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ABSTRACT
Transactional memory (TM) is a key concurrent program-
ming abstraction. Several software-based transactional mem-
ory (STM) implementations have been developed in recent
years. All STM implementations must guarantee transac-
tion atomicity but different STM implementations may pro-
vide different progress guarantees. In order to ensure progress,
an STM implementation must resolve transaction conflicts.
This is done either by the implementation itself or by dele-
gating conflict resolution to a separate contention manager
module that tries to resolve transaction collisions once they
are detected.

We present CAR-STM, a scheduling-based mechanism for
STM Collision Avoidance and Resolution, that can be in-
corporated into existing STM implementations. CAR-STM
maintains per-core transaction queues and schedules a thread
while it is performing a transaction. CAR-STM employs
the following two novel collision reduction techniques: (1)
seriailizing contention managers resolve conflicts by abort-
ing one transaction and moving it to the transactions queue
of the other, effectively serializing the execution of these
transactions and ensuring they will not collide again. (2)
Proactive collision reduction allows applications to provide
information about transactions’ collision-probability. CAR-
STM uses this information to pre-assign transactions that
are more likely to collide to the same core.

We have incorporated CAR-STM into the University of
Rochester’s STM (RSTM) and compared the performance
of the new implementation with that of the original RSTM
by using STMBench7. Our results show that the new imple-
mentation provides orders-of-magnitude reduction of execu-
tion times and improved throughput for almost all concur-
rency levels. Additionally, since CAR-STM greatly reduces
the unpredictable influence of operating-system scheduling
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on STM performance, the new implementation provides a
much more stable performance. In contrast, the performance
of the original RSTM implementation on STMBench7 work-
loads exhibits extremely high variance. Though our paper
focuses on software transactional memory, we believe the
ideas introduced by CAR-STM may prove useful also for
hybrid implementations of transactional memory.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: [Concurrent Program-
ming - Parallel Programming]

General Terms
Algorithms, Experimentation, Performance

Keywords
transactional memory, contention management, synchroniza-
tion, collision avoidance and reduction, scheduling

1. INTRODUCTION
The emergence of multi-core architectures is adding im-

petus to the shift from single-threaded applications to con-
current, multi-threaded applications. Efficiently synchroniz-
ing accesses to shared memory is a key challenge posed by
concurrent programming. Conventional techniques for inter-
thread synchronization use lock-based mechanisms, such as
mutex locks, condition variables and semaphores, and re-
sult in implementations that are either error-prone (if fine-
grained locks are used) or might not scale (if coarse-grained
locks are used).

Transactional memory (TM) [13, 23] is a concurrent pro-
gramming abstraction that is viewed by many as having the
potential of becoming a superior alternative to lock-based
programming. Transactions allow a thread to execute a se-
quence of shared memory accesses whose effect is atomic:
similarly to database transactions [24], A TM transaction
either has no effect (if it fails) or appears to take effect in-
stantaneously (if it succeeds).

Hardware transactional memory (HTM) was introduced
by Herlihy and Moss [13]. They proposed the addition of
a fully-associative transactional cache and the use of cache
coherence protocols for guaranteeing transaction atomicity.
A few additional HTM designs were proposed since then [1,
9, 17, 18, 19]. Software transactional memory (STM), in-
troduced by Shavit and Touitou [23], ensures transactional



semantics through software mechanisms. Many STM imple-
mentations have been proposed in recent years [5, 10, 11,
12, 15, 16, 21]. Hybrid transactional memory uses hard-
ware whenever possible and falls back to software otherwise
[4, 14]. Although this paper studies software transactional
memory, we believe the ideas we introduce here may prove
useful also for hybrid implementations.

STM implementations guarantee transaction atomicity.
The method that is used for resolving transaction conflicts
determines the progress guarantees. This is done either by
the STM implementation itself or by delegating conflict res-
olution to a separate contention manager module [12] that
tries to resolve transaction collisions once they are detected.
When a transaction detects a conflict, it consults the con-
tention manager in order to determine how to proceed. The
contention manager can then decide which of the two con-
flicting transactions should continue and when and how the
other transaction should be resumed.

We present CAR-STM, a scheduling-based mechanism for
STM Collision Avoidance and Resolution, that can be in-
corporated into existing STM implementations. CAR-STM
maintains per-core transaction queues and schedules a thread
while it is performing a transaction. CAR-STM utilizes its
scheduling capability in two key ways. First, it employs a
novel type of contention management that we call serializ-
ing contention management. Rather than letting a pair of
transactions collide over and over again, a serializing con-
tention manager, upon detecting their first collision, aborts
one transaction and moves it to the transactions queue of
the other; this effectively serializes their execution and en-
sures they will not collide again. The experimental results
we provide in Section 4 establish that this technique greatly
improves STM performance.

