**
- Next goal: compute \(\hat{\theta} \) efficiently.
Computing the MLE

- We saw examples where \(\hat{\theta} \) had a closed-form solution.
- This is not always the case for other families of distributions.
- In general, \(\hat{\theta}_m = \arg\max_{\theta} L(S_m; \theta) \) requires solving a maximization problem.
- Can we do Gradient descent (ascent)?
- \(L(S; \cdot) \) might have many local maxima.
- Computing MLE for general parametric distributions is NP-hard.
- Even finding a local maximum is non-trivial in many cases.
- Can do gradient descent (ascent) to a local maximum.
- Better idea: Expectation-Maximization (EM)
 - In many MLE cases it is faster, easier to implement, and finds better solutions.
- We will see EM through the problem of mixture distributions.
Mixture distributions

- Define $X \sim \mathcal{D}(p, \mu_0, \mu_1)$ as a mixture of two Gaussians:

 $X \sim (1 - p) \mathcal{N}(\mu_0, 1) + p \mathcal{N}(\mu_1, 1)$.

- To generate $X \sim \mathcal{D}(p, \mu_0, \mu_1)$, flip a p-biased coin to decide which of 2 Gaussians to draw X from.

- X has the following density:

 $$f_{p, \mu_0, \mu_1}(x) = (1 - p) \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-\mu_0)^2}{2}} + p \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-\mu_1)^2}{2}}$$

- Note: **mixture** of Gaussians is different from **sum** of Gaussians! Latter is Gaussian and former is not. [board]

- Log-likelihood of sample $S \sim \mathcal{D}(p, \mu_0, \mu_1)^m$, where $\theta := (p, \mu_0, \mu_1)$:

 $$L(S; p, \mu_0, \mu_1) = \sum_{i=1}^{m} \log \left(\frac{1 - p}{\sqrt{2\pi}} e^{-\frac{(x_i-\mu_0)^2}{2}} + \frac{p}{\sqrt{2\pi}} e^{-\frac{(x_i-\mu_1)^2}{2}} \right).$$
Mixture distributions and Maximum Likelihood

- Log-likelihood of sample $S \sim \mathcal{D}(p, \mu_0, \mu_1)^m$, where $\theta := (p, \mu_0, \mu_1)$:

$$L(S; p, \mu_0, \mu_1) = \sum_{i=1}^{m} \log \left(\frac{1 - p}{\sqrt{2\pi}} e^{-\frac{(x_i - \mu_0)^2}{2}} + \frac{p}{\sqrt{2\pi}} e^{-\frac{(x_i - \mu_1)^2}{2}} \right).$$

- Problem: log of sum does not decompose nicely!
- “Log of sum is hard; sum of logs is easy”
- Characteristic feature of mixture distributions: do not decompose.
- $\nabla L = 0$ is a transcendental equation, no analytic solution
- Idea: do alternate maximization using **Latent variables**
Latent variables

- Mixture of two Gaussians $\mathcal{D}(p, \mu_0, \mu_1) = (1 - p)\mathcal{N}(\mu_0, 1) + p\mathcal{N}(\mu_1, 1)$
- To generate $X \sim \mathcal{D}(p, \mu_0, \mu_1)$:
 - draw $Z \sim \text{Bernoulli}(p)$, then draw $X \sim \mathcal{N}(\mu_Z, 1)$.
- Density of $\mathcal{D}(p, \mu_0, \mu_1)$ is an expectation over Z:
 $$f_{p,\mu_0,\mu_1}(x) = (1 - p)\frac{1}{\sqrt{2\pi}} e^{-(x-\mu_0)^2/2} + p\frac{1}{\sqrt{2\pi}} e^{-(x-\mu_1)^2/2}$$
 $$= \mathbb{E}_{Z \sim \text{Bernoulli}(p)} \left[\frac{1}{\sqrt{2\pi}} e^{-(x-\mu_Z)^2/2} \right]$$

- Log-likelihood of sample $S \sim \mathcal{D}(p, \mu_0, \mu_1)^m$:
 $$L(S; p, \mu_0, \mu_1) = \sum_{i=1}^{m} \log \mathbb{E}_{Z_i \sim \text{Bernoulli}(p)} \left[\frac{1}{\sqrt{2\pi}} e^{-(x_i-\mu_{Z_i})^2/2} \right]$$

