Nesting-Safe Recoverable Linearizability: Modular Constructions for Non-Volatile Memory

Hagit Attiya
Department of Computer Science, Technion
hagit@cs.technion.ac.il

Ohad Ben-Baruch
Department of Computer Science, Ben-Gurion University
ohadben@cs.bgu.ac.il

Danny Hendler
Department of Computer Science, Ben-Gurion University
hendlerd@cs.bgu.ac.il

ABSTRACT

We present a novel abstract individual-process crash-recovery model for non-volatile memory, which enables modularity, so that complex recoverable objects can be constructed in a modular manner from simpler recoverable base objects. Within the framework of this model, we define nesting-safe recoverable linearizability (NRL) – a novel correctness condition that captures the requirements for nesting recoverable objects. Informally, NRL allows the recovery code to extend the interval of the failed operation until the recovery code succeeds to complete (possibly after multiple failures and recovery attempts). Unlike previous correctness definitions, the NRL condition implies that, following recovery, an implemented (higher-level) recoverable operation is able to complete its invocation of a base-object operation and obtain its response.

We present algorithms for nesting-safe recoverable primitives, namely, recoverable versions of widely-used primitive shared-memory operations such as read, write, test-and-set and compare-and-swap, which can be used to implement higher-level recoverable objects. We then exemplify how these recoverable base objects can be used for constructing a recoverable counter object.

Finally, we prove an impossibility result on wait-free implementations of recoverable test-and-set (TAS) objects from read, write and TAS operations, thus demonstrating that our model also facilitates rigorous analysis of the limitations of recoverable concurrent objects.

CCS CONCEPTS

• Theory of computation → Shared memory algorithms;

KEYWORDS

Concurrency; shared memory; multi-core algorithms; wait-freedom; lock-freedom; nonblocking.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

PODC '18, July 23–27, 2018, Egham, United Kingdom
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5795-1/18/07...
https://doi.org/10.1145/3212734.3212753

1 INTRODUCTION

Shared-memory multiprocessors are asynchronous in nature. Asynchrony is related to reliability, since algorithms that provide non-blocking progress properties (e.g., lock-freedom or wait-freedom [15]) in an asynchronous environment with reliable processes continue to provide the same progress properties in the presence of crash failures. This happens because a process that crashes permanently during the execution of the algorithm is indistinguishable to the other processes from one that is merely very slow. Owing to its simplicity and intimate relationship with asynchrony, the crash-failure model is almost ubiquitous in the treatment of concurrent algorithms.

The attention to the crash-failure model has so far mostly neglected the crash-recovery model, in which a failed process may be resurrected after it crashes. Recent developments foreshadow the emergence of new systems, in which byte-addressable non-volatile main memory (NVRAM), combining the performance benefits of conventional main memory with the durability of secondary storage, co-exists with (or eventually even replaces) traditional volatile memory. Traditional log-based recovery techniques can be applied correctly in such systems but fail to take full advantage of the parallelism and efficiency that may be gained by allowing processing cores to access recovery data directly using memory operations rather than by performing slow block transfers from secondary storage. Consequently, there is increased interest in recoverable concurrent objects (also called persistent or durable): objects that are made robust to crash-failures by allowing their operations to recover from such failures.

In this paper, we present a novel abstract individual-process crash-recovery model for non-volatile memory, inspired by a model introduced by Golab and Ramaraju for studying the recoverable mutual exclusion (RME) problem [13]. Our model enables nesting of recoverable objects, so that complex recoverable objects can be constructed in a modular manner from simpler recoverable base objects. We assume that processes communicate via persistent shared-memory variables. Each process also has local variables stored in volatile processor registers. At any point, a process may incur a crash-failure, causing all its local variables to be reset to arbitrary values. A key challenge with which recovery code must cope in our model is that operation response values are returned via volatile processor registers. Hence, they may become inaccessible to the calling process if it fails just before persisting the response value. Each recoverable operation Op is associated with a recovery function that is responsible for completing Op upon recovery from a crash-failure.
Several correctness conditions for the crash-recovery model were defined in recent years (see, e.g., [2, 3, 14, 17], further discussed in Section 4). The goal of these conditions is to maintain the state of concurrent objects consistent in the face of crash failures. However, guaranteeing object consistency is insufficient for operation nesting. To illustrate this point, consider a base object B that supports atomic compare-and-swap (CAS) and read operations. Suppose that an operation Op by some recoverable object O invokes B's compare-and-swap (old, new) in its algorithm, which, upon completion, should return a success or failure response. Suppose also that some process p crashes inside Op, immediately after it invokes B's compare-and-swap(old, new). Since the CAS operation is atomic, the consistency of B is ensured in spite of p's failure: either the CAS took effect before the failure, or it did not. However, the consistency of B is insufficient, since once p recovers from the crash, it has no way of knowing whether the CAS succeeded or not, as its response was written to a volatile local variable that was lost because of the crash. Reading B will not help, since even if new was written before the crash, it may have been overwritten by other processes since then. Op may therefore not be able to proceed correctly.

To address this issue, we define within the framework of our model the notion of nesting-safe recoverable linearizability (NRL), a novel correctness condition that captures the requirements for nesting recoverable objects. Informally, NRL allows the recovery code to extend the interval of the failed operation until the recovery code succeeds to complete (possibly after multiple failures and recovery attempts). NRL implies that, following recovery, an implemented (higher-level) recoverable operation is able to complete its invocation of a base-object operation and obtain its response.

We present several algorithms for nesting-safe recoverable primitive objects, recoverable versions of widely-used primitive shared-memory operations such as read, write, test-and-set and compare-and-swap, that can be used by higher-level recoverable objects. We also provide an example of how these recoverable base objects can be used for constructing a recoverable counter object.

In addition, we prove an impossibility result on wait-free implementations of recoverable test-and-set (TAS) objects from read, write and TAS operations, thus demonstrating that our model also facilitates rigorous analysis of the limitations of recoverable concurrent objects.