A second technique introduced by CAR-STM is proac-
tive collision avoidance. Rather than handle conflicts post
factum (i.e., after the conflicting transactions have already
started), proactive collision avoidance allows CAR-STM to
pre-assign transactions that are more likely to collide to the
same core. CAR-STM allows applications to provide in-
formation about transactions’ collision-probability and uses
this information for deciding where to put a new transaction.
For some applications, this may eliminate even the first col-
lision between transaction pairs. A similar approach was
examined by Bai et al. [3]. They focus on dictionary-based
data-structures and show that their implementation greatly
improves transaction data locality. We generalize this idea
by supporting an interface through which an application can
provide its own unique collision-probability information.

We have incorporated CAR-STM into the University of
Rochester’s STM (RSTM) [16] and compared the perfor-
mance of the new implementation with that of the original
RSTM by using STMBench7 [8], a benchmark that gener-
ates realistic workloads for STM implementations. Our re-
sults show that the new implementation provides orders-of-
magnitude speedup of execution times and improved through-
put for almost all concurrency levels. Additionally, CAR-
STM provides a much more stable performance as compared
with the baseline RSTM, probably since it greatly reduces
the unpredictable influence of operating-system scheduling
on STM performance. In contrast, the performance of the
original RSTM implementation on STMBench7 workloads
exhibits extremely high variance. Since we found no efficient
collision-probability function for the STMBench7-generated

workloads, the dramatic performance gains are the result of
serializing contention management.

In Section 4.5, we test CAR-STM on a synthetic appli-
cation for which a natural collision-probability function ex-
ists. Although our proactive collision reduction feature in-
creases throughput considerably, it is noteworthy that seri-
alizing contention management obtains an even greater per-
formance boost also for this application. When both features
are combined, CAR-STM obtains its maximum performance
boost.

Very few prior art works study the issue of scheduling
TM transactions. In a recent work, Yoo and Lee [25] in-
corporated a simple transaction scheduler into RSTM and
LogTM. Their implementation allows the serialization of
transactions to a single scheduling queue once high con-
tention is detected. As they show, this approach can improve
performance when the workload lacks parallelism. Rossbach
et al. [20] introduce TXLinux, a variant of Linux that can
manage HTM transactions in the Linux scheduler. They
also propose a novel mechanism that allows critical sections
to be protected by both locks and transactions.

The rest of the paper is organized as follows. We provide
an overview of CAR-STM in Section 2. Section 3 gives a
more detailed description of CAR-STM’s architecture and
operation. Performance analysis is provided in Section 4.
Section 5 concludes with a short discussion of our results
and future work.

2. CAR-STM OVERVIEW
In this section we provide a high-level overview of CAR-

STM and the principles that underlie its design. This is
followed by a more technical discussion in Section 3.

Figure 1-(a) presents the high-level architecture of CAR-
STM. CAR-STM maintains a single transactions queue per
every core in the system. Transactions are enqueued by the
transaction dispatcher, described shortly. Once enqueued,
the transaction’s thread is put to sleep and is awakened by
CAR-STM when the transaction completes. Each transac-
tions queue is handled by a single transactions queue thread
(TQ thread). Thus the number of TQ threads equals the
number of cores in the system. CAR-STM guarantees that
the transactions in the queue of each core are performed in
order, one at a time, unless they are moved by a serializing
contention manager (see Section 2.1).

2.1 Collision Resolution: Serializing Contention
Managers

Prior-art contention managers [2, 6, 7, 22] have only a
few alternatives for dealing with transaction conflicts. The
contention manager decides which of the conflicting transac-
tions can continue and whether the other transaction will be
aborted or delayed. If a transaction is aborted or delayed,
the contention manager also determines how long it must
wait before it can restart or resume execution.

Scheduling-based STM implementations, on the other hand,
have much greater control of which transactions are allowed
to execute concurrently. This opens up new and effective
ways in which contention managers can resolve transaction
conflicts.

CAR-STM introduces a new type of contention managers
that we call serializing contention managers. Serializing
contention managers resolve conflicts by transferring one of



the conflicting transactions to the transactions queue of the
other.

We have implemented and evaluated two serializing con-
tention managers. Upon identifying a conflict between two
transactions, the basic serializing contention manager (BSCM)
aborts the newer transaction Tn and moves it to the trans-
action queue of the older transaction To. We say that Tn is
serialized after To.

