Trading Fences with RMRs and Separating Memory Models
(Extended Abstract)

Hagit Atiya
Dept. of Computer Science
Technion
hagit@cs.technion.ac.il

Danny Hendler
Dept. of Computer Science
Ben-Gurion University
hendlerd@cs.bgu.ac.il

Philipp Woelfel
Dept. of Computer Science
University of Calgary
woelfel@cpsc.ucalgary.ca

ABSTRACT
Out-of-order execution of instructions is a common optimization technique for multicore and multiprocessors, which is governed by the memory model of the architecture. Relatively strong memory models, like TSO (supported by x86 and AMD), only allow reads to bypass earlier writes, while other models, like RMO (supported by ARM, POWER and Alpha) and PSO (supported by older SPARC), also allow the reordering of writes to different locations. These reorderings can be prevented by the use of costly fence instructions.

In this paper we prove that when writes can be reordered (e.g., in RMO or even PSO), there is a tradeoff between the number of fences, \(f\), and the number of remote memory references (RMRs), \(r\), for a large class of objects, including locks, counters and queues:

\[f \left(\frac{n}{r} \right) + 1 \in \Omega(n) \]

For example, when one of these objects is implemented using a constant number of fences (e.g., in the Bakery lock), the tradeoff implies that a linear number of RMRs is required (as indeed is the case with the Bakery lock). This gives a complexity separation between the memory models that allow write reordering and those that prohibit it, since a recent paper shows that a lock can be implemented in the stronger TSO memory model, with a small, constant number of fences, and a logarithmic number of RMRs.

The lower bound uses an information theoretic argument, relating the encoding of \(n!\) distinguishable executions to the number of fences and RMRs performed in the course of these executions.

We also present a family of algorithms matching the lower bound, which explicitly enforce the required ordering, and hence, are correct even with weak memory models. This shows that the tradeoff is tight, and indicates that for many important objects, fences are mostly needed for avoiding reordering of writes.

\(^* \)The first author is supported by a grant from Yad-Hanadiv Foundation; the first and second authors are supported by the Israel Science Foundation (grants 1227/10 and 1749/14); the third author is partially supported by the Canada Research Chairs program, as well as the Discover Grants and Discovery Accelerator Supplements programs of the Natural Sciences and Engineering Research Council of Canada (NSERC).

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—Concurrent programming; F.1.2 [Computation By Abstract Devices]: Modes of Computation—Parallelism and concurrency

General Terms
Algorithms, Architecture

Keywords
Shared memory; fences; total store ordering

1. INTRODUCTION

Modern multicore and multiprocessors optimize code so as to execute certain instructions out of program order. The memory model supported by the architecture dictates which operation pairs can be reordered; for example, the total store order (TSO) model [13,18] permits to perform a read from address \(a\) before an earlier write to address \(b \neq a\). This reordering is also allowed in the weaker partial store ordering (PSO) model [18], which permits writes to be reordered. An even weaker model, called relaxed memory ordering (RMO) [18], allows to reorder any pair of instructions. (See Table 1 in [1] and [19,20].)

To ensure the correctness of a concurrent algorithm, it is possible to prohibit the reordering of memory instructions, by inserting a fence instruction (also called a barrier) between them. A fence incurs significant overhead, but there are cases when it is unavoidable since it has been shown [7] that many concurrent objects, including locks (mutual exclusion), counters and queues, must ensure that there is a read after a write to a different location, unless strong atomic operations such as, e.g., compare-and-swap (CAS) are used (and these also incur significant overhead).

It is possible to acquire a lock using a constant number of fences. For example, in Lamport’s well-known Bakery algorithm [17] (Algorithm 1), the acquisition of the lock (as well as its release) requires only a constant number of fences. However, acquiring the Bakery lock also requires reading a linear number of different memory locations, even when the process runs alone without interruption from other processes. Even worse, these reads are classified as remote, since they cannot be served from the process’ local cache or memory segment. Counting the remote memory references (RMRs), namely, reads and writes that cannot be served from the local cache or memory segment of the process, is considered a good way to compare local-spin concurrent algorithms (see e.g., [2,10,14,16,23]).

In this paper we prove that when writes may be reordered, a linear number of RMRs is needed when the number of fences is constant, showing that the Bakery lock is asymptotically optimal.
That is, one cannot win on both the fence and RMR complexities of read/write algorithms for many fundamental objects, including locks, counters and queues. This is a special case of a general result we prove: if f and r denote the numbers of fences respectively RMRs performed per passage (one acquisition and release of the lock), then in the worst case

$$f \cdot \left(1 + \log \frac{r}{f}\right) \in \Omega(\log n)$$

Hence, to get an optimal, logarithmic number of RMRs per passage the number of fences per passage must also be logarithmic, matching the complexity of the tournament-tree lock [23].

When writes are performed in program order, there is a lock in which each passage incurs a constant number of fences and a logarithmic number of RMRs [8] (which is optimal [9]). This gives an exponential separation between models without reordering of writes (like TSO) and weaker models in which write reordering is allowed (like PSO, Power and RMO).

Our lower bound holds for the two standard theoretical models for measuring RMR complexity: the Distributed Shared Memory (DSM) and the Cache Coherent (CC) model. In the DSM model, shared memory is partitioned into segments, and each segment is local to one process. Only accesses to non-local memory segments incur RMRs. In the CC model, processes are equipped with caches, and RMRs correspond to cache-misses. Contrary to, e.g., the tight RMR lower bound in [9], our lower bound proof is for a shared memory model combining the power of the DSM and the CC models. Specifically, processes are equipped with caches, and an access of a memory location by a process incurs an RMR only if the location is not local to that process and it is a cache miss. Thus, our tradeoff holds for modern NUMA architectures with caches.

The tradeoff is tight and we present a family of algorithms that trade the number of fences with the number of RMRs: for every $f, 1 \leq f \leq \log n$, a passage incurs $O(f)$ fences and $O(f^{1/f})$ RMRs. These algorithms are correct in any memory model, since they explicitly order reads and writes with fences.

To prove the tradeoff, we construct an execution E_π for each permutation π of $[n] := \{0, \ldots, n-1\}$, and we encode these executions so that the code length of an execution is a function of both the number of fences and the number of RMRs incurred in it.

In every execution E_π, processes access the shared object once (for example, to increment a counter or acquire the lock) according to their order in π. Each execution E_π is encoded by a sequence of commands, some of which receive integer parameters, so that, roughly, the number of commands in the encoding is linear in the total number of fences performed in the execution, denoted $\beta(E_\pi)$, while the total sum of parameter values is linear in the number of RMRs, denoted $\rho(E_\pi)$. As we show, the length of the encoding is bounded from above by $\beta(E_\pi)(\log \frac{\rho(E_\pi)}{\beta(E_\pi)}) + 1$.

In E_π, processes are unaware of processes that appear after them in the permutation π. As we prove, this ensures that π can be reconstructed from E_π. Since an execution code uniquely determines an execution (and therefore a permutation over $[n]$), there are $n!$ different execution codes. Therefore, $\beta(E_\pi)(\log \frac{\rho(E_\pi)}{\beta(E_\pi)}) + 1$, for at least one of these executions, is asymptotically at least logarithmic in $n!$, that is, in $\Omega(n \log n)$.