- The $Z = (Z_1, \ldots, Z_m)$ are latent variables.
- Idea: Given Z, maximizing for θ is easy; given θ, expectation over Z is easy.
Latent variables and augmented log-likelihood

- Log-likelihood of sample $S \sim \mathcal{D}(p, \mu_0, \mu_1)^m$:

$$L(S; p, \mu_0, \mu_1) = \sum_{i=1}^{m} \log \mathbb{E}_{Z_i \sim \text{Ber}(p)} \left[\frac{1}{\sqrt{2\pi}} e^{-\left(x_i - \mu Z_i\right)^2/2} \right]$$

- Augment S with the latent variables $Z = (Z_1, \ldots, Z_m)$:
 - Imagine that we observed $S = ((x_1, z_1), \ldots, (x_m, z_m))$
 - Then we would know for each x_i which Gaussian it “came from”.

- Joint density of X, Z:

$$g_{p, \mu_0, \mu_1}(x, z) = p^z (1 - p)^{1-z} \frac{1}{\sqrt{2\pi}} e^{-\left(x - \mu z\right)^2/2}$$

- Augmented likelihood:

$$L(S, Z; p, \mu_0, \mu_1) = \sum_{i=1}^{m} \log \left(p^{z_i} (1 - p)^{1-z_i} \frac{1}{\sqrt{2\pi}} e^{-\left(x_i - \mu z_i\right)^2/2} \right)$$
Augmented likelihood

- Joint density of observed variable X and latent variable Z:

$$g_{p,\mu_0,\mu_1}(x, z) = p^z(1 - p)^{1-z} \frac{1}{\sqrt{2\pi}} e^{-(x - \mu_z)^2/2}$$

- Simplify augmented likelihood:

$$L(S, Z; p, \mu_0, \mu_1) = \sum_{i=1}^{m} \log \left(\frac{p^z_i(1 - p)^{1-z_i}}{\sqrt{2\pi}} e^{-(x_i - \mu_{z_i})^2/2} \right)$$

$$= \log(p)\sum_i z_i + \log(1 - p)\sum_i (1 - z_i) - \frac{1}{2} \sum_{i=1}^{m} (x_i - \mu_{z_i})^2 - m \log(\sqrt{2\pi})$$

- Augmented likelihood is “sum of logs” \implies easy to maximize 😊

- $\hat{p} = \frac{1}{m} \sum_{i=1}^{m} z_i$; $\hat{\mu}_1 = \frac{\sum_{i=1}^{m} z_i x_i}{\sum_{i=1}^{m} z_i}$, $\hat{\mu}_0 = \frac{\sum_{i=1}^{m} (1 - z_i) x_i}{\sum_{i=1}^{m} (1 - z_i)}$

- But we need to know the z_i’s to do that!
The Expectation-Maximization (EM) trick

- Augmented likelihood is easy to maximize.

\[L(S, Z; p, \mu_0, \mu_1) = \log(p) \sum z_i + \log(1-p) \sum (1 - z_i) - \frac{1}{2} \sum (x_i - \mu z_i)^2 - m \log(\sqrt{2\pi}) \]

- Problem: don’t know the \(z_i \) — they’re latent!
- Solution: estimate the \(z_i \) by the probability that \(x_i \) is from Gaussian “1”.
- These probabilities are called pseudo-counts. They are fractional
- The probability that \(X \) is from Gaussian 1:

\[
P[Z = 1|X = x] = \frac{P[Z = 1, X = x]}{P[X = x]} = \frac{p \frac{1}{\sqrt{2\pi}} e^{-(x - \mu_1)^2/2}}{(1 - p) \frac{1}{\sqrt{2\pi}} e^{-(x - \mu_0)^2/2} + p \frac{1}{\sqrt{2\pi}} e^{-(x - \mu_1)^2/2}}.
\]

- Problem: computing \(P[Z_i = 1|X = x_i] \) requires knowing \((p, \mu_0, \mu_1) \)!
- Solution: alternate maximization; start with a random guess
Expectation-Maximization (EM) for mixture of 2 Gaussians

EM for mixture of 2 Gaussians

input \((x_1, \ldots, x_m) \in \mathbb{R}^m\)

output \((p, \mu_0, \mu_1) \in [0, 1] \times \mathbb{R} \times \mathbb{R}\)