BSCM greatly reduces the probability that two transac-
tions will collide more than once but this is still possible.
Consider a scenario, in which a conflict between Ta and Tb

is identified and resolved by serializing Tb after Ta. If a con-
flict between Ta and a third transaction Tc is identified later
on, then Ta might be serialized after Tc and Ta and Tb may
collide once again.

The second contention manager we implemented, called
the permanent serializing contention manager (PSCM), does
guarantee that any pair of transactions can collide at most
once. Assume a conflict between transactions Ta and Tb is
identified and that these transactions have not been involved
in any conflict before. Similarly to BSCM, PSCM resolves
this conflict by aborting the newer transaction (assume this
is Tb) and serializing it after Ta. In addition, however, Tb

is marked as a subordinate transaction of Ta. If Ta is found
to conflict with a third transaction Tc at a later stage of its
execution and if Tc is older than Ta, then both Ta and Tb

are serialized after Tc. More generally, whenever a transac-
tion is moved to a different queue, it is moved together with
all its subordinate transactions. It follows that once Ta is
serialized after Tb, it can only be executed after Ta.

2.2 Collision Avoidance, Dispatching and
Conflict-Probability Methods

Two transactions conflict if they both access the same ob-
ject and at least one of them modifies it. Existing STM
implementations detect transaction conflicts only after the
pair of conflicting transactions start their execution. Once
such a conflict is detected, one of the transactions has to be
aborted or delayed and later restarted or resumed, possibly
after a waiting period. Aborting a transaction may be a
costly operation. It is also wasteful, since it causes all the
prior changes done by the aborted transaction to be undone.
If the aborted transaction is allowed to restart immediately,
then it might be aborted once again by the same conflicting
transaction or, even worse, abort the other transaction in a
live-lock manner. On the other hand, if the aborted trans-
action has to wait before it may resume execution, then its
completion time is delayed, possibly even beyond the point
when its conflicting transactions terminated.

Rather than handle collisions only after the conflicting
transactions have started to execute, CAR-STM tries to
avoid collisions in the first place by pre-assigning transac-
tions that are more likely to collide to the same core. When
a thread wishes to start a new transaction, the transac-
tion dispatcher is consulted. The dispatcher decides into
which transactions queue the new transaction should be en-
queued. Applications can influence the dispatcher’s deci-
sions by passing a pointer to a conflict-probability method
as a parameter when calling BEGIN TRANSACTION. A
conflict-probability method receives two transaction infor-
mation (T-Info) structures as its input and computes an es-
timate of the probability that these transactions will collide
if executed concurrently. Roughly speaking, the dispatcher

Figure 1: (a) CAR-STM high-level architecture. (b)
The TQ-entry structure.

enqueues a transaction T to a queue that contains the trans-
actions with maximum probability of colliding with T . By
placing T in the same queue with these transactions, the
scheduler decreases the probability that they will execute
concurrently with T , hence also the probability that they
will collide with T . The dispatcher is described in more
detail in Section 3.2.

2.3 Eliminating Pseudo-Parallelism
Conventional (non-scheduling) STM implementations have

very limited control of transaction threads or no control at
all. Consequently, the performance of these implementations
depends to a large extent on the operating system scheduler,
whose policy does not take transactions into consideration.
This is disadvantageous for several reasons.

1. As our experiments in Section 4 show and as observed
by [8], the inherent nondeterminism of transaction-
ignorant operating system scheduling results in ex-
tremely high variance of STM performance, especially
for workloads dominated by long transactions.

2. Conventional STMs do not (and, in general, cannot)
prevent the execution of multiple transaction threads



Figure 2: Transaction Dispatching

on the same core. We call the concurrent execution of
several transaction threads on the same core pseudo-
parallelism. Pseudo-parallelism makes little sense: since
transactions are, in general, not allowed to perform
I/O operations, same-core transaction threads are not
very useful for overlapping communication and com-
putation. On the other hand, and as observed by
[25], pseudo-parallelism can greatly degrade perfor-
mance. This is because same-core transactions may
collide with each other, especially if transactions are
long in comparison with the scheduler’s computation
quantum. A large number of concurrent threads as-
signed to the same core can also increase the frequency
of cache misses and page faults. Pseudo-parallelism
also increases the probability of collisions between trans-
action threads across cores, simply because a larger
number of transaction threads execute concurrently.

3. In multi-programming systems, pseudo-parallelism is
also likely to degrade the performance of other appli-
cations that execute in parallel, since cores must be
shared by a larger number of threads.