Our proof significantly extends the technique used to prove the $\Omega(n \log n)$ lower bound on the RMR complexity of mutual exclusion [9][11]. That proof also goes by encoding executions corresponding to different permutations in a way that allows to uniquely reconstruct them, but is only able to capture the RMR complexity. In contrast, the codes constructed by our proof capture both fence and RMR complexities: A sequence of w write operations issued by a process p may be delayed by the system and committed to memory only when a fence is performed. When writes can be reordered, these writes can be committed in any order, and our encoding technique exploits this freedom to encode a batch of writes in its entirety by using a constant number of commands, instead of encoding each write separately. These commands encode the exact manner in which the writes in a batch should be interleaved within the steps of preceding processes. Some of these commands receive a parameter that represents the number of write steps to which they apply. Thus, the values of these parameters may be encoded by using $O(\log w)$ bits. Each fence, on the other hand, is encoded using a constant number of bits.

Very informally, we capture the tradeoff between fences and RMRs as follows. The number of code-bits representing fences changes linearly with the number of fences ($\beta(E_\pi)$). However, as the number of fences decreases, the average size of write batches ($\frac{\rho(E_\pi)}{\beta(E_\pi)}$) increases. If the number of code bits has to remain in $\Theta(n \log n)$, a linear decrease in the number of fences implies a linear increase in $\log \frac{\rho(E_\pi)}{\beta(E_\pi)}$, which is an exponential increase in the number of RMRs.

2. Model

We consider an asynchronous shared memory system where n processes with IDs $0, \ldots, n-1$ communicate by accessing shared registers from a totally ordered set R with values from a domain $D \supseteq \{\bot\}$. For simplicity but without loss of generality let $R = D - \{\bot\} = \mathbb{N}$. Initially, each register has value \bot.

Each process p is equipped with a write-buffer [21] that stores an (initially empty) unordered set $WB_p \subseteq R \times D$ (without duplicates). Processes execute an algorithm A in which they perform the operations read(R), write(R, x) or fence(), where $(R, x) \in R \times D$. A write(R, x) operation by process p writes (R, x) to p’s write-buffer, replacing WB_p with $WB_p - \{(R, x') \mid x' \in D\} \cup \{(R, x)\}$. If p executes read(R) at a time when there is a write(R, x) in WB_p, then the read is served from the write-buffer and the value x is returned; if no such pair is in WB_p, then the value of register R is returned, and thus the read is served from shared memory. At any point in time, if WB_p contains some write (R, x), then that write may be committed to shared memory (by the system), meaning that (R, x) is removed from WB_p, and the value of R changes to x. A fence() operation does not affect the shared memory or write-buffers directly; it only guarantees that the system does not allow the calling process to take any further steps before its write-buffer is empty.

To facilitate our proofs, we assume w.l.o.g. that there is a special return() operation that takes one return value, a non-negative
integer. Each process has to execute return() exactly once, and after executing return(x) the process enters a final state with value x.

An execution is a (possibly infinite) sequence of steps executed by processes. Each step is either a read, write, fence, or return step that happens when the process executes a read(), write(), fence(), or return() operation, respectively; or it is a commit of a write from p’s write-buffer (to shared memory). Unlike other step types, commit steps are not instructions in a process’ program and their position in the execution is controlled by the system; for notational convenience, we regard them as process steps.

A process p participates in an execution E, if E contains at least one step by p. If only processes p₁,...,pₖ participate in execution E, then we say E is an execution by p₁,...,pₖ. An execution is complete, if it contains a return step by each participating process. For any execution E and any set P ⊆ {p} of processes, E|P denotes the execution obtained from E by removing all steps by processes in {p} − P.

A system configuration is the state of the entire system, i.e., it comprises the state of each process, each register, and each write-buffer. The initial system configuration is denoted C_{init}. For system configuration C, nextₚ(C) denotes the operation that process p ∈ {n} is poised to execute; we write nextₚ(C) = ∅, if in C process p is in a final state. Process p’s write-buffer in system configuration C is denoted WBₚ(C), and the value stored in register R ∈ R is denoted R(C). An execution E is permissible by algorithm A starting from system configuration C if E may result as processes execute algorithm A starting from C. If E is permissible by A starting from the initial system configuration, C_{init}, then we say it is A-permissible.

A system configuration C is reachable, if there exists an A-permissible execution E, such that C is reached from C_{init} by executing E.

A schedule is a (possibly infinite) sequence σ = (s₁, s₂,...), where each element sᵢ in the schedule is a pair in {n} × (R ∪ {⊥}). A schedule σ, together with an algorithm A and a system configuration C, uniquely determines an execution Execₐₐ(C, σ) as follows: If σ is the empty schedule, then Execₐₐₐ(C; σ) is the empty execution. Now suppose σ contains exactly one element (p, R) ∈ {n} × (R ∪ {⊥}); if p is in a final state in C, i.e., nextₚ(C) = ∅, then again, Execₐₐₐₐₐ(C; (p, R)) is the empty execution. Now suppose nextₚ(C) ̸= ∅, then Execₐₐₐₐₐₐₐ(C; (p, R)) consists of a single step s determined as follows:

- If there is a value x ∈ D such that (R, x) ∈ WBₚ(C), then s is the step that commits (R, x) (clearly this is only possible if R ̸= ⊥).
- Otherwise, if nextₚ(C) is a fence() operation and WBₚ(C) ̸= ∅, then s is a commit step in which write (R, x) ∈ WBₚ(C) gets committed, where R is the register with the smallest identifier for which there is a write in WBₚ(C). (Recall that R is totally ordered.)
- In all other cases, s is a step that corresponds to operation nextₚ(C), i.e., s is a read, write, fence, or return step, but not a commit step.

Each step in an execution E will be defined as either local or remote. Our definition is such that every remote step in E corresponds to an RMR in both the DSM and the CC models (although not necessarily vice versa). Therefore, our lower bound applies for both the CC and DSM models. The set R of all registers is partitioned into n memory segments, R₀,...,Rₙ₋₁, each of infinite size. In the following we assume (w.l.o.g.) for presentation simplicity that in any execution, all arguments of write() operations are distinct. A read(R) step by process p is local, if either R ∈ Rₚ or the read operation returns value x and p has previously executed write(R, x) or read the value x from R; all other read() steps are remote. All write() and fence() steps are local. A commit of a write (R, x) is local, if either R ∈ Rₚ or p previously committed a write (. , R) to shared memory, and since then no other process committed a write (. , R); all other commits are remote. A process accesses process q’s local memory, if p reads a register R ∈ Rₚ, and that read is served from shared memory, or when it commits a write to R ∈ Rₚ.

Algorithm A satisfies weak obstruction-freedom (see [3]), if for every process p and every reachable configuration C such that every process other than p is either in its initial or in its final state in C, p enters a final state in Execₐₐ¢
Figure 1: Schematic view of algorithm GT; Bakery\[n^{3/3}\] denotes the Bakery lock for \(n^{1/3}\) processes.

Recall that we prove the tradeoff by constructing an execution \(E_\pi\) for each permutation \(\pi = (p_0, p_1, \ldots, p_{n-1})\), and encoding these executions so that the code length of an execution is a function of the number of fences and the number of RMRs incurred in it.

We start with an informal description of how, given a permutation \(\pi = (p_0, p_1, \ldots, p_{n-1})\), we construct and encode a unique execution. Our construction ensures that no process is aware of the participation of later processes (that follow it in \(\pi\)) in the execution, that is, it maintains the property that process \(p_i\) is unaware whether a later process in the permutation, \(p_j, j > i\), participates in \(E_\pi\).