1: \(t \leftarrow 0, \text{ select } (p^{(t)}, \mu_0^{(t)}, \mu_1^{(t)}) \text{ randomly} \)
2: \(\text{repeat} \)
3: \(\text{E-step: pseudo-counts} \)

\[
q_i^{(t)} := \frac{p^{(t)} \frac{1}{\sqrt{2\pi}} e^{-(x_i - \mu_1^{(t)})^2 / 2}}{(1 - p^{(t)}) \frac{1}{\sqrt{2\pi}} e^{-(x_i - \mu_0^{(t)})^2 / 2} + p^{(t)} \frac{1}{\sqrt{2\pi}} e^{-(x_i - \mu_1^{(t)})^2 / 2}}, \quad i \leq m
\]

4: \(\text{M-step: maximize augmented likelihood} \)

\[
p^{(t+1)} := \frac{1}{m} \sum_{i=1}^{m} q_i^{(t)}; \quad \mu_1^{(t+1)} := \frac{\sum_{i=1}^{m} q_i^{(t)} x_i}{\sum_{i=1}^{m} q_i^{(t)}}; \quad \mu_0^{(t+1)} := \frac{\sum_{i=1}^{m} (1 - q_i^{(t)}) x_i}{\sum_{i=1}^{m} (1 - q_i^{(t)})}
\]

5: \(t := t + 1; \)
6: **until** convergence (no change in \(L(S; p^{(t)}, \mu_0^{(t)}, \mu_1^{(t)})\))
EM algorithm in general

- In general: Family of densities $\mathcal{F} = \{f_\theta\}$ (not necessarily Gaussian.)
- X is a mixture of distributions from \mathcal{F}.
- (Can have mixture of more than 2; here we show 2 for simplicity.)
- The density of X: $f_{p,\mu_0,\mu_1}(x) = (1 - p)f_{\mu_0}(x) + pf_{\mu_1}(x) = \mathbb{E}_{Z \sim \text{Ber}(p)}[f_{\mu_Z}(x)]$.
- Augmented likelihood given z_i:

 $$L(S, Z; p, \mu_0, \mu_1) = \sum_{i=1}^{m} \log \left(p^{z_i} (1 - p)^{1 - z_i} f_{\mu_{z_i}}(x_i) \right).$$

- Define expected log-likelihood: given pseudo-counts $Q = (q_1, \ldots, q_m) \in [0, 1]^m$,

 $$F(S, Q; p, \mu_0, \mu_1) := \mathbb{E}_{Z_1 \sim \text{Ber}(q_1), \ldots, Z_m \sim \text{Ber}(q_m)}[L(S, Z; p, \mu_0, \mu_1)]$$

- **ASSUMPTION**: can efficiently compute

 $$(\hat{p}, \hat{\mu}_0, \hat{\mu}_1) = \arg\max_{p, \mu_0, \mu_1} F(S, Q; p, \mu_0, \mu_1)$$

- Note that

 $$F(S, Q; p, \mu_0, \mu_1) = \sum_{i=1}^{m} \left[(1 - q_i) \log((1 - p)f_{\mu_0}(x_i)) + q_i \log(pf_{\mu_1}(x_i)) \right]$$

 $$= \left[\sum_{i=1}^{m} (1 - q_i) \log(1 - p) + q_i \log(p) + (1 - q_i)L(S; 0, \mu_0, \mu_1) + q_i L(S; 1, \mu_0, \mu_1) \right].$$
EM algorithm for a general mixture:

- Initialize random \((p, \mu_0, \mu_1)\)
- E-step:

\[
q_i = \Pr_{p, \mu_0, \mu_1}[Z_i = 1|X = x_i] = \frac{pf_{\mu_1}(x_i)}{(1 - p)f_{\mu_0}(x_i) + pf_{\mu_1}(x_i)}
\]

- M-step:

\[
(p', \mu_{0}', \mu_{1}') = \arg\max_{p, \mu_0, \mu_1} F(S, Q; p, \mu_0, \mu_1)
\]

- Repeat E-M steps until convergence.

Does the EM algorithm converge?