2 Model and Definitions

We consider a system where N asynchronous processes p_1, \ldots, p_N communicate by applying operations to concurrent objects. The system provides base objects that support atomic read, write, and read-modify-write operations. Base objects can be used for implementing more complex concurrent objects (e.g. counters, queues and stacks), by defining access procedures that simulate each operation on the implemented object using operations on base objects. These may be used in turn similarly for implementing even more complex objects, and so on.

The state of each process consists of non-volatile shared-memory variables, which serve as base objects, supporting read, write and read-modify-write operations, as well as local variables stored in volatile processor registers which support read and write only. Each process can incur at any point during the execution a crash-failure (or simply a crash) that resets all its local variables to arbitrary values, but preserves the values of all its non-volatile variables. A process p invokes an operation Op on an object by performing an invocation step. Upon Op's completion, a response step is executed, in which Op's response is stored to a local variable of p. It follows that the response value is lost if p incurs a crash before persisting it.

Operation Op is pending if it was invoked but was not yet completed. For simplicity, we assume that, at all times, each process has at most a single pending operation on any one object. A recoverable operation Op is associated with a recovery function, denoted $Op.Recover$, that is responsible for completing Op upon recovery from a crash. The execution of operations (and recoverable operations in particular) may be nested, that is, an operation Op_1 can invoke another operation Op_2. Following a crash of process p that occurs when p has one or more pending recoverable operations, the system may eventually resurrect process p by invoking the recovery function of the inner-most recoverable operation that was pending when p failed. This is represented by a recover step for p.

More formally, a history H is a sequence of steps. There are four types of steps:

1. an invocation step, denoted (INV, p, O, Op), represents the invocation by process p of operation Op on object O;
2. an operation Op can be completed either normally or when, following one or more crashes, the execution of $Op.Recover$ is completed. In either case, a response step s, denoted (RES, p, O, Op, ret), represents the completion by process p of operation Op invoked on object O by some step s' of p, with response ret being written to a local variable of p. We say that s is the response step that matches s';
3. a crash step s, denoted $(CRASH, p)$, represents the crash of process p. We call the inner-most recoverable operation Op of p that was pending when the crash occurred the crashed operation of s. $(CRASH, p)$ may also occur while p is executing some recovery function $Op.Recover$ and we say that Op is the crashed operation of s also in this case;
4. a recovery step s for process p, denoted (REC, p), is the only step by p that is allowed to follow a $(CRASH, p)$ step s'. It represents the resurrection of p by the system, in which it invokes $Op.Recover$, where Op is the crashed operation of s. We say that s is the recovery step that matches s'.

When a recovery function $Op.Recover$ is invoked by the system to recover from a crash represented by step s, we assume it receives the same arguments as those with which Op was invoked when that crash occurred. We also assume that $Op.Recover$ has access to a designated per-process non-volatile variable ll_p, identifying the instruction of Op that p was about to execute in the crash represented by s. An object is a recoverable object if all its operations are recoverable. In the following definitions, we consider only histories that arise from operations on recoverable objects or atomic primitive operations.

1. This assumption can be removed, but this would require substantial changes to the notions of sequential executions and linearizability, which we chose to avoid in this work.
2. A history does not contain invocation/response steps for recovery functions.
Consider a scenario in which p incurs a crash (represented by a crash step s) immediately after a recoverable operation Op completes (either directly or through the completion of Op.RECOVER) – an event represented by a response step r. In this case, the response value is lost and, moreover, Op.RECOVER will not be invoked by the system, since the crashed operation of s is no longer Op but, rather, the operation Op’ that invoked Op. In general (although there are exceptions to this rule as we will see in Section 3), Op’ may therefore not be able to proceed correctly. Hence, it is sometimes required to guarantee that a recoverable operation returns only once its response value gets persisted. This is defined formally as follows.

Definition 1. A recoverable operation Op is a strict recoverable operation if whenever it is completed, either directly or by the completion of Op.RECOVER (an event represented by a (RES, p, O, Op, ret) step), ret is stored in a designated persistent variable accessed only by process p.

For a history H, we let H|p denote the subhistory of H consisting of all the steps by process p in H. We let H|O denote the subhistory of H consisting of all the invoke and response steps on object O in H, as well as any crash step in H, by any process p, whose crashed operation is an operation on O and the corresponding recover step by p (if it appears in H). H is crash-free if it contains no crash steps (hence also no recover steps). We let H|<p, O> denote the subhistory consisting of all the steps on O by p. A crash-free subhistory H|O is well-formed, if for all processes p, H|<p, O> is a sequence of alternating, matching invocation and response steps, starting with an invocation step.

Given two operations op1 and op2 in a history H, we say that op1 happens before op2, denoted by op1 <H op2, if op1’s response step precedes the invocation step of op2 in H. If neither op1 <H op2 nor op2 <H op1 holds then we say that op1 and op2 are concurrent in H. H|O is a sequential object history, if it is an alternating series of invocations and the matching responses starting with an invocation (that may end by a pending invocation). The sequential specification of an object O is the set of all possible (legal) sequential histories over O. H is a sequential history if H|O is a sequential object history for all objects O.

A crash-free history H is well-formed if: 1) H|O is well-formed for all objects O, and 2) For all p, if i1, r1 and i2, r2 are two matching invocation/response steps in H|p and i1 <H i2 r1 holds, then r2 <H r1 holds as well. The second requirement guarantees that if operation Op1 invokes operation Op2, Op2’s response must precede Op1’s response. Two histories H and H’ are equivalent, if H|<p, O> = H’|<p, O> for all processes p and objects O. A history H is sequential, if H|O is sequential for all objects O that appear in H. Given a history H, a completion of H is a history H’ constructed from H by selecting separately, for each object O that appears in H, a subset of the operations pending on O in H and appending matching responses to all these operations, and then removing all remaining pending operations on O (if any).