For a permutation \(\pi = (p_0, p_1, \ldots, p_{n-1})\) over \([n]\), let \([\pi]_k\) denote the sequence \(\{p_0, \ldots, p_k\}\) of length \(k\).

Definition 4.1. Algorithm \(A\) is ordering, if for any permutation \(\pi = (p_0, p_1, \ldots, p_{n-1})\) over \([n]\), any \(k \in [n]\), and any complete \(A\)-permissible execution \(E\) by \(\{p_0, \ldots, p_k\}\), if \(E|\{p_0, \ldots, p_k\}\) is \(A\)-permissible and each process \(p_i, \pi, \pi, \ldots, p_k\) returns value \(v_i\) in \(E\), then \(p_k\) returns value \(v_k\) in \(E\).

The following algorithm, Count, is a simple ordering algorithm that uses a single lock: Upon entering the critical section, each process reads a shared register \(C\) (initialized to 0), adds one to it, and writes back the result, followed by a fence; the process then exits the critical section and returns the value read from \(C\). The sequence of values returned by processes (and the associated sequence of process identifiers) is a permutation, and it is not hard to see that Count is ordering. Clearly, the numbers of fences and RMRs in Count are asymptotically the same as those of a single passage through the lock it uses. More details appear in the full version of the paper, which also shows that other processes—queue, counter and fetch-and-increment—may be similarly used for constructing ordering algorithms. Thus, our tradeoff holds for implementations of these objects.

We capture the tradeoff between the total number of fences and RMRs in an execution, in which each process accesses the object exactly once (e.g., each process acquires and releases the lock once). Recall that \(\rho(E), \beta(E)\), respectively, denote the total number of RMRs and fences performed by the processes in such an execution \(E\). The next theorem states our main result.

Theorem 4.2. If \(A\) is an ordering algorithm, then it has an execution \(E\), in which every process executes the algorithm once, and \(\beta(E)(\log(\rho(E)/\beta(E)) + 1) \in \Omega(n \log n)\).

Dividing by \(n\) implies that at least for one process in \(E\), the tradeoff between the number of fences, \(f\), and number of RMRs, \(r\), satisfies \(f(\log r/f) + 1) \in \Omega(\log n)\).

Formally, this means that the execution \(E\) projected on \(\{p_0, \ldots, p_{n-1}\}\) is also an execution of the algorithm.

<table>
<thead>
<tr>
<th>command</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>proceed</td>
<td>take steps until there is a fence with non-empty write buffer</td>
</tr>
<tr>
<td>commit</td>
<td>commit all write steps</td>
</tr>
<tr>
<td>wait-hidden-commit(k)</td>
<td>wait until k write steps are hidden by earlier processes</td>
</tr>
<tr>
<td>wait-read-finish(k)</td>
<td>wait for k early processes that read a write to complete</td>
</tr>
<tr>
<td>wait-local-finish(k)</td>
<td>wait for k early processes that access local memory to complete</td>
</tr>
</tbody>
</table>

Table 1: Commands used in the encoding and their meaning.
In more detail, this is how we interleave the steps of process p_{i+1} into execution E_i^* and construct E_{i+1}^*:

- Before process p_{i+1} is allowed to take its first step, it has to wait for all earlier processes that access its local memory segment in E_i^* to terminate. This is encoded by the `wait-local-finish` command, whose parameter is the number of processes for whose completion p_{i+1} must wait.

- As long as process p_{i+1} performs read, write, or fence instructions that have no impact (i.e., fences issued when the write-buffer of p_{i+1} is empty), then p_{i+1} may proceed taking steps. This is encoded by the parameterless `proceed` command. (To avoid infinite executions, a process is not scheduled to take such steps if it is in a state where it would not enter a final state when running by itself.)

- Otherwise, p_{i+1}’s next step is a fence instruction and its write-buffer is not empty. This is the only case in which writes by p_{i+1} are committed to shared memory. In this case, the batch of write steps taken by p_{i+1} since its preceding fence (or since it began its execution) is collectively encoded by using a constant number of commands according to the following principles:
 - Whenever possible, writes about to be committed by p_{i+1} are scheduled so they will be hidden by writes committed in E_i^* by earlier processes before they are read. Upon encoding a batch of writes to be committed by p_{i+1}, the number of writes that may be overwitten is encoded as a parameter of the `wait-hidden-commit` command. These writes will be committed before any other writes in p_{i+1}’s write-buffer and will be interleaved in the execution so that they are hidden.
 - If there are no writes that may be hidden in p_{i+1}’s write-buffer, but there are writes to registers from which an earlier process reads in E_i^*, then the number of such early processes is a parameter of the `wait-read-finish` command. Process p_{i+1} will commit these writes only after these early processes terminate their execution.
 - Otherwise, if p_{i+1}’s write-buffer is not empty, then the writes in it should be committed. This is encoded by the parameterless `commit` command.
 - Otherwise, p_{i+1} can take its next step. This is encoded by the parameterless `proceed` command.

5. PROOF OF THE LOWER BOUND

Fix an ordering algorithm A and assume w.l.o.g. that every process executes a `fence()` operation just before it enters a final state, i.e., before its `return()` operation. (Since the proof fixes algorithm A, in the following we write permissible instead of permissible by A, and omit A from the notation defined earlier.)

Somewhat counter-intuitively, we first describe the decoding of executions (Section 5.1). The reason is that the encoding, which is done inductively (in Section 5.2), relies on interpreting the decoding of earlier parts of the encoding.

5.1 Codes: Commands and Their Decoding

We now describe codes and how they are decoded, that is, how they are used to construct an execution. The codes use the following commands: `commit`, `proceed`, `wait-hidden-commit(k)`, `wait-local-finish(k, S)`, and `wait-read-finish(k, S)`, where $k \in \mathbb{N}$ and $S \subseteq \{n\}$ are parameters.

Each process p has a command stack St_p, which stores a sequence of commands. Let $top(St_p)$ denote the element on top of stack St_p. An extended configuration is an $(n+1)$-tuple $\Gamma = (C; St_0, \ldots, St_{n-1})$, where C is a system configuration and St_0, \ldots, St_{n-1} are command stacks. If $\vec{S} = (St_1, \ldots, St_n)$ is a command stack sequence and $q \in \{n\}$, then $\vec{S}|_q$ is process q’s stack St_q.

We now show how an extended configuration $\Gamma = (C; St_0, \ldots, St_{n-1})$ uniquely determines an execution $E(\Gamma)$, which is permissible starting from system configuration C. From Γ, we determine a zero- or one-step schedule, σ, and a new sequence $(St'_0, \ldots, St'_{n-1})$ of command stacks. $E(\Gamma)$ is defined recursively. If σ is a zero-element schedule, then $E(\Gamma)$ is the empty execution. Otherwise, σ is a one-element schedule (representing a step by some process i); let C' be the system configuration reached at the end of execution $E(\Gamma; \sigma)$, then:

$$E(\Gamma) = \text{Exec}(C; \sigma) \circ E(C'; St'_0, \ldots, St'_{n-1}),$$

where $St'_i, i \in \{n\}$, is a new command stack obtained by popping elements from and/or pushing elements to St_i. Our recursive definition does not guarantee that $E(\Gamma)$ is finite for every Γ, i.e., the recursion may not terminate; however, the codes Γ we will construct later will only yield finite executions $E(\Gamma)$. To completely define $E(\Gamma)$, it suffices to state for each extended configuration Γ whether $E(\Gamma)$ is the empty execution, and otherwise to define σ and St'_0, \ldots, St'_{n-1} as a function of Γ.