What does it converge to?
EM convergence analysis — preliminaries

- Discrete distribution $P = (p_1, \ldots, p_k)$, $p_i \geq 0$, $\sum_{i=1}^{k} p_i = 1$
- **entropy**: measures amount of “randomness”/”uncertainty”:

 $$H(P) = -\sum_{i=1}^{k} p_i \log(p_i) = \mathbb{E}_{i \sim P} [\log(1/p_i)].$$

- For a binary distribution $P = (1 - p, p)$,

 $$H(p) = -p \log(p) - (1 - p) \log(1 - p).$$

- The entropy is smallest ($= 0$) for distributions concentrated on a single value.
- The entropy is largest ($= \log k$) for uniform distributions.
- Recall **convexity**: $f : \mathbb{R} \rightarrow \mathbb{R}$ is convex if for all $x, y \in \mathbb{R}$, $\lambda \in [0, 1]$

 $$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y).$$

- **Jensen’s inequality**: If X is a real random variable and $f : \mathbb{R} \rightarrow \mathbb{R}$ is convex, then

 $$f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)].$$

- For concave f (i.e., $-f$ is convex, such as $\log(\cdot)$), the inequality is reversed.
EM as alternate maximization

- Mixture distribution with parameters $\theta = (p, \mu_0, \mu_1)$
- Observe $X \sim f_\theta(x) = (1-p)f_0(x) + pf_1(x)$, latent $Z \sim \text{Ber}(p)$;
- Augmented log-likelihood:

$$L(S, Z; \theta) = \sum_{i=1}^m \log P_{\theta}[X = x_i, Z = z_i] = \sum_{i=1}^m \log \left[p^{z_i}(1-p)^{1-z_i} f_{z_i}(x_i) \right]$$

- Expected log-likelihood

$$F(S, Q; \theta) = \mathbb{E}_{Z \sim \text{Ber}(q_1) \times \cdots \times \text{Ber}(q_m)}[L(S, Z; \theta)]$$

- One step of EM (start with Q, θ):
 - E-step: $q'_i \leftarrow P_{\theta}[Z = 1|X = x_i] = \frac{pf_1(x_i)}{(1-p)f_0(x_i) + pf_1(x_i)}$; Set $Q' = \{q'_i\}$
 - M-step: $\theta' \leftarrow \text{argmax}_\theta F(S, Q'; \theta)$

- Define

$$G(Q, \theta) = F(S, Q; \theta) + \sum_{i=1}^m H(q_i)$$

- Claim: EM is performing alternate maximization on G.
 - E-step performs $Q' \leftarrow \text{argmax}_{Q \in [0,1]^m} G(Q, \theta)$ [to prove]
 - M-step performs $\theta' \leftarrow \text{argmax}_\theta G(Q', \theta)$ [obvious]
Proof of claim

- Claim: E-step, \(q'_i = \mathbb{P}_\theta[Z_i = 1|X = x_i] \) for \(i \leq m \), is equivalent to
 \[Q' \leftarrow \text{argmax}_Q \, G(Q, \theta), \]
 where (denote \(q_{i1} := q_i, \, q_{i0} = 1 - q_i \))

\[
G(Q, \theta) = F(S, Q; \theta) + \sum_{i=1}^{m} H(q_i) = \sum_{i=1}^{m} \sum_{j=0}^{1} q_{ij} \log \mathbb{P}_\theta[Z = z_i, X = x_i] - \sum_{i=1}^{m} \sum_{j=0}^{1} q_{ij} \log q_{ij}
\]

- Proof:
- We will show that for any \(Q \), \(G(Q, \theta) \leq L(S; \theta) \).
- Then we will show that \(G(Q', \theta) = L(S; \theta) \).

\[
G(Q, \theta) = \sum_{i=1}^{m} \left(\sum_{j=0}^{1} q_{ij} \log \frac{\mathbb{P}_\theta[X = x_i, Z = j]}{q_{ij}} \right)
\]

[\text{Jensen}] \leq \sum_{i=1}^{m} \log \left(\sum_{j=0}^{1} q_{ij} \frac{\mathbb{P}_\theta[X = x_i, Z = j]}{q_{ij}} \right)

\[
= \sum_{i=1}^{m} \log \left(\sum_{j=0}^{1} \mathbb{P}_\theta[X = x_i, Z = j] \right)
= \sum_{i=1}^{m} \log \mathbb{P}_\theta[X = x_i] = L(S; \theta).
\]

- Continue proof next slide...
Proof of claim, cont

- Claim: E-step, \(q_{ij} = P_{\theta}[Z_i = j | X = x_i] \) for \(i \leq m \), is equivalent to \(Q' = \text{argmax}_Q G(Q, \theta) \), where

\[
G(Q, \theta) = F(S, Q; \theta) + \sum_{i=1}^{m} H(q_{i}) = \sum_{i=1}^{m} \sum_{j=0}^{1} q_{ij} \log P_{\theta}[Z = z_i, X = x_i] - \sum_{i=1}^{m} \sum_{j=0}^{1} q_{ij} \log q_{ij}.
\]