Definition 2 (Linearizability [16], rephrased). A finite crash-free history H is linearizable if it has a completion H’ and a legal sequential history S such that:

L1. H’ is equivalent to S; and

L2. <H’<S (i.e., if op1 <H op2 and both ops appear in S then op1 <S op2).

Thus, a finite history is linearizable, if we can linearize the subhistory of each object that appears in it. Next, we define a more general notion of well-formedness that applies also to histories that contain crash/recovery steps. For a history H, we let N(H) denote the history obtained from H by removing all crash and recovery steps.

Definition 3 (Recoverable Well-Formedness). A history H is recoverable well-formed if the following holds.

1) Every crash step in H|p is either p’s last step in H or is followed in H|p by a matching recover step of p.
2) N(H) is well-formed.

We can now define the notion of nesting-safe recoverable linearizability.

Definition 4 (Nesting-Safe Recoverable Linearizability (NRL)). A finite history H satisfies nesting-safe recoverable linearizability (NRL) if it is recoverable well-formed and N(H) is a linearizable history. An object implementation satisfies NRL if all of its finite histories satisfy NRL.

3 NESTING-SAFE RECOVERABLE BASE OBJECTS

In this section, we present algorithms for recoverable base objects that support primitive operations such as read, write, compare-and-swap (CAS) and test-and-set. As described in Section 2, this consists in implementing a recovery function Op.RECOVER for each such operation, which may be invoked by the system upon a crash-failure when Op is the crashed operation. In the pseudo-code, we use names that start with a capital letter for shared-memory variables and lower-case names for local variables. We also use capital-letter names for implemented operations and lower-case names for primitive operation names.

We remind the reader that, as defined in our model, we only consider recoverable objects or base objects provided by the system that support atomic read, write or read-modify-write (RMW) operations. Before presenting our algorithms we prove that, under these assumptions, our model guarantees that all histories are recoverable well-formed.

Lemma 1. Let H be a history in which all operations are applied to either recoverable objects or atomic base objects. Then H is recoverable well-formed.

Proof. Consider an execution α of any algorithm and the corresponding history H(α). If an atomic read, write or RMW is executed in α, then its invocation and response steps appear in H consecutively hence cannot violate well-formedness, so it suffices to consider invocation/response steps on recoverable objects and crash/recovery steps.

When a process p invokes an operation Op on a recoverable object O, a corresponding invocation step i is appended to H(α). If p crash-fails inside Op, a (CRASH, p) step c is appended to H(α) and its crashed operation is Op. If and when the system eventually resurrects p and invokes Op.RECOVER, a recovery step r that
matches c is appended to \(H(a)\). If \(p\) undergoes additional failures before \(Op\) completes, then additional pairs of a crash step and its matching recovery step are appended to \(H(a)\). Otherwise, if and when \(Op\) completes, a response step \(r\) that matches \(i\) is appended to \(H(a)\). It follows from Definition 3 that \(H(a)\) is a recoverable well-formed history.

3.1 Read-Write Object

Our recoverable read-write object algorithm assumes that all values written to the object are distinct. This assumption can be easily satisfied by augmenting each written value with a tuple consisting of the writing process’ ID and a per-process sequence number. In some cases, such as the example of a recoverable counter that we present later, this assumption is satisfied due to object semantics and does not require special treatment.

Algorithm 1 presents pseudo-code for process \(p\) of a recoverable read-write object \(R\). It supports non-strict (see Definition 1) recoverable \(READ\) and \(WRITE\) operations. Both \(READ\) and \(WRITE\).RECOVER simply return \(R\)‘s current value (lines 7-9, 18-20).

Our implementation of \(WRITE\) “wraps” the write primitive with code that allows the recovery function \(WRITE\).RECOVER to conclude whether \(p\)’s write in line 4, or a write by a different process, took place since \(p\)’s invocation of \(WRITE\). This is done using a single-reader-single-writer shared-memory variable \(S_p\) that stores a pair of values — \(R\)’s previous value (read in line 2) and a flag that allows the recovery function to infer the location in \(WRITE\) where the failure occurred. Specifically, \(flag = 0\) holds whenever \(p\) is either not performing a \(WRITE\) operation on \(R\) (since it is initialized to 0 and set to 0 in line 5 before \(WRITE\) returns) or \(p\) has performed line 5 but \(WRITE\) was not yet completed.

The intuition for correctness is the following. A crash before line 3 is executed implies that both \(S_p = <0, curr>\) and \(curr \neq val\) hold, since we assume each value written to \(R\) is distinct. In this case, \(WRITE\).RECOVER simply re-executes \(WRITE\) (lines 12-13). If a crash occurs after \(p\) writes to \(S_p\) in line 3 but before it writes to it in line 5 and no process writes to \(R\) since \(p\) reads it in line 2, then the condition of line 14 holds and \(p\) re-executes \(WRITE\) also in this case (in line 15).

Otherwise neither of the conditions of lines 12, 14 holds. Hence, either \(p\) already executed line 4, or another process wrote to \(R\) between when \(R\) was read by \(p\) in line 2 and in line 14. In either of these cases, we may linearize \(WRITE\), so the recovery function updates \(S_p\) and returns \(ack\) (lines 16-17). A formal correctness proof follows.

Lemma 2. Algorithm 1 satisfies NRL.

Proof. First observe that \(R\) is a recoverable object since each of its two operations has a corresponding \(RECOVER\) function. Consider an execution \(a\) of the algorithm and the corresponding history \(H(a)\). From Lemma 1, \(H(a)\) is recoverable well-formed. Hence, \(H'(a) = N(H(a))\) is a well-formed (non-recoverable) history. Following definition 4, it remains to prove that \(H'(a)\) is linearizable.

Since neither of \(R\)’s recovery functions write to variables read by other processes, they have no effect on their execution. We can therefore ignore crashes that occur during the execution of the recovery functions, as long as \(S_p\) is not written (which only occurs in line 16 of \(WRITE\).RECOVER).