We partition the set of processes into sets of finished, commit enabled, non-commit enabled, and waiting processes, defined as follows. Process p is finished in configuration C, if it is in a final state in C: $\text{NhFinal}(C)$ denotes the number of processes that are finished in system configuration C. Process p is commit enabled in $(C; St_0, \ldots, St_{n-1})$ if:

$$\text{top}(St_p) = \text{commit} \land \text{next}_p(C) = \text{fence()} \land \text{WB}_p(C) \neq \emptyset.$$

Process p is non-commit enabled if $\text{top}(St_p) = \text{commit}$, p enters a final state in every p-only execution from C, and one of the following holds:

- $\text{next}_p(C)$ is a read() or write() operation;
- $\text{next}_p(C)$ is a return() operation, where $r = \text{NhFinal}(C)$; or
- $\text{next}_p(C)$ is a fence() and $\text{WB}_p(C) = \emptyset$.

Process p is waiting in all other cases (it is not finished, commit enabled, or non-commit enabled).

Decoding Rule (D1): Commit Step. Suppose in configuration C with command stacks St_0, \ldots, St_{n-1} there is at least one commit enabled process. Let p be the one with the smallest ID. Let R be the smallest register such that (R, x) is in $\text{WB}_p(C)$. If there are processes q such that $\text{top}(St_q) = \text{wait-hidden-commit}(k), k > 0$, and $\text{WB}_q(C)$ contains a write to R, then let q be the one with the smallest ID and let $p^* = q$. Otherwise, let $p^* = p$. Then we define $\sigma = (p^*, R)$. I.e., in $\text{Exec}(C; \sigma)$, p^* commits its write to R.

A commit step is hidden if executed by a waiting process p^*; otherwise, the commit step is visible.

The command stacks $St_i, i \in \{n\}$ are determined as follows.

(D1a) For $i = p^*$, if $\text{top}(St_{p^*}) = \text{commit}$ (i.e., $p^* = p$) and $|\text{WB}_p(C)| = 1$, then we obtain St'_i from St_{p^*} by simply popping the top element from the stack.

(Informally: a commit of a batch of writes from the write-buffer of p was now completed.)

(D1b) For $i = p^*$, if $\text{top}(St_{p^*}) = \text{wait-hidden-commit}(k)$ (i.e., $p^* = q$), then we pop that element from the stack, and if $k - 1 > 0$, we push $\text{wait-hidden-commit}(k - 1)$ back on the stack.

(Informally: another write commit by q is about to be hidden - by p. If additional write commits must be hidden, then push $\text{wait-hidden-commit}(k - 1)$ back to q’s stack, other-
wise no more of q’s commits in the current batch should be hidden.

(D1c) For \(i \neq p \), if \(R \in R_i, i \in [n] \), and \(\text{top}(S_{i}) = \text{wait-local-finish}(\ell, S) \), then we obtain \(S'_{i} \) from \(S_{i} \) by replacing that top element with \(\text{wait-local-finish}(\ell, S \cup \{p'\}) \).

(Informally: if there is a process \(i \neq p' \) that is waiting for earlier processes who access its local segment to terminate, then \(i \) should wait for the termination of \(p' \).)

(D1d) All other command stacks remain unchanged.

Decoding Rule (D2): Read, Write, Return, or Fence Step. Now suppose there is no commit enabled process, but there is at least one non-commit enabled one. Let \(p \) be the non-commit enabled process with smallest ID. Then \(\sigma = (p, \perp) \), i.e., \(\text{Exec}(C; \sigma) \) is the permissible one-step execution in which \(p \) executes its read, write, return, or fence step. We now show how to determine \(S'_{i} \) for all \(i \in [n] \). Recall that \(C' \) is the system configuration reached at the end of \(\text{E}(C; \sigma) \). First, we consider process \(p \).

(D2a) If \(\text{next}_{p}(C') \in \{\text{fence()}, \text{return}(), \emptyset\} \), then we obtain \(S'_{p} \) from \(S_{p} \) by popping the \text{proceed} command from the top of \(S_{p} \). Otherwise, \(S'_{p} = S_{p} \).

(Informally: if the next step of \(p \) is read or write, then the top of \(p \)’s stack remains proceed. Otherwise, the next command (if any) reaches the top of \(p \)’s stack.)

For each other process \(q \in [n] \setminus \{p\} \), the command stack \(S'_{q} \) is obtained from \(S_{q} \) as follows.

(D2b) If \(\text{Exec}(C; \sigma) \) is a return step and \(\text{top}(S_{q}) \) is \(\text{wait-read-finish}(k, S) \) or \(\text{wait-local-finish}(k, S) \), where \(S \) contains \(p \), then we pop the top element from the stack, and if \(k - 1 > 0 \) we push \(\text{wait-read-finish}(k - 1, S) \) (respectively \(\text{wait-local-finish}(k - 1, S) \)) back on the stack.

(Informally: if \(p \)’s execution terminated, then every process \(q \) that waits for \(p \) to terminate no longer needs to wait for \(p \). If \(q \) needs to wait for the termination of additional processes, then parameter\(k \) is updated to \(k - 1 \), otherwise the next command in \(q \)’s stack becomes effective.)

(D2c) If \(\text{top}(S_{q}) \) is \(\text{wait-read-finish}(k, S) \) and \(\text{Exec}(C; \sigma) \) is a read step in which process \(p \) reads register \(R \) from shared memory (not the write buffer), where \(R \in \text{WB}_{q}(C) \), then we replace the top element of \(S_{q} \) with \(\text{wait-read-finish}(k, S \cup \{p\}) \).

(Informally: if there are processes \(q \neq p \) that are about to commit a write to \(R \) and are waiting for the termination of earlier processes who read a register they are about to write to, then each such process should wait for the termination of \(p \).)

(D2d) If \(\text{top}(S_{q}) \) is \(\text{wait-local-finish}(k, S) \) and in \(\text{Exec}(C; \sigma) \) process \(p \) reads a register from \(R_{q} \), then we replace the top stack element with \(\text{wait-local-finish}(k, S \cup \{p\}) \).

(Informally: if there is a process \(q \) that is waiting for earlier processes who access its local segment to terminate, then \(q \) should wait for the termination of \(p \).)

(D2e) In all other cases, \(q \)’s command stack remains unchanged, i.e., \(S'_{q} = S_{q} \).

Decoding Rule (D3): End of Execution. If all processes are waiting or finished, \(\text{E}(\Gamma) \) is the empty execution.

5.2 Encoding an Execution

Recall that \(C_{init} \) is the initial system configuration, and fix a permutation \(\pi = (p_0, \ldots, p_{n-1}) \) over \([n]\). We construct inductively command stack sequences \(\vec{S}_0, \vec{S}_1, \vec{S}_2, \ldots \), where the base case is \(\vec{S}_0 = (\emptyset, \ldots, \emptyset) \).