Proof:

- Prev. slide: showed \(G(Q, \theta) \leq L(S; \theta) \)
- now put \(q'_{ij} = P_{\theta}[Z = j | X = x_i] \).

\[
G(Q', \theta) = \sum_{i=1}^{m} \left(\sum_{j=0}^{1} P_{\theta}[Z = j | X = x_i] \log \frac{P_{\theta}[X = x_i, Z = j]}{P_{\theta}[Z = j | X = x_i]} \right)
\]

\[
= \sum_{i=1}^{m} \sum_{j=0}^{1} P_{\theta}[Z = j | X = x_i] \log P_{\theta}[X = x_i]
\]

\[
= \sum_{i=1}^{m} \log P_{\theta}[X = x_i] \sum_{j=0}^{1} P_{\theta}[Z = j | X = x_i]
\]

\[
= \sum_{i=1}^{m} \log P_{\theta}[X = x_i] = L(S; \theta).
\]

- conclude: \(G(Q', \theta) = L(S; \theta) \) for \(Q' \) chosen in E-step, so \(Q' \) maximizes \(G(Q, \theta) \).
EM convergence: conclusion

- \(G(Q, \theta) = \sum_{i=1}^{m} \sum_{j=0}^{1} [q_{ij} \log \mathbb{P}_\theta[Z = z_i, X = x_i] - q_{ij} \log q_{ij}] \)

Just proved: EM is performing alternate maximization
 - E-step: \(Q^{(t+1)} \leftarrow \arg\max_{Q \in [0,1]^m} G(Q^{(t)}, \theta^{(t)}) \)
 - M-step: \(\theta^{(t+1)} \leftarrow \arg\max_\theta G(Q^{(t+1)}, \theta) \)
 - also, we saw that for every round \(t \), \(G(Q^{(t)}, \theta^{(t)}) = L(S; \theta^{(t)}) \).

Theorem: \(L(S; \theta^{(t+1)}) \geq L(S; \theta^{(t)}) \)

Proof:

\[
L(S; \theta^{(t)}) = G(Q^{(t)}, \theta^{(t)}) \leq G(Q^{(t+1)}, \theta^{(t)}) \leq G(Q^{(t+1)}, \theta^{(t+1)}) = L(S; \theta^{(t+1)})
\]

Conclude: the EM update never decreases the likelihood, converges to local maximum (note: can take infinite number of steps; also assumed likelihood function is **bounded**)

What about convergence of the **value of the parameter** \(\theta^{(t)} \)?

Pathological examples exist where \(\theta^{(t)} \) “cycles” (does not converge)

Sufficient for convergence of \(\theta^{(t)} \): unique maximizer at M-step.
EM vs gradient ascent

- EM convergence can be slow 😞
- But if differentiating is hard, gradient ascent will be slower.
- Unlike gradient ascent, doesn’t require choosing step size! 😊
- Also, constraints on parameters (such as $p \in [0, 1]$) automatically enforced in EM 😊
- For mixture problems, EM almost universally preferred to gradient methods 😊
Choosing the number of mixture components k

- Generative model: $X \sim \sum_{i=1}^{k} p_i N(\mu_i, \sigma^2)$
- How to choose k?
- Maximum likelihood $L(S; \theta)$ is monotonically increasing in k (why?)
- does that mean that $k = m$ is optimal?
- No! It will badly overfit.
- How to avoid overfitting?
- Cross-validation!
- Optimal k^* will maximize likelihood on held-out data.
Summary

- When data $X \sim D_\theta$ is modeled by a **parametric family** of distributions
- **Maximum likelihood** technique used to learn parameters θ
- Log-likelihood: $L(S; \theta) = \sum_{i=1}^{m} \log P_\theta[X = x_i]$
- Easy cases: can find $\text{argmax}_\theta L(S; \theta)$ analytically
- Hard cases: use EM
 - Start with random guess for θ
 - E-step: posterior probabilities Q of mixture latent variables
 - M-step: maximize expected (w.r.t. Q) augmented log-likelihood
 - Repeat until convergence
- EM guarantees monotonic convergence to local maximum (assuming bounded likelihood function).
- In general, maximizing likelihood is NP-hard.
- EM is preferred to gradient-based methods for learning density mixtures.