By leveraging its transaction scheduling capability, CAR-
STM eliminates pseudo-parallelism and guarantees that, at
all times, at most a single transaction executes on any single
core.

3. CAR-STM: ARCHITECTURE AND OP-
ERATION

This section provides a more detailed description of CAR-
STM. CAR-STM’s structure allows it to be easily incorpo-
rated into existing STM implementations. We have incorpo-
rated CAR-STM into the RSTM implementation from the
University of Rochester [16]. CAR-STM was mostly added
as an external library and only a few minor “hooks” to ex-
isting RSTM code were required.

3.1 Initialization
Upon initialization, an application calls a method that ini-

tializes CAR-STM’s data structures. In particular, a trans-
actions queue is allocated and initialized per every system
core (see Figure 1-(a)). A TQ thread is created per every
core and its core-affinity is set accordingly. Every TQ thread
has a single condition variable associated with it. Initially,
each TQ thread sleeps on its condition variable waiting for
the arrival of new transactions. Optionally, the application
can pass a pointer to a conflict-probability method upon ini-
tialization. This application-specific method is used by the
dispatcher to reduce the number of collisions. See Section
3.3 for a more detailed description of the dispatcher.

In addition to application-level initialization, each appli-
cation thread must also call an RSTM thread-initialization
method in order to be able to execute transactions. Upon
initializing, the thread notifies RSTM which transaction man-
ager it will use, whether transactional reads should be visible
or not, and whether its validation policy is eager or lazy.

3.2 Transaction Dispatching
Figure 2 depicts the stages of the transaction dispatching

process.

1. A transaction thread calls the dispatcher and passes
a pointer to its transaction information structure (T-
Info) as an argument. Observe that multiple threads,
running on multiple cores, may call the dispatcher con-
currently.

2. The dispatcher calls the collision avoider, passing the
T-Info structure of the new transaction as an argu-
ment.

3. The collision avoider calls the application-specific conflict-
probability (CP) method, provided upon initialization.
This method receives two T-Info arguments and com-
putes an estimate of the probability that the two trans-
actions conflict. In general, the collision avoider may
call the CP method multiple times per every TQ, in
order to check possible conflicts with a few TQ transac-
tions. In our implementation, the CP method is called
at most once per TQ and checks possible conflicts with
the currently active TQ transaction (if any).

4. Based on the collision avoider’s output, the dispatcher
decides where to enqueue the new transaction. It then
creates a new TQ-entry structure and enqueues a pointer
to it to the selected TQ. The atomicity of the insertion
is ensured by using the TQ’s lock and condition vari-
able. The structure of a TQ entry is shown in Figure 1-
(b). Each entry contains a pointer to a structure stor-
ing the data required by the transaction method and
a wrapper method that calls the transaction method
with the required arguments (see Section 3.3 for more
details on transaction execution). A third field stores
the transaction’s T-Info structure. This structure is
used by the collision avoider to compute the probabil-
ity of collision with new transactions. Additional two
fields contains the transaction’s thread data required
for resuming it after its transaction is completed, and a
lock/condition-variable used for synchronizing with it.
After the TQ-entry is added, the dispatcher signals the
appropriate TQ-thread to notify it of available work.



The transaction thread is then put to sleep until a TQ-
thread notifies it of transaction completion.

3.3 Transaction Execution
Transactions are executed by TQ-threads. A TQ-thread

sleeps on the transaction queue’s condition variable until
the dispatcher wakes it up. It then starts executing the
transaction at the head of the queue.

An RSTM transaction is executed by its transaction thread
and consists of a sequence of instructions surrounded by a
BEGIN TRANSACTION / END TRANSACTION macros-
pair. As mentioned already, a CAR-STM transaction is per-
formed by a TQ-thread and not by its transaction thread.
This is made possible by packaging each CAR-STM transac-
tion as a transaction method. Moreover, since transactions
are not executed in the context of their original thread, a
mechanism is required for allowing them to access the data
they require. To this end, a transaction thread calls the
dispatcher with two more operands in addition to the T-
Info structure. The first is an application-specific structure
storing the transaction data (if any). The second is a refer-
ence to a wrapper method. When executing a transaction,
the TQ thread calls the transaction’s wrapper method. The
wrapper method, in turn, calls the transaction method and
passes to it a reference to its transaction-data structure.

After the transaction completes, the TQ-thread signals
the corresponding transaction-thread, dequeues the transac-
tion entry and proceeds to execute additional transactions.
When the queue becomes empty, the TQ-thread resumes
sleeping on its condition variable.