For the inductive step, suppose we have constructed \(\vec{S}_i \) for some integer \(i \geq 0 \). Let \(C_i \) be the system configuration reached at the end of \(E_i = E(C_{init}; \vec{S}_i) \). In other words, \(C_i \) is the configuration reached after the execution determined by \((C_{init}; \vec{S}_i) \) is constructed (decoded) according to the decoding rules specified in Section [5]. If in configuration \(C_i \) process \(p_{n-1} \) is in a final state, the inductive construction ends. Otherwise, let \(\tau_i \) be the largest index in \([n]\) such that \(\vec{S}_{i}[\tau_i] \neq \emptyset \), and \(\tau_i = -1 \) if no such index exists. We let

\[\ell = \begin{cases} \tau_i + 1 & \text{if } \tau_i = -1 \text{ or if } p_{\tau_i} \text{ is in a final state in } C_i; \text{ and} \vspace{3mm} \tau_i & \text{otherwise.} \end{cases} \]

We obtain \(\vec{S}_{i+1} \) from \(\vec{S}_i \) by adding exactly one command \(cmd_{i+1} \) to the bottom of process \(p_e \)’s command stack; all other command stacks remain unchanged. I.e., \(\vec{S}_{i+1}|_{p_e} \) is \(\vec{S}_i|_{p_e} \) with \(cmd_{i+1} \) added at the bottom, and for all \(k \in [n] - \{\ell\} \), \(\vec{S}_{i+1}|_{p_k} = \vec{S}_i|_{p_k} \). There are several cases to determine \(cmd_{i+1} \):

Case (E1): \(\vec{S}_{i+1}|_{p_e} = \emptyset \) and there are \(\lambda > 0 \) distinct processes different from \(p_e \) that access registers in \(R_{p_e} \) during \(E_i \). Then \(cmd_{i+1} = \text{wait-local-finish}(\lambda, \emptyset) \).

Case (E2): Either \(\vec{S}_{i+1}|_{p_e} \neq \emptyset \) or no process different from \(p_e \) accesses a register in \(R_{p_e} \) during \(E_i \). We distinguish between two sub-cases.

Case (E2a): \(\text{next}_{p_e}(C_i) \neq \text{fence}() \) or \(\text{WB}_{p_e}(C_i) = \emptyset \). Then \(cmd_{i+1} = \emptyset \).

Case (E2b): \(\text{next}_{p_e}(C_i) = \text{fence}() \) and \(\text{WB}_{p_e}(C_i) \neq \emptyset \). Let \(E''_{i} \) be the prefix of \(E_i \) that ends when \(p_e \)’s command stack is empty for the first time, and \(E''_{i} \) the postfix of \(E(C_{init}; \vec{S}_i) \) such that \(E_i = E(C_{init}; \vec{S}_i) = E'' \circ E'' \). (Lemma 5.1[6] below implies that \(E''_{i} \) always exists.) Let \(\gamma \) be the number of distinct registers appearing in \(\text{WB}_{p_e}(C_i) \), to which at least one process commits a write during \(E'' \). Let \(\zeta \) be the number of distinct processes that read during \(E'' \) at least one register that appears in \(\text{WB}_{p_e}(C_i) \).

Then

\[cmd_{i+1} = \begin{cases} \text{wait-hidden-commit}(\gamma) & \text{if } \gamma > 0; \vspace{3mm} \text{wait-read-finish}(\zeta, \emptyset) & \text{if } \gamma = 0 \text{ and } \zeta > 0; \text{ and} \vspace{3mm} \text{commit} & \text{if } \gamma = \zeta = 0. \end{cases} \]

The next lemma summarizes several important structural properties of the stack sequences \(\vec{S}_i \) and the corresponding executions \(E_i \). Its proof, by induction, is omitted due to space restrictions.

Lemma 5.1. The following properties hold:

(11) For all \(k \in [n] \), \(\vec{S}_{i}|_{p_k} = \emptyset \) if and only if \(k > \tau_i \).

(12) For all \(k \in [n] \), in system configuration \(C_i \) process \(p_k \) is in a final state if \(k < \tau_i \), it is in its initial state if \(k > \tau_i \), and if \(p_k \) is in a final state, then the value of that state is \(k \).

(13) \(E(C_{init}; \vec{S}_i)|_{[n] - \{p_{\tau_i}\}} = E(C_{init}; \vec{S}_{i+1})|_{[n] - \{p_{\tau_i}\}} \) if \(i \geq 1 \).

(14) For all \(r \in [n] \), each stack \(\vec{S}_{i+1}|_{pr} \) contains at most one \(\text{wait-local-finish()} \) command, and only at the top of the stack.

(15) Suppose \(\vec{S}_{i+1}|_{pr} \neq \emptyset \), \(r \in [n] \). Then \(\vec{S}_{i+1}|_{pr} \) contains a \(\text{wait-local-finish()} \) command if and only if there are exactly
λ processes in \(\{p_1, \ldots, p_{\ell-1}\}\), that access registers in \(R_{p_{\ell}}\) during \(E(C; \vec{S})\).

(16) Execution \(E(C_{\text{init}}; \vec{S})\) is finite and when it ends, \(p_{\ell}\)’s command stack is empty.

(17) For each \(k \in [n]\), \(E_i(p_0, \ldots, p_k) = E(C_{\text{init}}; \vec{S}_{\pi})\), where \(\vec{S}_{\pi} = (\vec{S}_{p_0}, \ldots, \vec{S}_{p_k}, \emptyset, \ldots, \emptyset)\). In particular, \(E_i(p_0, \ldots, p_k)\) is permissible starting from \(C_{\text{init}}\).

(18) If the bottom element of \(\vec{S}_{i|p_{\ell}}\) is wait-read-finish(\(\zeta, \emptyset\)) for some \(\zeta \in \mathbb{N}\), and \((C^1_i; \vec{S}^1_i)\) is the extended configuration reached, when \(p_{\ell}\)’s stack is empty for the first time during \(E(C_{\text{init}}; \vec{S})\), then \(\text{next}_{p_{\ell}}(C^1_i) = \text{fence}(\cdot)\), \(\text{WB}_{p_{\ell}}(C^1_i) \neq \emptyset\), and throughout \(E(C^1_i; \vec{S}^1_i)\) no process other than \(p_{\ell}\) accesses a register that appears in \(\text{WB}_{p_{\ell}}(C^1_i)\).

(19) If the bottom element of \(\vec{S}_{i|p_{\ell}}\) is wait-hidden-commit(\(\gamma\)), \(\gamma \in \mathbb{N}\), and \((C^0_i; \vec{S}^0_i)\) is the extended configuration reached, when \(p_{\ell}\)’s stack is empty for the first time during \(E(C_{\text{init}}; \vec{S})\), then \(\text{next}_{p_{\ell}}(C^0_i) = \text{fence}(\cdot)\) and throughout \(E(C^0_i; \vec{S}^0_i)\) no process other than \(p_{\ell}\) commits a write to a register that appears in \(\text{WB}_{p_{\ell}}(C^0_i)\).

(20) If stack \(\vec{S}_{i|p_{\ell}}\) contains a command \(\text{cmd} \) right below a wait-read-finish() command, then \(\text{cmd} = \text{commit}\); if \(\text{cmd} \) is right below a wait-hidden-commit() command, then \(\text{cmd}\) is either a wait-read-finish(), proceed, or commit command; and if \(\text{cmd}\) is right below a commit command, then \(\text{cmd}\) is a proceed command.

Property (17) implies that in execution \(E_i\) processes \(p_0, \ldots, p_k\) are not influenced by the steps made by processes \(p_{k+1}, \ldots, p_{\ell-1}\). This is central for establishing all other properties. Properties (14) and (16) imply that the number of proceed commands on \(p_{\ell}\)’s stack is proportional to the number of fence steps \(p\) executes.