Assume \(p\) applies a \(WRITE(val)\) operation to \(R\) in \(a\). If \(p\) does not fail during its execution, then clearly \(p\) writes to \(R\) exactly once in line 4 and this is the operation’s linearization point. Otherwise, assume that \(p\) fails when executing the \(WRITE\) operation. A crash before line 3 implies that \(p\) did not yet write to neither \(S_p\) nor \(R\), hence \(WRITE\) was not linearized yet. Upon recovery, \(p\) reads \(S_p = <0, curr>\), where \(curr \neq val\) holds, since we assume all written values are distinct. Hence, \(WRITE\).RECOVER re-executes \(WRITE\).

A crash between the two writes to \(S_p\) (in lines 3 and 5) implies that \(S_p = <1, curr>\) and \(curr \neq val\) holds. Upon recovery, if the condition of line 14 is satisfied, then \(curr = R\) ensures that no process wrote to \(R\) between the two reads of \(R\) (in lines 2 and 14). In particular, \(p\) did not write to \(R\) (so \(WRITE\) was not linearized) and the operation is re-executed.

Otherwise \(curr \neq R\), i.e., there was a write to \(R\) between the two reads of \(R\) by \(p\). If \(p\) wrote to \(R\) in line 4, then the operation was already linearized at this point. Otherwise, there was a write by a different process \(q\) that occurred between the two reads by \(p\), hence within the execution interval of \(p\)’s \(WRITE\). Thus, \(p\)’s \(WRITE\) can be linearized immediately before \(q\)’s, causing \(q\) to immediately overwrite \(val\) (if it was indeed written by \(p\) in line 4), resulting in an execution that is indistinguishable to all processes from one in which \(p\) does not write to \(R\) at all. It follows that, in both these cases, \(p\)’s \(WRITE\) operation can be linearized correctly and \(WRITE\).RECOVER returns \(ack\).

The last case to consider is when \(WRITE\).RECOVER reads \(<0, val>\) in line 11 and then performs lines 16-17 and returns. This can occur either if \(p\) crashed after executing line 5, or if it crashed before line 5 but a subsequent \(WRITE\).RECOVER failed after updating \(S_p\) (in line 16). The latter case can happen only if a previous invocation of \(WRITE\).RECOVER by \(p\) read \(S_p = <1, curr>\), for \(curr \neq R\), executed line 16 and then failed. Our previous analysis established that \(WRITE\) can be linearized also in this case. This concludes our discussion of linearization points of \(WRITE\) operations. As for \(READ\), if and when it returns (in lines 9 or 20), it is linearized when it last read \(R\) (in line 8 or line 19, resp.).

3.2 Compare-and-Swap Object

A Compare-and-Swap (CAS) object supports the \(CAS(old, new)\) operation, which atomically swaps the object’s value to \(new\) only if the value it stores is \(old\). The operation returns true and we say it is successful if the swap is performed, otherwise it returns false and we say it fails. A CAS object also supports a \(READ\) operation which returns the object’s value. Algorithm 2 presents pseudo-code for process \(p\) of a recoverable CAS object \(C\). \(C\) stores two fields, both initially \(null\). The first is the ID of the last process that performed a successful CAS and the second is the value it wrote.

Both \(READ\) and \(RECOVER\) simply return \(C.val\). To perform the \(CAS\) operation, process \(p\) first reads \(C\). If it reads a value \(v\) other than \(old\), \(p\) returns \(false\) and is linearized at the read (lines 2-4). Otherwise, if \(v = null\), \(p\) helps the process (say, \(q\)) that wrote \(v\) by informing it that its CAS took effect. This is done by writing \(v\) to \(R[q][p]\) (lines 5-6), which is a SRSW shared variable used by \(p\) to inform \(q\). This allows processes to inform each other which CAS
operations were successful. We assume that CAS is never invoked with old = new and that values written to C by the same process are distinct. (This assumption can be easily satisfied by augmenting each written value with a per-process sequence number.) The helping mechanism described above guarantees that, upon recovery, process p is able to determine that its CAS operation took effect if the value it wrote is still stored in C or is written in R[p][j], for some j.

If p crash-fails inside CAS without modifying C, either because it crashes before line 7 or because it crashed after its cas in line 7 failed, then <p,new> is never written to C or to any of R[p][*]. In this case, CAS.RECOVER simply re-executes CAS. A key point in the correctness argument is that a CAS operation that crashed after a failed (primitive) cas can be re-executed, since it did not affect other processes, hence we may assume it was not linearized yet and re-execute it without violating the sequential specification of CAS.

Lemma 3. Algorithm 2 satisfies NRL.

Proof. First observe that C is a recoverable object since each of its two operations has a corresponding RECOVER function. Consider an execution α of the algorithm and the corresponding history H(α).

From Lemma 1, H(α) is recoverable well-formed. Hence, H'(α) = N(H(α)) is a well-formed (non-recoverable) history. Following definition 4, it remains to prove that H'(α)C is linearizable. Since none of the recovery functions writes to a variable read by other processes, they have no effect on their executions. We can therefore ignore crashes that occur during the execution of the recovery function.

For presentation simplicity, when we refer to the value of C we refer to the value of its second field, which represents the state of the object, and when we refer to the content of C, we refer to both fields as a pair. Since no process writes the same value twice, it follows that the content of C is unique, while the value of C is not necessarily unique, since different processes may write the same value.

Assume p applies a CAS(old,new) operation to C in α. First assume that p does not crash during the CAS operation. In line 2, p reads C and then compares the value of C to old. If the values differ, then the operation is linearized at the read in line 2 and indeed at this point the value of C is different from old, so p returns false in line 4. Otherwise, p informs the last process q to have performed a successful CAS that its operation took effect. It does so by writing to
\(R[q][p] \) the value it read from \(C \). Then, \(p \) tries to change the value of \(C \) by performing \(\text{cas} \) in line 7.