3.4 Serializing Contention Management
RSTM’s conflict resolution is implemented by the con-

tention manager’s ShouldAbort method. This method re-
ceives the contention manager of the “enemy transaction”
and returns a boolean value indicating whether or not the
enemy transaction should be aborted. If the enemy trans-
action is aborted, the transaction continues until either an-
other conflict is identified or the transaction commits. If the
enemy transaction is not aborted, the transaction retries,
possibly after some waiting period.

As mentioned in section 2, CAR-STM incorporates two
serializing contention managers: the basic serializing con-
tention manager (BSCM) and the permanent serializing con-
tention manager (PSCM). Upon initialization, each trans-
action receives a time-stamp. When a conflict is detected,
the time-stamps of the conflicting transactions are compared
and the newer transaction is aborted. The serializing con-
tention manager then moves the TQ-entry of the losing trans-
action (actually a pointer to it) to the transactions queue of
the enemy transaction. This decreases (with BSCM) or com-
pletely eliminates (with PSCM) the probability that the two
transactions will collide again.

BSCM moves the losing transaction to the end of the
transactions queue of the enemy transaction. With PSCM, a
transaction’s TQ entry points to a list of subordinate trans-
actions that are serialized after it. When a transaction T is
aborted, it is moved to the end of the subordinate transac-
tions list of T ’s enemy transaction; if T itself has subordinate
transactions they are moved with it. When a transaction ter-
minates, the TQ thread will first execute the transactions in
its subordinate transactions list (if any) before proceeding
to the next TQ entry. Figure 3 illustrates the operation of

PSCM.

4. EXPERIMENTAL EVALUATION
In this section we provide the results of our experimental

evaluation. We have tested CAR-STM by incorporating it
into RSTM. Our first set of tests evaluates the new imple-
mentations on STMBench7 workloads. Since we found no
efficient conflict-probability function for STMBench7 work-
loads, these tests only evaluate our serializing contention
managers.

4.1 STMBench7: a Short Overview
STMBench7, due to Guerraoui et al. [8], is an STM bench-

mark that can create realistic transactional workloads cor-
responding to a wide variety of applications, such as CAD,
CAM and CASE applications. STMBench7 was designed
with the goal of comparing different STM implementations
based on their performance on a wide range of workloads
and concurrency patterns.

STMBench7’s data structure consists of several types of
objects and is organized in a tree-like structure. The root
of the data structure is called the module object. Internal
tree nodes consist of complex assembly objects, each having
3 children, and the leaves are called base assembly objects.
Each base assembly object has several composite part ob-
jects that might be shared by several base assembly objects.
A composite part consists of a document and several atomic
parts which are connected by connection objects. In ad-
dition, there is a manual object connected to the module
object. Every object has a unique ID and there is also an
index for each object type, that enables direct access to the
object. See [8] for a more detailed description.

STMBench7 supports 45 operation types. Some are read-
only operations, while others also update values and/or change
the hierarchical structure. The operations are categorized as
follows.

1. Long traversals - Go through all assemblies and/or all
atomic parts and may update some of them. These
are long operations and have the highest probability
of conflicting with other operations.

2. Short traversals - These traversals start from a module,
a document, or an atomic part and choose a random
path. The operation’s path is chosen after it starts.
Consequently, there is no way of knowing in advance
whether two short traversal operations will conflict.
Moreover, if operations A and B conflict and A is
restarted, it might choose a different path that will
not conflict with B.

3. Short operations - These operations choose an object
and perform some operations on the object and its lo-
cal neighborhood. Clearly, two short operations that
work in the same neighborhood are more likely to con-
flict.

4. Structure modifications - These operations create or
delete data-structure objects. It it hard to estimate
in advance whether two such operations will conflict,
since they operate on randomly chosen objects.

An STMBench7 workload is determined by choosing a set
of enabled operations, specifying the number of threads and



Figure 3: PSCM operation. (a) Transactions Ta and Tb collide. (b) PSCM moves transaction Ta along with
its list of subordinate transactions to Tb’s list of subordinate transactions.

Table 1: STMBench7 ratios of operations per work-
load type

Category Write-Dom. Read-Write Read-Dom.
Read ops. 10 60 90
Write ops. 90 40 10

selecting a workload type (read-dominated, write-dominated,
or read/write-dominated).