We conclude this section with a simple claim that will be useful for the proof of our main theorem, in Section 5.3. The proof of the claim is omitted due to space restrictions.

Claim 5.2. In configuration \(C_i\), all processes \(p_0, \ldots, p_{\ell-1}\) are in a final state, process \(p_\ell\) is not a final state, and \(p_{\ell+1}, \ldots, p_{\ell-1}\) are in their initial states. In particular, \(\text{WB}_{p_{\ell}}(C_i) = \emptyset\) for all \(k \in [n] \setminus \{\ell\}\).

5.3 Proof of Theorem 4.2

In this section, we prove the lower bound stated in Theorem 4.2. For the ease of notation, whenever we refer to one of the statements (11)-(16), we mean the corresponding statement of Lemma 5.1.

We will show that for each permutation \(\pi = (p_0, \ldots, p_{\ell-1})\) the inductive construction of stacks \(\vec{S}_{p_0}^0, \vec{S}_{p_0}^1, \ldots\) ends eventually, i.e., there exists an \(m_{\pi} \in \mathbb{N}\) such that in \(E(C_{\text{init}}; \vec{S}_{p_0}^{m_{\pi}})\) all processes enter a final state. From (12), in that execution each process \(p_k\), \(k \in [n]\), enters a final state with value \(k\). Hence, \(\vec{S}_{p_0}^{m_{\pi}}\) uniquely encodes permutation \(\pi\), and thus there exists a permutation \(\pi\) so that we need at least \(\Omega(n \log n)\) bits to encode all stacks of \(\vec{S}_{p_0}^{m_{\pi}}\).

In this section, we show how the number of commands of \(\vec{S}_{p_0}^{m_{\pi}}\) and the sum of their parameter values, and thus the shortest encoding of \(\vec{S}_{p_0}^{m_{\pi}}\), yields a lower bound for the total number of remote and fence steps executed during \(E(C_{\text{init}}; \vec{S}_{p_0}^{m_{\pi}})\).

For a stack \(S\), let \(|S|\) denote the number of elements in \(S\). For now, we consider only an arbitrary fixed permutation \(\pi = (p_0,\ldots,p_{\ell-1})\) over \([n]\). For \(i = 0, 1, \ldots\) let \(\vec{S}_i\) be the stack sequence constructed as described at the beginning of Section 5.2 for this permutation. Further, as before let \(E_i = E(C_{\text{init}}; \vec{S}_i)\).

Consider a non-empty command stack \(\vec{S}_{i|p}\), and let \(\text{cmd}\) be a command on the stack. Note that if \(\text{cmd}\) is a wait-local-finish(\(k, Q\)) or wait-read-finish(\(k, Q\)) command, then \(Q = \emptyset\) (see cases (E1) and (E2b) in the construction).

We assign each command \(\text{cmd}\) on \(\vec{S}_{i|p}\) a value \(\text{val}(\text{cmd})\).

Each of the commands \(\text{proceed}\) and \(\text{commit}\) have value 1. For \(k \in \mathbb{N}\), each of the commands wait-hidden-commit(\(k\)), wait-local-finish(\(k, \emptyset\)), and wait-read-finish(\(k, \emptyset\)) has value \(k\). The value of command stack \(\vec{S}_{i|p}\), \(\text{val}(\vec{S}_{i|p})\), is the sum of values of its commands. In the following sections, we relate the values of commands on the stacks of \(\vec{S}_i\), as well as the sizes of the stacks, to the number of remote steps executed during \(E_i\). In Section 5.3.3 we show that the sum of values of wait-read-finish() commands on \(\vec{S}_i\) is bounded asymptotically by the number of remote steps in \(E_i\). In Section 5.3.4 we show the same for the sum of values of wait-hidden-commit() and wait-local-finish() commands.

Thus, by averaging over these three types of commands, we obtain that the sum of values of commands is bounded within a constant factor of the number of remote steps. In Section 5.3.4 we show that the sum of stack sizes, and thus the total number of commands, is bounded asymptotically by the number of fence steps. These results yield Theorem 4.2, as we discussed in Section 5.3.4.

5.3.1 Analysis of Wait-Read-Finish() Commands

The aim of this section is to bound from below the number of remote steps of the final execution \(E_{\text{out}}\) constructed for permutation \(\pi\) by the sum of values of wait-read-finish() commands on the stacks of \(\vec{S}_{\pi}^{m_{\pi}}\). The following lemma summarizes this bound.

Lemma 5.3. Suppose in \(E_i = E(C_{\text{init}}; \vec{S}_i)\) all participating processes enter a final state. Let \(V\) be the sum of values of wait-read-finish() commands on stacks of \(\vec{S}_j\). Then \(E_j\) contains at least \([V/2]\) remote steps.

To prove this lemma, we use an amortized analysis, in which we charge remote read steps of some processes to other processes. The rest of this section is devoted to the proof of this lemma. We first start with a simple observation, which follows immediately from (14) and (15) and the fact that \(p_{\ell}\) must execute a write step to add some element to its write-buffer.

Observation 5.4. During any execution \(E(C_{\text{init}}; \vec{S}_i)\), after process \(p_{\ell}\) has executed its first step, no process \(p_b\), \(b < \ell\), accesses any register in \(R_{p_{\ell}}\). In particular no process \(p_b\), \(b < \ell\), accesses any register \(R \in R_{p_{\ell}}\) after \(p_{\ell}\) has added \(R\) to its write-buffer for the first time.

In the following, let \(\tau_j\) be defined as in Section 5.2, i.e., it is the largest index in \([n]\) such that \(\vec{S}_{i|p_{\tau_j}} \neq \emptyset\), and \(\tau_j = -1\) if no such index exists.

Claim 5.5. If during \(E(C_{\text{init}}; \vec{S}_i)\) an extended configuration \((C; \vec{S})\) is reached, such that as a result of the last step leading to \((C; \vec{S})\) a wait-read-finish(\(\zeta, \emptyset\)) command \(\text{cmd}\) appears on top of \(p_{\ell}\)’s stack, then for all \(b < \tau_j\) and all \(R \in \text{WB}_{p_{\ell}}(C)\),

(a) process \(p_b\) commits no write to \(R\) during \((C; \vec{S})\); and

(b) process \(p_b\) does not read \(R\) during \((C; \vec{S})\) after the point in which \(\text{cmd}\) was popped from the top of \(p_{\ell}\)’s stack without being pushed back to it.
Proof. Let $i < j$ be the index such that \vec{S}_{i+1} is constructed from \vec{S}_i by adding the command $cmd_{i+1} = wait\text{-}read\text{-}finish(\zeta, \emptyset)$ to the bottom of \vec{S}_i for $s \leq \ell$ and by (11) $\vec{S}_{j+1} = \emptyset$ for $s > \ell$. Hence, $\vec{S}_j|_{\vec{p}_s}$ contains exactly the wait-read-finish() commands $\omega_1, \ldots, \omega_K$, and since by (17) (applied to \vec{S}_j), $E(C; \vec{S}_j)(p_1, \ldots, p_\ell) = E(C; \vec{S}_j)(p_1, \ldots, p_\ell)$, it suffices to prove the claim for \vec{S}_j. For the ease of notation assume w.l.o.g. $j = j'$, i.e., $\ell = \tau_j$.