The following two possibilities exist. Assume first that a successful \(\text{CAS} \) to \(C \) was linearized between \(p \)'s execution of line 2 and line 7. In this case, the first such operation must change \(C \)'s value to a value other than \(\text{old} \), and we can linearize \(p \)'s operation right after it. Since the content of \(C \) is unique, \(p \)'s \(\text{cas} \) operation in line 7 fails, and it returns \(\text{false} \) in line 8. Otherwise, there was no successful \(\text{CAS} \) to \(C \) between the read in line 2 and the \(\text{CAS} \) in line 7, and thus the \(\text{cas} \) in line 7 is successful, and this is also the linearization point and \(p \) returns \(\text{true} \) in line 8.

Assume now that \(p \) crashed during a \(\text{CAS} \) operation. Assume first that either \(p \) crashed before executing line 7, or it crashed after line 7 but its \(\text{cas} \) operation in line 7 failed. In both cases, \(<p,\text{new}>\) was never written to \(C \), since \(p \) writes distinct values to \(C \). As processes write to \(R \) only values they read from \(C \), no process wrote \(\text{new} \) to \(R[p][\ast] \). Consequently, \(\text{CAS.RECOVER} \) re-executes \(\text{CAS} \). A failed \(\text{cas} \) operation does not affect other processes, that is, removing the operation is indistinguishable to other processes. Therefore, in both cases, considering the operation as not having a linearization point so far and re-executing it does not violate the sequential specification of \(\text{CAS} \).

If \(p \) did perform a successful \(\text{CAS} \) in line 7 before the crash, then this is also the operation’s linearization point. We argue that the next process \(q \) to perform a successful \(\text{CAS} \) on \(C \), if any, must write \(\text{new} \) to \(R[p][\ast] \) before its \(\text{CAS} \) takes effect. Assume there exists such a process \(q \). Then, consider the time when the successful \(\text{CAS} \) of \(q \) in line 7 occurs. It must be that \(q \) executes lines 2-7 without crashing, since any crash before writing to \(C \) will cause the re-execution of the \(\text{CAS} \) operation, as we have already shown. In addition, \(q \) reads \(<p,\text{new}>\) from \(C \) in line 2, since by our assumption it succeeds in replacing \(p \)'s value, that is, it performed a successful \(\text{CAS} \) when \(C \)'s content was \(<p,\text{new}>\). As the content of \(C \) is unique, reading any other content implies the \(\text{CAS} \) in line 7 fails, a contradiction. Hence, before \(q \)'s successful \(\text{CAS} \) in line 7, it writes \(\text{new} \) to \(R[p][\ast] \) in line 6. We assume that the left term in the condition of line 13 of \(\text{CAS.RECOVER} \) is evaluated before the right term. Consequently, in line 13, \(p \) either reads \(C = <p,\text{new}> \) or, otherwise, some process \(q \) already replaced \(C \)'s content but wrote \(\text{new} \) to \(R[p][\ast] \) before that, thus \(p \) observes \(\text{new} \) in \(R[p][\ast] \). In both cases, \(p \) considers the \(\text{CAS} \) operation as successful and returns \(\text{true} \) in line 14.

As for \(\text{READ} \) if and when it returns (in lines 11 or 19), it is linearized when it last read \(C \) (in line 10 or line 18, respectively).

3.3 Test-and-Set Object

A non-resettable Test-and-Set (T&S) object is initialized to 0 and supports the T&S operation, which atomically writes 1 and returns the previous value. In the following, we present a recoverable non-resettable test-and-set algorithm that uses a (non-recoverable) non-resettable (and non-readable) T&S object and read/write shared variables. Before that, however, we present an impossibility result on such implementations of recoverable T&S algorithms.

We say that an operation (or a recovery function) is wait-free [15], if a process that does not incur failures during its execution completes it in a finite number of its own steps. Our implementation of T&S has a wait-free T&S operation but its recovery code is blocking. The following theorem proves that this is inevitable: any recoverable T&S object from these primitives cannot have both a wait-free T&S operation and a wait-free T&S.RECOVER function.

Theorem 4. There exists no recoverable non-resettable T&S algorithm satisfying NRL, from read/write and (non-resettable) non-resettable T&S base objects only, such that both the T&S operation and the T&S.RECOVER function are wait-free.

Proof. We prove the theorem using valency arguments [10]. Let \(A \) be an NRL recoverable non-resettable T&S implementation using the base objects assumed by the theorem, and assume towards a contradiction that both T&S and T&S.RECOVER are wait-free. We say that a configuration \(C \) is \(p \)-valent (resp. \(q \)-valent) if there exists a crash-free execution starting from \(C \) in which \(p \) (resp. \(q \)) returns 0 or has already returned 0. \(C \) is bivalent if it is both \(p \)-valent and \(q \)-valent, and univalent otherwise. Observe that any configuration \(C \) is either \(p \)-valent or \(q \)-valent (or both), because in a solo execution of \(p \) followed by a solo execution of \(q \) from \(C \) where both complete their operations (if they haven’t done so already), exactly one must return (or already returned) 0.

The initial configuration \(C_0 \), in which both \(p \) and \(q \) invoke the T&S operation, is bivalent — a solo execution of each process returns 0. Using valency arguments and as we assume that T&S is wait-free, there is an execution starting from \(C_0 \) that leads to a bivalent configuration \(C_1 \), in which both \(p \) and \(q \) are about to perform a critical step. This step must be an application of the T&S primitive to the same base object. Moreover, a step by any of the processes leads to a different univalent configuration. Assume wlog that configuration \(C_1 \circ p \) is \(p \)-valent whereas \(C_1 \circ q \) is \(q \)-valent.