4.2 Adapting STMBench7 for Using CAR-STM
The following simple change to STMBench7 was required

to allow CAR-STM usage. Each STMBench7 transaction
was packaged as a single transaction-method. As mentioned
before, this is required for separating between transactions
and the threads that initiate them so that transactions can
be executed by TQ-threads and moved between them. This
change was straightforward: transactional code was simply
packaged as a method and the dispatcher was invoked with
a pointer to the transaction method as an argument.

4.3 Evaluation Methodology
We have tested CAR-STM on a 2.60 GHz 8 core 4xXEON-

7110M server, with 16BG RAM and 4MB L2 cache and with
HyperThreading disabled, running the 64-bit Gentoo Linux
operating system over the 2.6.22 kernel. The baseline for our
evaluation is the C++ version of STMBench7 using RSTM.

When running the baseline RSTM, we used Polka, the de-
fault contention manager for STMBench7, which was found
to give top or near-top performance in most RSTM bench-
marks [22]. The default validation approach is visible read-
ers with eager acquire (vis-eager), providing early detec-
tion of all conflicts. We have tested CAR-STM with the
basic serializing contention manager against the 3 types of
workloads available in STMBench7 (see Table 1), and eval-
uated the permanent contention manager under the read-
write workload.

In what follows, we let RSTM refer to the baseline RSTM
implementation. We compare RSTM with 2 new implemen-
tations that integrate it with CAR-STM:
• RSTM/CAR-B - integrates RSTM and CAR-STM using
the BSCM contention manager.
• RSTM/CAR-P - integrates RSTM and CAR-STM using
the PSCM contention manager.

In our tests, we evaluated the three implementations ac-

cording to the following metrics.

• throughput - the number of transactions per second.
Throughput is measured for workloads that do not in-
clude long transactions and last 5 minutes. Threads
generate new transactions all throughout the test.

• execution time - test duration in seconds. Execution
time is measured for workloads that include long trans-
actions. The test is initially run for 5 minutes while
threads generate new transactions. After 5 minutes,
threads stop generating new transactions and the test
continues until all transactions terminate. We call this
later period the test’s quiescence time. Long quies-
cence times are an indication that transactions contin-
ually collide with each other in a live-lock manner.

• stability - measured by the standard deviation of the
above metrics. A large standard deviation implies that
many tests of a certain workload and concurrency level
are far from the averaged performance. This measures
the extent to which an implementation provides stable
performance.

Each implementation was evaluated according to its av-
erage throughput, execution and quiescence times, where
the average is computed for 10-test batches. We also evalu-
ated the implementation’s throughput stability and execution
time stability. That is, we computed the standard deviation
of implementations’ throughput, execution- and quiescence-
times.

4.4 STMBench7 Workloads Results
We have evaluated the throughput, execution and quies-

cence times obtained by RSTM, RSTM/CAR-B and
RSTM/CAR-P for STMBench7 read/write-, read- and write-
dominated workloads. Figure 4 presents the results for
read/write-dominated workloads. Both RSTM/CAR-B and
RSTM/CAR-P outperform RSTM for all metrics and at all
concurrency levels and the gap increases with the concur-
rency level. RSTM/CAR-B is the clear winner in terms of
throughput for all concurrency levels and achieves a speedup
of almost 4 in 16-thread tests and 15.7 for 32-threads as com-
pared with RSTM. While RSTM’s throughput deteriorates
quickly as concurrency level increases, RSTM/CAR-B ap-
proaches its peak performance with 8 threads and maintains
it as the concurrency level is increased to 32. RSTM/CAR-
B’s higher throughput as compared with RSTM/CAR-P is



Figure 4: Throughput, execution and quiescence times under the Read-Write workload

Figure 5: Throughput and execution time standard deviation under the Read-Write workload

probably due to the higher overhead of permanent serializa-
tion.

Even more impressing is the dramatic reduction in execu-
tion and quiescence times obtained by both RSTM/CAR-B
and RSTM/CAR-P as compared with the baseline RSTM.
Both variants achieve a speed-up in execution of between
1.7 (for 2 threads) and 36 (for 28 threads) in comparison
with RSTM. Measuring execution time actually undermines
the improvement obtained by CAR-STM, since no scheme
can reduce test duration bellow the initial 5-minute period.
When measuring the more meaningful quiescence times, both
RSTM/CAR-B and RSTM/CAR-P achieve a speed-up fac-
tor of between 11 (for 2 threads) and 118 (for 16 threads).
The huge quiescence time of RSTM is a clear indication of
live-locked behavior, in which a set of transactions continu-
ally abort one another. Our experimental results establish
that CAR-STM managed to serialize these transactions very
quickly and avoid this live-lock behavior.