Assume w.l.o.g. that $\omega_1, \ldots, \omega_K$ appear in this order (top to bottom) on $\vec{W}_s|_{\vec{p}_s}$. Let t_k be the point in time during $E(C; \vec{S}_j)$ when ω_k, $k \in \{1, \ldots, K\}$, is on top of the stack for the first time, and let $(X_k; T_k)$ be the extended configuration reached at that point. By (16), at the end of $E(C; \vec{S}_j)$, p_s’s stack is empty, so at some point $t_k' > t_k$ the command that is initially below ω_k moves to the top or the stack becomes empty. (By Decoding Rule (D2d) in each step in which p_s’s stack has a wait-read-finish() command on top, either the stack doesn’t change, or the top command gets replaced by a different wait-read-finish() command or is removed.) Note that by the decoding rules process p_s cannot execute any step as long as a wait-read-finish() command is on top of its stack, so its write buffer remains $WB_{p_s}(X_k)$ throughout $[t_k, t_k']$. Let W_k denote the set of registers appearing in $WB_{p_s}(X_k)$ throughout $[t_k, t_k']$. Then

$\bigcup_{1 \leq k \leq K} W_k \subseteq \text{Write}_{p_s}(E_j)$. (5)

Recall that ω_k is a wait-read-finish(val(ω_k), \emptyset) command. Let Q_k be the set of pairs $(q_k, R) \in [n] \times R$, $\alpha \not= \emptyset$, such that during $[t_k, t_k']$ process q_k reads register R and R appears in $WB_{p_s}(X_k)$. Let $Reg(Q_k)$ denote the set of registers such that a pair (α, R) appears in Q_k. In the full version of the paper, we show that there are exactly $\text{val}(\omega_k)$ processes, such that during $[t_k, t_k']$ each of them reads a register in W_k and enters a final state during $[t_k, t_k']$. Hence, $|Q_k| \geq \text{val}(\omega_k)$.

For every register R there can be at most one pair $(q, R) \in Q_k$ such that $R \in R_{p_s}$. Moreover, from Observation 5 we conclude that $R \not\in R_{p_s}$. Hence, we have

$\{\{q_k, R \in Q_k \mid R \not\in R_{p_s}\} + \{|W_k \cap Reg(Q_k)| - R_{p_s}| \geq |Q_k| \geq \text{val}(\omega_k). (6)$

Now note that if $R \in Reg(Q_k)$, then according to Claim 5(b), no process p_k, $b < \ell$, accesses register R after t_k'. Hence, since time interval $[t_k, t_k']$ is finished after t_k, t_k' is finished $R \not\in Reg(Q_k')$ for any $k' > k$. i.e., $Reg(Q_k') \cap Reg(Q_k) = \emptyset$ for all $1 \leq k < k' \leq K$, and thus

$\sum_{1 \leq k \leq K} \{|W_k \cap Reg(Q_k)| - R_{p_s}| = \left| \bigcup_{1 \leq k \leq K} \{W_k \cap Reg(Q_k)\} - R_{p_s}\right| \leq \left| \bigcup_{1 \leq k \leq K} \text{Write}_{p_s}(E_j) - R_{p_s}\right|$. (6)

Thus, (6) implies $\sum_{1 \leq k \leq K} \text{val}(\omega_k) \leq \left| \text{Write}_{p_s}(E_j) - R_{p_s}\right| + \sum_{1 \leq k \leq K} \{\{|q_k, R \in Q_k \mid R \not\in R_{p_s}\} + \sum_{1 \leq k \leq K} \{\{|q_k, R \in Q_k \mid R \not\in R_{p_s}\} = 0\}$. (6)

Therefore, to complete the proof of the lemma, it suffices to show that every pair $(q_k, R) \in Q_k$, $R \not\in R_{p_s}$, is charged to p_s. Since $(p_s, R) \not\in Q_k$, p_s reads a register $R \in W_k = WB_{p_s}(X_k)$ at some point in $[t_k, t_k']$ during $E_j = E(C; \vec{S}_j)$. Let t be the last point in $[t_k, t_k']$ at which p_s reads register R. Then at that point R is in p_s’s write-buffer. By Claim 5(b) p_s does not read R after t_k', so t is the last point at which p_s reads R throughout the entire execution E_j. Since the stacks of processes p_{i+1}, \ldots, p_{n-1} are

E
empty, none of them takes a step in this interval (as is the case for p_j), and so $a < \ell$. Thus, if (p_a, R) is not charged to p_j, then it must be charged to a different process p_b, where $a < b < \ell$, i.e., at point t during $E(C_{init}; \vec{S})$, R is also in p_b's write-buffer. By Claim 5.7, p_b's write-buffer is empty in configuration C_b, which is reached at the end of execution $E(C_{init}; \vec{S})$, so at some point $t' > t > t_b$ p_b commits a write to R. But since at point t_b register R appears in p_b's write-buffer and ω_k is on top of its stack, this contradicts Claim 5.5(a).

We are now ready to prove Lemma 5.3.

Proof of Lemma 5.3. Let Z_q denote the number of pairs (q, R) that are charged to processes, and let $Z = Z_0 + \cdots + Z_{n-1}$. Recall that if (q, R) is charged to some process, then by definition $R \in R_q$, and q reads register R at least once during E_q. Since the first (read or commit) access by q to a register in $R - R_q$ must be a remote step, q executes at least Z_q remote steps during E_q. Hence, Z is a lower bound for the total number of remote steps executed during E_q.

Let $W_0 = |\text{Write}_q(E_q) - R_q|$ and $W = W_0 + \cdots + W_n$. Recall that just before a process executes a return step, it must execute a final fence step. Hence, since q enters a final state during E_q, all its writes get committed during E_q. Since for every register $R \in R - R_q$ the first commit by q to R must be a remote commit, the total number of remote commit steps q executes during E_q is at least W_q, and so W is also a lower bound for the total number of remote steps executed during E_q.

By definition, every pair (q, R) can only be charged to one process, so by Claim 5.6 we have $Z + W \geq V$, and thus either $Z \geq \lceil V/2 \rceil$ or $W \geq \lceil V/2 \rceil$.

5.3.2 Analysis of Wait-Hidden-Commit() and Wait-Local-Finish() Commands

We now show that the number of remote steps in execution E_j is bounded asymptotically from below by sum of values of wait-hidden-commit() and of wait-local-finish() commands used to encode E_j.

Lemma 5.7. Let \vec{S}_j be a command stack sequence and let V_j denote the sum of values of wait-hidden-commit() commands and V_j the sum of values of wait-local-finish() commands. Then $E_j = E(C_{init}; \vec{S}_j)$ contains at least $\max\{V_1/2, V_2\}$ remote steps.

To prove the lemma, we first consider commit steps executed by waiting processes and relate them to the sum of values of wait-hidden-commit() commands.

Claim 5.8. Let Γ be an extended configuration, and suppose in some step s of $E(\Gamma)$ a waiting process p commits a write to some register R. Then after step s process p does not commit to R again, and no non-commit step gets executed until in some step a commit enabled process $q \neq p$ has committed a write to R.

Proof. Let $(C; \vec{S})$ be the extended configuration reached during $E(\Gamma)$ such that s is the first step of $E(C; \vec{S})$. Since p is waiting in $(C; \vec{S})$, by Decoding Rule (D1), there must be some other process $q \neq p$ that is commit enabled in $(C; \vec{S})$, and it contains a write to R in its write-buffer $WB_q(C)$. From the decoding rules it also follows that a commit enabled process will remain commit enabled until it committed all the writes in its write-buffer. By Decoding Rule (D1), as long as there is at least one commit enabled process in an extended configuration, the first step will always be a commit step. In particular, in $E(C; \vec{S})$ no process can execute any non-commit step before q has committed all its writes in $WB_q(C)$. It follows that all read, fence, write, or return steps of $E(C; \vec{S})$ must occur after q has committed to R. Moreover, since at any time p's write-buffer can contain only one write to each register, after executing step s p cannot commit to R again until it has added a new write (R, \cdot) to its write-buffer in a write step, which, as argued above, cannot happen until q has committed its write to R.

