Perceptual Organization (I)

Introduction to Computational and Biological Vision

CS 202-1-5261

Computer Science Department, BGU

Ohad Ben-Shahar
Edge aggregation case study

From local edges to global boundaries (curves)
Edge aggregation - a case study

The Hough transform for line detection
Edge aggregation - a case study

The Hough transform for line detection

Given:
List of edge points (arbitrary order)

Compute:
Set of straight lines in the edge map.

Basic idea:
1. Let each edge point vote for all lines it may belong to.
2. Lines with lots of votes “win”
Edge aggregation - a case study

The Hough transform for line detection

\[y = ax + b \]

\[b = -xa + y \]
Edge aggregation - a case study

The Hough transform for line detection

\[y = ax + b \]
Edge aggregation - a case study

The Hough transform for line detection

\[\rho = x \cos \theta + y \sin \theta \]
Edge aggregation - a case study

The Hough transform for line detection

Image space

Parameter space
Edge aggregation - a case study

The Hough transform for line detection
Edge aggregation - a case study

The Hough transform for line detection
possible improvement

Image space

Parameter space
Edge aggregation - a case study

The Hough transform for line detection
possible improvement
Edge aggregation - a case study

Hough transform and circles

\[
(C_x, C_y) = (x, y) + (R \sin \theta, -R \cos \theta)
\]

\[
C_x = x + R \sin \theta
\]

\[
C_y = y - R \cos \theta
\]
Edge aggregation - a case study

Hough transform and circles

Image space

Parameter space
Edge aggregation - a case study

General Hough transform algorithm

1. Determine a parametric model for your desired geometrical structure
 \[G(p_1, p_2, \ldots, p_n; x, y) = 0 \]

2. Quantize the parameter space appropriately into bins.

3. Initialize each bin to zero.

4. For each point \((x, y)\) in the image space, vote (e.g., add 1) to all parameter bins that satisfy the model equation.

5. Maxima in bin array correspond to instances of model in the image.
Edge aggregation - a case study

Hough transform and noisy structures

Can we use the Hough transform to detect noisy structures?
Edge aggregation - a case study

Hough transform and general structures

Can we use the Hough transform to detect arbitrary curves?

What parametric model can describe a general curve?
Edge aggregation - a case study

Edge tracing and ordered lists of edges

Absolute chain code
Edge aggregation - a case study

Edge tracing and ordered lists of edges

Absolute chain code

1,1,2,1,0,7,7,6,6,5,5,5,4,4,4,4,4,3,3,2,3,3,2,1,1,0,0,7,7,7
Edge aggregation - a case study

Edge tracing and ordered lists of edges

Relative chain code
Edge aggregation - a case study

Edge tracing and ordered lists of edges

1,2,3,1,1,1,2,1,2,2,1,2,2,1,2,2,2,1,2,1,3,.,2,1,1,2,1,2,1,2,2

Relative chain code
Edge aggregation - a case study

Polyline approximation

Given:
- Edge list

Find:
- Polygonal approximation that passes no further than distance d from any point
Edge aggregation - a case study

Polyline approximation

Algorithm:

1. Fit a line between the first and last edge points
2. Split list at point of maximum error
3. Apply recursively until threshold (error < d)
4. Merge neighboring segments if error remains within range
Edge aggregation - a case study

Polyline approximation

Algorithm:
1. Fit a line between the first and last edge points
2. Split list at point of maximum error
3. Apply recursively until threshold (error < d)
4. Merge neighboring segments if error remains within range
Edge aggregation - a case study

Polyline approximation

Algorithm:

1. Fit a line between the first and last edge points
2. Split list at point of maximum error
3. Apply recursively until threshold (error < d)
4. Merge neighboring segments if error remains within range
Edge aggregation - a case study

Polyline approximation

Algorithm:
1. Fit a line between the first and last edge points
2. Split list at point of maximum error
3. Apply recursively until threshold (error < d)
4. Merge neighboring segments if error remains within range
Edge aggregation - a case study

Contour approximation via curve fitting

Given:
List of edge points that belong to the same contour

Compute:
Best fit model of a a predefined class G

$$\arg\min_{\bar{p}} E[(x_i, y_i) - G(\bar{p}; t)]$$
Edge aggregation - a case study

Total regression (fitting) of straight lines

Line representation: \(x \sin \theta - y \cos \theta + \rho = 0 \)

Fit error: \(E(\rho, \theta) = \sum_i \left(x_i \sin \theta - y_i \cos \theta + \rho \right)^2 \)

Normal equations:
\[
\frac{\partial E(\rho, \theta)}{\partial \rho} = 0 \\
\frac{\partial E(\rho, \theta)}{\partial \theta} = 0
\]

Solution:
\[
\tan \theta = \frac{a}{b + c} \\
\rho = \bar{y} \cos \theta - \bar{x} \sin \theta
\]

\[
\bar{x} = \frac{1}{n} \sum_i x_i \\
\bar{y} = \frac{1}{n} \sum_i y_i \\
a = 2 \sum_i x'_i y'_i \\
b = \sum_i x'^2_i - \sum_i y'^2_i \\
c = \sqrt{a^2 + b^2}
\]