Figure 5 presents the standard deviations of the through-
put and execution times1. The performance of the baseline
RSTM is extremely unpredictable and its execution times
are highly variate. Both variants of CAR-STM, on the other

1The quiescence time standard deviation graph is very sim-
ilar to that of the execution time and was omitted.

hand, provide execution times that are orders of magnitude
more stable. For example, RSTM/CAR-B’s execution time
standard deviations for 2, 4, 8 and 16 threads are 21, 20, 30
and 52, respectively, as compared with 614, 1993, 3209 and
4220 (!) for the baseline RSTM. The problematic behav-
ior of RSTM with these workloads can be explained by the
high probability of live-lock between long transactions and
the unpredictable influence of the OS scheduler on whether
live-lock actually occurs. CAR-STM does not suffer from
this problem because the serializing contention manager ei-
ther greatly decreases live-lock probability (CAR-B) or elim-
inates it completely (CAR-P).

RSTM/CAR-B’s throughput standard deviation is also
significantly more stable as compared with the baseline RSTM,
but “only” by a factor of between 2.5 (4 threads) and 7.5 (8
threads). RSTM/CAR-P’s throughput standard deviation
is better than RSTM in all concurrency levels but is signifi-
cantly worse than that of RSTM/CAR-B.

Figure 6 presents the performance results for the write-
dominated workload. The performance boost obtained by
serializing management is even more significant here since
write-dominated workloads have higher collision probabil-
ity. Although the baseline RSTM’s throughput initially im-
proves as the number of threads increases, it decreases dras-
tically once the number of threads exceeds the number of



Figure 6: Throughput, execution and quiescence times under the Write-dominated workload

Figure 7: Throughput and execution time standard deviation under the Write-dominated workload

cores. RSTM/B achieves a 4-fold throughput increase for
16 threads and a factor of almost 30 for 32 as compared
with RSTM.

The execution and quiescence times of the baseline RSTM
implementation are very high, and vary from a factor of 2
(for 2 threads) to a factor of 23 (for 32 threads) when com-
pared to the RSTM/CAR-B. It is worth mentioning that,
even for high concurrency levels and in spite of the high con-
flict probability of write-dominated workloads, the execution
times of RSTM/CAR-B and their corresponding standard
deviations are low.

The standard deviation of the baseline RSTM in this work-
load type is still high but is significantly lower than in the
read-write workload. This is because here RSTM behaves in
a live-locked manner in almost all tests. While the standard
deviation of RSTM/CAR-B is at most 106 (for 28 threads),
RSTM’s varies between 711 (for 2 threads) and 15274 (for
32 threads). It is noteworthy that when the throughput of
RSTM is relatively high (85 for 8 threads) so is its standard
deviation (207).

Read-dominated workloads include only 10% write op-
erations, hence conflict-probability is significantly smaller.
Here, the baseline RSTM throughput is better than
RSTM/CAR-B by a factor of 2 for 2 threads due to RSTM/CAR-
B’s overhead. However, as the concurrency level increases,

RSTM’s (both relative and absolute) throughput decreases
and with 32 threads the throughput of RSTM/CAR-B is
higher by a factor of 2.5.

The execution and quiescence times of the baseline RSTM
are still high but are lower as compared with read/write- and
write-dominated workloads. RSTM/CAR-B accelerates ex-
ecution time by a factor of between 1.7 (for 2 threads) and
19.2 (for 32 threads). The standard deviation of the base-
line RSTM is highest with read-dominated workloads. Also
here, as with read/write- and write-dominated workloads,
RSTM/CAR-B dramatically improves execution stability.
The graphs for the read-dominated workloads are not shown
for lack of space.

4.5 Proactive Collision Avoidance Evaluation
We tested CAR-STM’s proactive collision avoidance fea-

ture using a synthetic application which we name a Re-
gionedArray (RA). An RA is an array composed of separate
regions. Our tests use an RA of size 1000, partitioned to 8
regions, each containing 125 entries. Each RA entry stores
a transactional object. Three operations are supported by
the RA: read, write and delete (which initializes an entry to
a default value). Each thread executes for 20 seconds, dur-
ing which the following sequence of operations is repeated.
1) the thread randomly and uniformly selects a region on



which to operate; 2) an integer iter is chosen uniformly and
randomly from the range [1, . . . , 125]; 3) an RA operation to
apply is chosen uniformly at random, and 4) a transaction
is started and performs iter iterations, in each of which it
randomly and uniformly chooses an item within the region
and applies the RA operation to it.