Let Γ be an extended configuration. Recall that a commit step s during $E(\Gamma)$ is hidden if it is executed by a waiting process. Every other commit step is called visible. Note that a commit step by p is hidden, if and only if the command cmd that is on top of p's stack when s gets executed is a wait-hidden-commit() command, and it is visible if and only if cmd = commit.

Claim 5.9. Let p be a process and $R \in R - R_p$. In execution $E(C_{init}; \vec{S}_j)$ process p executes at least as many remote steps on R as it executes hidden commits on R.

Proof. Let s_1, s_2, \ldots, s_k be the hidden commit steps on R that process p executes (in this order) during $E(C_{init}; \vec{S}_j)$. By Claim 5.3 any two hidden commit steps s_i, s_{i+1}, by p are separated by some visible commit step s_f of a process $q \neq p$. Hence, if s_{i+1} is not a remote commit by p, then p must have executed a remote commit to R after q's commit step s_f and before its own commit step s_{i+1}. Since in addition, the very first commit by p to R is remote, p executes at least k remote commit steps.

Claim 5.10. Let R be some register, and let $h_{R, p}$ be the number of hidden commit steps on R executed during some execution $E(C_{init}; \vec{S}_j)$. Then the number of remote steps executed on R during that execution is at least $h_{R, p}/2$.

Proof. Let $h_{R, p}$ denote the number of hidden commits executed by process p on register R, and z the process for which $R \in R_z$. By Claim 5.9 for each process $p \in [n] - \{z\}$ all $h_{R, p}$ hidden commits by p are remote steps.

By Claim 5.8 any hidden commit step by z on R is followed by a visible commit by a process $q \neq z$, which gets executed before z can execute any other hidden commit. Thus, each hidden commit by z is followed by a remote step on R. Hence, the execution contains at least $h_{R, z}$ remote steps on R.

Using the bound above for processes $p \neq z$, we obtain that the number of remote steps on R is at least $\max\{h_{R, z}, \sum_{p \in [n] - \{z\}} h_{R, p}\} \geq h_{R, z}/2$.

Proof of Lemma 5.7. By (I6), at the end of $E(C_{init}; \vec{S}_j)$ all command stacks are empty. Hence, it follows immediately from Decoding Rule (D1b) that the total number of hidden commit steps executed during that execution is at least V_1. Then by Claim 5.10 E_j contains at least $V_1/2$ hidden command commits.

By (I4), each stack of \vec{S}_j contains at most one wait-local-finish() command. If $\vec{S}_j[p]$ contains a wait-local-finish(γ_p) command, then by (I5) there are at least γ_p processes in $[n] - \{p\}$ that access registers in R_p during E_j. Since for each such process the first access of a register in R_p is a remote step, it follows that there are at least γ_p remote steps on registers in R_p. Hence, by summing over all processes p, we obtain that E_j contains at least V_2 remote steps.

5.3.3 Fence Steps vs. Stack Size

The following lemma states that the number of fence steps executed in an execution E_j is asymptotically at least as large as the number of elements on all stacks used to encode E_j.

Lemma 5.11. In execution $E(C_{init}; \vec{S}_j)$ process p_j executes at least $\lceil |S| - 1 \rceil/4 - 3$ fence steps, where $S = \vec{S}_j[p_j]$.
Proof. By (I4) S contains at most one \textit{wait-local-finish()} command. By (I10), below a \textit{wait-read-finish()} command there can only be a \textit{commit} command and below a \textit{wait-hidden-commit()} command there can only be a \textit{wait-local-finish()}, \textit{proceed}, or \textit{commit} command. Finally, also by (I10), below a \textit{commit} command there can only be a \textit{proceed} command. Hence, if we remove the single \textit{wait-local-finish()} command, then among the remaining commands at least every fourth one must be \textit{proceed}. i.e., S contains at least $\lfloor |S| - 1/4\rfloor$ \textit{proceed} commands. By (D2a), a \textit{proceed} command on p_e’s stack can only be removed due to a step in which p_e becomes poised to execute a \textit{fence}() or \textit{return}() operation, or in which it enters a final state. Clearly, throughout $E(C_{init}; S_i)$ a \textit{proceed} command can be removed at most once for the reason that p_e becomes poised to execute a \textit{return}() operation, and at most once for the reason that p_e enters a final state. Hence, the claim follows from the fact that by (I6) p_e’s stack is empty at the end of $E(C_{init}; S_i)$.

5.3.4 Putting Things Together

Consider a permutation π and the command stack sequences $S_{init}^n, S_1^n, \ldots$, constructed in Section 5.2 for this permutation. Since S_{init}^n consists only of empty stacks, and in each step of the construction exactly one command is added to some stack, the stacks of S_{init}^n contain in total i commands. The iterative construction ends only when a command stack sequence S_{init}^n has been constructed such that during $E^m_{init} = E(C_{init}; S_{init}^{m+1})$, all processes enter a final state. If then construction does not end at all, then by Lemma 5.11 the execution has an unbounded number of fence steps. Hence, assume that the iterative construction ends with a command stack sequence S_{init}^{m+1} for every permutation π.

Let v_1, v_2, \ldots, v_m be the values of the m_x commands on the n stacks of S_{init}^{m+1} and $v_x = v_1 + \cdots + v_m$. Then we can encode S_{init}^{m+1} using at most

$$\log(v_1) + \cdots + \log(v_m) + O(m + n) \leq m \cdot \log(v_x/m) + O(m + n) \text{ bits. } (7)$$

By (I2), if $\pi = (p_0, \ldots, p_{n-1})$, then during $E^m_{init} = E(C_{init}; S_{init}^{m+1})$ each process p_k, $k \in [n]$, enters a final state with value k. Therefore, the stack sequence S_{init}^{m+1} uniquely identifies permutation π. Since there are $n!$ permutations, we need on average $\Omega(n \log n)$ bits to encode each permutation. Hence, for at least one permutation π, we obtain from (7)

$$m \cdot (\log(v_x/m) + 1) \geq \Omega(n \log n).$$

Since there are in total m_x commands on all stacks of S_{init}^{m+1}, we have from Lemmas 5.11 that E^m_x contains $\Omega(m)$ fence steps. From Lemmas 5.3 and 5.7 and by averaging the sum of values of \textit{wait-read-finish()}, \textit{wait-hidden-commit()}, and \textit{wait-local-finish()} commands, it follows that $\Omega(v_x)$ steps of E^m_x are remote steps. This completes the proof of Theorem 4.2.

6. SUMMARY

We proved an inherent tradeoff between the number of fences and the number of remote accesses that must be incurred in implementations of certain concurrent operations, e.g., on, locks, counters and queues. The proof assumes a model in which each process has both a local segment of shared memory and a cache. Thus, Theorem 4.2 holds for both \textit{cache-coherent} and \textit{distributed shared-memory} architectures [6]. Following [9][12], our lower bound applies also to algorithms that may use \textit{comparison} primitives, such as CAS, in addition to reads and writes.

7. REFERENCES