Let \(p \) and then \(q \) perform their next T&S steps, followed by a crash step of \(p \). Since \(p \)'s response from the T&S primitive is lost due to the crash, upon recovery \(p \) does not know whether the T&S primitive was performed, and if it was, what the response value was. Specifically, configurations \(C_1 \circ p \circ q \circ \text{CRASH}_p \) and \(C_1 \circ q \circ p \circ \text{CRASH}_p \) are indistinguishable to \(p \). Consequently, a solo execution of T&S.RECOVER by \(p \) after both configurations (which will complete since we assume that T&S.RECOVER is wait-free) returns the same value ret. This implies that both configurations are \(u \)-valent for some \(u \).

Wlog assume \(u = p \) (the other case is symmetric), then we consider configuration \(C'_1 = C_1 \circ q \circ p \circ \text{CRASH}_p \). Note that \(C'_1 \) is indistinguishable from configuration \(C_1 \circ q \circ p \) for \(q \), since \(q \) is not aware of \(p \)'s crash. Therefore, \(C'_1 \) is both \(q \)-valent and \(p \)-valent, that is, it is bivalent. Since we assume that both processes are only allowed to use read, write and T&S primitives, we can repeat the same argument again and show that there is an extension of \(C'_1 \) leading to a bivalent configuration \(C_2 \), where both \(p \) and \(q \) are about to perform a critical step. Moreover, this step must be the application of a T&S primitive to the same base object. This must be a T&S base object other than those previously used in the execution, since those would always return 1, contradicting criticality.

Continuing in this manner, we construct a crash-free execution of \(q \) in which it executes an infinite number of steps while performing a single T&S operation. This is a contradiction.

Algorithm 3 presents pseudo-code for process \(p \) of a recoverable T&S object \(T \) that uses a base atomic non-readable and non-resetable
T supports a strict recoverable T&S operation. We assume a process invokes the T&S operation at most once, as any additional operations are bound to return 1.

T uses a shared-memory array R, where R[i] (initialized to 0) stores the state of process i, as well as shared variables Winner and Doorway whose usage we describe soon. Process p first sets its state to 1 (in line 2) to indicate it is trying to enter the algorithm’s doorway. If the doorway is closed (line 3), implying that another process closed it (in line 7) before p performed line 3, then p “loses” the T&S operation, so it sets its return value to 1 (in line 4) and proceeds to persist its response value, indicating it completed its operation and return (lines 11-13).

If the doorway is still open, p updates its state (line 6), closes the doorway (line 7), and attempts to win the (non-recoverable) atomic t&s operation (line 8). If p wins, then it declares that it is the winner by writing its identifier to the Winner variable in line 10. Regardless of whether p wins or loses, it proceeds to persist its state and return its response in lines 11-13.

As we prove, the doorway mechanism guarantees that any T&S operation invoked after Doorway is set (in line 7) will return 1. This implies that an operation that returns 0 can be linearized before all other operations. Once a process writes to Winner, any process can recover by simply reading Winner. Hence, the main difficulty is to ensure that at most a single process writes to Winner.

We now proceed to describe the recovery function, which uses R[p] for determining at which point in the execution p crashed. If the condition of line 15 is satisfied, then p crashed before executing line 6, implying that its operation did not yet affect any other process, so T&S.RECOVER simply re-executes T&S (line 16). If the condition of line 17 is satisfied, then p crashed after writing 3 to R[p], in either line 12 or line 33, implying that p already computed its response and wrote it to Resp. In this case, T&S.RECOVER simply returns the value stored in Resp (in lines 18-19). If the condition of line 20 is satisfied, then a winner already declared itself, thus p recovers by determining its response accordingly, persisting it, and returning (lines 21, 31-34).

If none of the above cases holds, then p still needs to compete to win the TAS. In order to do so, it closes the doorway in line 22, in case it is still open, announces it is recovering and competing for the TAS by writing 4 to R[p] in line 23, and attempts to win the t&s operation in line 24.

The difficulty in determining the winner of the T&S operation is that a process may win the atomic t&s operation (in line 8 or in line 24) and then fail before writing its identifier to Winner. In order for a unique winner to be determined in this case, p now has to pass two busy-waiting loops, in lines 25-26 and 27-28. In the first loop, p waits for all lower-indexed processes that started an operation to complete it. In the second loop, p waits for all higher-indexed processes that started an operation to either complete it or to announce that they are recovering. As we prove, these busy-waiting loops guarantee that if there is a process writing to Winner in line 10, then p must wait for it to do so. Also, only the process with the smallest identifier out of those that reach these loops is able to compete and possibly win and write to Winner in lines 29-30, while the rest of the recovering processes must wait for it to complete. As we prove, this implies that at most a single process writes to Winner.

Claim 1. Algorithm 3 satisfies NRL.

Proof. First observe that T is a recoverable object since each of its two operations has a corresponding RECOVER function. Consider an execution α of the algorithm and the corresponding history H(α). From Lemma 1, H(α) is recoverable well-formed. Hence, H'(α) = N(H(α)) is a well-formed (non-recoverable) history. Following definition 4, it reamins to prove that H'(α)/T is linearizable.

The proof relies on the following simple observations:

1. If there is a process that completes its operation, there must be a write to Doorway.
2. Once a process writes to Doorway, any operation that did not yet execute line 2 can no longer return 0. Moreover, such an operation can only set R[p] to either 1 or 3.
3. Once a process writes 3 to R[p] (in line 12 or line 33), its response is persistent in Resp. In addition, the value R[p] is fixed for the rest of the execution, and if p runs sufficiently long without crashing it returns the value stored in Resp.
4. A process that returns 0 must have previously written to Winner.
5. Assume that process p is the only process that wrote to Winner. Then, if p runs long enough without crashing, it eventually returns 0.

If no T&S operation completes in α, then H’ is obviously linearizable. Therefore, assume that there is a T&S operation that completes in α, either normally or by completing a T&S.RECOVER execution. By Observation (1), there is a write to Doorway in α. Let β be the prefix of α up to, and including, the first such write. No operation completes in β, otherwise there is an earlier write to Doorway in α, contradicting our definition of β. Also, by Observation (2), any operation that did not yet execute line 2 in β can only return 1, and would set R[p] to either 1 or 3.