It is easily seen that the following constitutes a natural
conflict-probability function for this application: return 1 if
a pair of transactions operate on the same region or 0 oth-
erwise. When a new transaction is dispatched, this function
is invoked to compare it with the currently running trans-
action on each core. If there is a core in which the currently
active transaction operates on the same region as the new
transaction, it is put in that cores’ queue; otherwise it is put
in an arbitrary queue.

Figure 8 shows the results of the RA tests. We compared
the throughput of (1) the baseline RSTM, (2) RSTM with
proactive collision avoidance enabled (PROACTIVE), (3)
RSTM/BSCM, and (4) RSTM/BSCM with proactive col-
lision avoidance (PRO-BSCM). The Polka contention man-
ager was used for the RSTM and PROACTIVE tests. It can
be seen that for 2 threads, PROACTIVE increases through-
put by a factor of more than 2.5 as compared with RSTM.
As the concurrency level increases, however, acceleration de-
creases. The reason for this is that, at high concurrency
levels, there’s higher probability that the dispatcher code
is called concurrently to assign multiple transactions. In
such a scenario, transactions that operate on different re-
gions may be (concurrently) assigned to the same core. Since
new transactions are only compared with the currently ac-
tive transaction, this increases the probability of future col-
lisions.

It is noteworthy that even for the RA application, where
a natural conflict-probability function exists, BSCM reduces
collisions more efficiently than PROACTIVE and the gap
between the two increases with the concurrency level. While
PROACTIVE and BSCM perform almost the same for 2
threads, for 16 threads BSCM accelerates throughput by
a factor of more than 2 as compared with PROACTIVE
and by more than 3.5 as compared with RSTM. Finally,
PRO-BSCM performs best at all concurrency levels. The
improvement as compared with BSCM is small, though: it
is negligible for 12 threads and reaches its peak - approxi-
mately 21% - for 16 threads.

5. DISCUSSION
We presented CAR-STM, a scheduling-based mechanism

for STM collision avoidance and resolution. CAR-STM in-
corporates novel and highly efficient contention managers
that resolve conflicts by serializing the execution of colliding
transactions. These contention managers either greatly re-
duce (with BSCM) or completely eliminate (with PSCM) the
probability that a pair of colliding transactions will collide
again. CAR-STM also supports proactive collision reduction
by pre-assigning transactions that are more likely to conflict
to the same core. This is made possible by allowing an appli-
cation to provide a conflict-probability method which com-
putes an estimate of the probability that two transactions
will collide. This method is used by CAR-STM to determine
to which core a new transaction should be assigned.

We incorporated CAR-STM within RSTM and compared
the new implementation with the original RSTM on trans-
action workloads generated by STMBench7. Our results

Figure 8: RegionedArray throughput

show that CAR-STM achieves dramatic reduction in execu-
tion time and significant throughput increase while, at the
same time, providing orders-of-magnitude more stable per-
formance as compared with RSTM. Since we did not find a
natural conflict-probability function for STMBench7 work-
loads, this improvement is entirely the result of serializing
contention management.

We have tested the effect of proactive collision reduc-
tion on a synthetic application for which a natural conflict-
probability function exists and obtained significant through-
put increase. Nevertheless, even for this application, the im-
provement obtained by serializing contention management
was more significant. Combining proactive collision reduc-
tion and serializing contention management yielded the high-
est throughput for this application.

Although the quality of STM implementations is con-
stantly improving, they have yet to demonstrate that they
can provide performance comparable to that of lock-based
applications across the concurrency range. We have shown
that transaction-aware scheduling and serializing contention
management can significantly speed-up STM execution and
believe that they hold the potential of bringing further per-
formance gains.

While our results show that proactive collision reduction
can improve performance for some application, this work
seems to indicate that serializing contention management is
a more general and powerful collision reduction technique.

This work can be extended in several ways. First, more
sophisticated serializing contention managers may permit
more parallelism, while still greatly reducing the probabil-
ity of repeated collisions. Second, our scheme incurs some
overhead, which may be significant for low concurrency lev-
els. An adaptive algorithm that turns collision reduction
features on or off dynamically may improve performance for
such workloads. Third, our current implementation employs
non-preemptive scheduling: unless a transaction is aborted,
a TQ thread must finish its execution before it can proceed
to execute other transactions. Possibly a more sophisticated
scheduling algorithm can resolve this robustness issue while
still keeping pseudo-parallelism at a low level. Finally, this
work suggests that making the operating-system scheduler
“transaction-aware”may yield significant performance gains.



We leave these for future work.
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