The proof is based on the following two claims: 1) at most a single operation returns 0, and 2) if all operations are allowed to execute sufficiently long without crashing, then some operation returns 0. It follows from these two claims that either there is a single operation pending at β which returns 0 in α, or there is no such operation, but there is an operation, pending at β, that is also pending at α. In both cases we can linearize one operation right after β as returning 0, while the rest can be linearize after it, and they all return 1. This would prove that H’ is linearizable.

Following Observation (4), proving there can be no two processes writing to Winner would establish that only a single operation may return 0. Assume there is a process p that writes to Winner in line 10. Then no other process can write to Winner in line 10, since T.t&S may return 0 at most once. Assume towards a contradiction that some process q writes to Winner in line 30. Then, by the definition of β, q did not yet execute line 23 in β. In order to write to Winner, q must pass the busy-waiting loops in the T&S.RECOVER function, and thus has to fail for p to set R[p] > 2. By Observation (2), p executed line 2 in β. Also, p cannot set R[p] to 4 in line 23, as this would imply that p crashed after executing line 6 and before writing to Winner (since it reads null in line 20). In particular, p does not re-execute any part of T&S upon recovery, contradicting the fact

3We note that the doorway mechanism could have been replaced by simply reading T if a readable atomic TAS object would have been used by the algorithm.
it writes to Winner in line 10, since the condition in line 16 can no longer hold for it. Therefore, it must be that p sets $R[p] \leftarrow 3$ (in line 12 or in line 33), and this happens only after p writes to Winner. As a result, q gets to line 29 only after p writes to Winner, and therefore does not write to Winner in line 30, a contradiction.

Assume now there is a process p that writes to Winner in line 30. As proved above, no process can write to Winner in line 10 in this case. Assume towards a contradiction there exists another process q which writes to Winner in line 30. WLOG, assume $p < q$. After β, both p and q are after executing line 2 and before executing line 25. Hence, in order to get to line 30, q has to wait for p to set $R[p] \leftarrow 3$, that is, to complete its operation. This happens only after p writes to Winner, thus q reads in line 20 a value different from null and does not write to Winner, which is a contradiction. This concludes the proof of the first claim.

To prove the second claim, we show that if every active process is eventually allowed to execute sufficiently long without crashing, then eventually some process writes to Winner. Assume towards a contradiction that no process writes to Winner. If no operation crashes after setting $R[p] \leftarrow 2$ in line 6, then the first operation to execute line 8 also writes to Winner, which is a contradiction. Thus, there must be such an operation, and it eventually executes T&S.RECOVER and sets $R[p] \leftarrow 4$ in line 23. Let q be the process with the smallest identifier to do so. Any operation that does not execute line 23, when executing for a sufficiently long time without crashing, eventually sets $R[p]$ to 3 and returns. Hence, eventually the following holds: for all $i < q$ $R[i] \in \{0, 3\}$ holds (since q is the smallest to execute line 23), and for all $i > q$ $R[i] \in \{0, 3, 4\}$ holds. Consequently, eventually q complete the busy-waiting loops in T&S.RECOVER and writes to Winner in line 30, which is a contradiction. □

3.4 Using Nesting-Safe Recoverable Base Objects: an Example

A Counter object supports an INC operation that atomically increments its value and a READ operation. We start by describing a simple linearizable implementation of a Counter object and then discuss the changes required for making it a recoverable Counter satisfying NRL. Each process has its own entry $R[p]$ in an array R of integers, initialized to 0. To perform INC, p simply increments $R[p]$. In the READ operation, p reads all array entries, sums up the values and returns the sum.

Claim 2. The Counter algorithm described above is linearizable.

Proof. The correctness argument is as follows. Assume process p completes a READ operation. Let v be the value it read from $R[q]$. Since $R[q]$ is monotonically increasing, it must be that $R[q] \leq v$ immediately after the READ’s invocation and $R[q] \geq v$ immediately before the READ’s response. Therefore, at most v INC operations by q have been linearized before the READ’s invocation, and at least v INC operations were linearized before the READ’s response. As this is true for any q, it implies that, as p computes value v_{af}, then there are at most v_{af} INC operations that were linearized before its READ invocation, and at least v_{af} INC operations that were linearized before its READ response. In particular, there is a point during READ’s execution when exactly v_{af} INC operations were linearized, so the READ operation can be correctly linearized at that point. □
Algorithm 4: Nesting-safe recoverable Counter object \(N \), program for process \(p \)

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>\textbf{procedure} INC()</td>
</tr>
<tr>
<td>2</td>
<td>\textit{temp} \leftarrow R[p].READ</td>
</tr>
<tr>
<td>3</td>
<td>\textit{temp} \leftarrow \textit{temp} + 1</td>
</tr>
<tr>
<td>4</td>
<td>(R[p].WRITE(\textit{temp}))</td>
</tr>
<tr>
<td>5</td>
<td>\textbf{return} (\text{ack})</td>
</tr>
<tr>
<td>6</td>
<td>\textbf{procedure} INC.RECOVER()</td>
</tr>
<tr>
<td>7</td>
<td>\texttt{if} (\text{L}_p < 4) \texttt{then}</td>
</tr>
<tr>
<td>8</td>
<td>\texttt{proceed from line 2}</td>
</tr>
<tr>
<td>9</td>
<td>\texttt{else}</td>
</tr>
<tr>
<td>10</td>
<td>\texttt{return} (\text{ack})</td>
</tr>
<tr>
<td>11</td>
<td>\textbf{procedure} READ()</td>
</tr>
<tr>
<td>12</td>
<td>(\text{val} \leftarrow 0)</td>
</tr>
<tr>
<td>13</td>
<td>\texttt{for} (i) \texttt{from} 1 \texttt{to} (N) \texttt{do}</td>
</tr>
<tr>
<td>14</td>
<td>(\text{val} \leftarrow \text{val} + R[i].READ)</td>
</tr>
<tr>
<td>15</td>
<td>(R_{sp} \leftarrow \text{val})</td>
</tr>
<tr>
<td>16</td>
<td>\textbf{return} (\text{val})</td>
</tr>
<tr>
<td>17</td>
<td>\textbf{procedure} READ.RECOVER()</td>
</tr>
<tr>
<td>18</td>
<td>\texttt{proceed from line 12}</td>
</tr>
</tbody>
</table>

Shared variables: \(R[N] \): an array of recoverable read/write objects, initially \([0, \ldots, 0]\)

Making this implementation recoverable necessitates equipping both INC and READ operations with a RECOVER function. The pseudocode of the recoverable implementation is shown by Algorithm 4. As we described in Section 2, our system model assumes that a recoverable operation’s write to \(L_p \) - a designated per-process non-volatile variable identifying the instruction of \(Op \) that \(p \) was about to execute when it incurred the crash that triggered \(Op.RECOVER \). Our implementation of the INC operation, which we now describe, exemplifies how \(L_p \) is used.

The \textit{INC} operation’s write to \(R[p] \) in line 4 is its linearization point. In order to ensure that \(R[p] \) is incremented exactly once in each INC operation, we use an array \(R \) of recoverable read/write objects, such as the one we described previously, instead of an array of (non-recoverable) read/write variables. Recall that our implementation of recoverable \textit{WRITE} requires that distinct values will be written, but this imposes no overhead here, since it is ensured by the counter’s algorithm.

Consider a crash that occurs between \textit{INC}’s invocation and response. If \(p \) crashes inside \textit{WRITE} (invoked by \textit{INC} in line 4), then \textit{WRITE} is the inner-most recoverable operation that was pending. Consequently, if and when \(p \) is resurrected by the system, it does so by invoking \textit{WRITE}. \textit{RECOVER} and, once its recovery is completed,
\textit{INC} returns in line 5 (unless it crashes again). Otherwise, the system invokes \textit{INC.RECOVER}, which uses \(L_p \) in line 7 to determine whether the last crash inside \textit{INC} occurred before line 4 – in which case \textit{INC} is re-executed, or after it – in which case \textit{INC.RECOVER} simply returns.

We chose to implement the counter’s \textit{READ} operation as strictly recoverable. This was accomplished in our implementation by having \textit{READ} write its response value, immediately before it returns, to a shared-memory variable \(R_{sp} \), used by \(p \) only. This ensures that a recoverable operation that invokes the counter’s \textit{READ} operation is able to access its response even if the process fails immediately after \(N.\text{READ} \) returns.

Algorithm 4 demonstrates how recoverable base objects that satisfy the NRL condition can be used in our model for constructing more complex recoverable objects (satisfying the same condition) relatively easily. Modular constructions, such as that of Algorithm 4, leverage the following key property guaranteed by NRL: base recoverable operations are guaranteed to be linearized correctly before they return, even in the presence of multiple crashes, allowing the implemented recoverable operation to proceed correctly.

4 RELATED WORK

Golab and Ramaraju [13] define an abstract individual-process crash-recovery model to study the recoverable mutual exclusion (RME) problem. RME is a generalization of the standard mutual exclusion problem, whereby a process that crashes while accessing a lock is resurrected eventually and allowed to execute recovery actions. The RME problem was further studied in [12, 18]. Additional work investigated lock recoverability in different models [1, 5–7, 23].

A consistency condition specifies how to derive the semantics of a concurrent implementation of a data structure from its sequential specification. This requires to disambiguate the expected results of concurrent operations on the data structure, as done for example in linearizability [16]. Linearizability guarantees a locality property required for nesting, but it cannot be directly used for specifying recoverable objects, since it has no notion of an aborted or failed operation, and hence, no notion of recovery.

Several consistency conditions for the crash-recovery model were suggested, aiming to maintain the consistent state of concurrent objects. However, none of them ensures that a process is able to infer whether the failed operation completed and, if so, to obtain its response value, hence they cannot be directly used as a correctness condition for modular constructions of recoverable objects.

Aguilera and Frølund [2] proposed strict linearizability as a correctness condition for recoverable objects. It treats the crash of a process as a response, either successful or unsuccessful, to the interrupted operation. Strict linearizability preserves both locality [15] and program order. Guerraoui and Levy [14] define persistent atomicity. It is similar to strict linearizability, but allows an operation interrupted by a failure to take effect before the subsequent invocation of the same process, possibly after the failure. They also proposed transient atomicity, which relaxes this criterion even further and allows an interrupted operation to take effect before the subsequent write response of the same process. Both conditions ensure that the state of an object will be consistent in the wake of a crash, but they do not provide locality.
We thank the anonymous reviewers for their helpful comments. We presented a novel abstract model and correctness criterion for volatile variable identifying the instruction that the process was

REFERENCES

6 ACKNOWLEDGEMENTS

mentations from reads, writes, and CAS operations are known. Correctness of more complex data structures (such as lists, stacks, and-swap, and showed they can be used to construct a recoverable memory operations such as read, write, test-and-set and compare-and-swap, and showed they can be used to construct a recoverable counter object.

An intriguing research direction is to devise and prove the correctness of more complex data structures (such as lists, stacks, queues and search trees), whose (non-recoverable) lock-free implementations from reads, writes, and CAS operations are known.

The model we presented in this paper assumes that the system provides recovery functions with access to a per-process non-volatile variable identifying the instruction that the process was about to execute when it crashed. In future work, we plan to investigate how best to relax this requirement while allowing the algorithm to explicitly label critical “check-points” (typically corresponding to write operations) for facilitating correct recovery.

5 DISCUSSION

We presented a novel abstract model and correctness criterion for non-volatile memory, supporting modular construction of complex recoverable objects from simpler recoverable base objects. We gave algorithms for recoverable versions of widely-used primitive shared-memory operations such as read, write, and-durable data structures for non-volatile byte-addressable memory. In Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS, pages 399–411, 2016.

