Rasterization & Scan Conversion
3D Rendering Pipeline

3D Geometric Primitives

- **Modeling Transformation**: Transform into 3D world coordinate system
- **Lighting**: Illuminate according to lighting and reflectance
- **Viewing Transformation**: Transform into 3D camera coordinate system
- **Projection Transformation**: Transform into 2D camera coordinate system
- **Clipping**: Clip primitives outside camera’s view
- **Scan Conversion**: Draw pixels (includes texturing, hidden surface, etc.)
- **Image**
Overview

- Rasterization:
 - Figure out which pixels to draw/fill?

- Later…

- Shading
 - Determine a color for each filled pixel

- Texture Mapping
 - Describe shading variation within polygon interiors
Rasterization

- Render an image of a geometric primitive by setting pixel colors

```c
void SetPixel(int x, int y, Color rgba)
```

- Example: Filling the inside of a triangle
2D Line

- **Implicit representation:**
 \[\alpha x + \beta y + \gamma = 0 \]

- **Explicit representation:**
 \[y = mx + B \quad m = \frac{y_1 - y_0}{x_1 - x_0} \]

- **Parametric representation:**
 \[P = \begin{pmatrix} x \\ y \end{pmatrix} \]
 \[P = P_0 + (P_1 - P_0)t \quad t \in [0..1] \]
2D Line - Scan Conversion

\[(x_0, y_0)\] \[\rightarrow\] \[(x_1, y_1)\]
Scan Conversion - Lines

Basic Algorithm
For x = x₀ to x₁
 y = mx + B
 PlotPixel(x, round(y))
end;

slope = m = \frac{y₁ - y₀}{x₁ - x₀}
offset = B = y₁ - mx₁
Assume |m| < 1
Assume x₀ < x₁

For each iteration: 1 float multiplication, 1 addition, 1 Round
Scanning the X-axis v.s.
Scanning the Y-axis
Slopes

-1 > m > -∞

y₁ < y₂

x₂ < x₁

0 ≥ m ≥ -1

0 < m ≤ 1

x₂ < x₁

y₂ < y₁

1 < m < ∞

x₁ < x₂

0 ≤ m ≤ 1

x₁ < x₂

0 > m ≥ -1

y₂ < y₁

-1 > m > -∞
Incremental Algorithm

\[y_{i+1} = m x_{i+1} + B = m(x_i + \Delta x) + B = y_i + m \Delta x \]

if \(\Delta x = 1 \) then \(y_{i+1} = y_i + m \)

Algorithm

\[y = y_0 \]
For \(x = x_0 \) to \(x_1 \)
PlotPixel(\(x, \text{Round}(y) \))
\[y = y + m \]
end;

For each iteration: 1 addition, 1 Round
Full Code

Assume $x_1 > x_0$ and $|m| \leq 1$

```plaintext
Line(x0, y0, x1, y1)
begin
    float dx, dy, x, y, slope;
    dx := x1-x0;
    dy := y1-y0;
    slope := dy/dx;
    y := y0;
    for x:=x0 to x1 do
        begin
            PlotPixel( x, Round(y) );
            y := y+slope;
        end;
end;
```
Symmetric Cases

If $|m| \geq 1$

- $x = x_0$
- For $y = y_0$ to y_1
 - PlotPixel(round(x),y)
 - $x = x + 1/m$
- end;

if $x_0 > x_1$ for $|m| \leq 1$ or $y_0 > y_1$ for $|m| \geq 1$

- swap((x_0,y_0),(x_1,y_1))

Special Cases:

- $m = \pm 1$ (diagonals)
- $m = 0, \infty$ (horizontal, vertical)
Still Drawbacks…

- Accumulated error
- Float arithmetic
- Round operations
Accumulating Error

- The error after rounding is always smaller than 0.5
- We begin from integer value and accumulate error at a fixed rate (+m)
- We change the y when accumulated error is larger than 1/2!
Accumulating Error

Line(x₀, x₁, y₀, y₁)
 int deltax := x₁ - x₀
 int deltay := y₁ - y₀
 real error := 0
 // Assume deltax != 0 (line is not vertical)
 real m := deltay / deltax
 int y := y₀
 for x from x₀ to x₁
 plot(x, y)
 error := error + m
 if error ≥ 0.5 then
 y := y + 1
 error := error - 1.0

For each iteration: 1 float addition
Moving to Integers

- Multiply everything by \(dx \) we get
 - \(m \rightarrow dy \)
 - error \(\rightarrow \) error*\(dx \)
 - error = error + m \(\rightarrow \) error = error +dy
 - error > \(\frac{1}{2} \) \(\rightarrow \) error > dx/2
 - error = error -1 \(\rightarrow \) error = error - dx
Bresenham Line Drawing

Line(x₀, x₁, y₀, y₁)

```plaintext
int deltax := x₁ - x₀
int deltay := y₁ - y₀
int error := 0
int over := deltax/2

// Assume deltax != 0 (line is not vertical)
int y := y₀
for x from x₀ to x₁
    plot(x, y)
    error := error + deltay
    if error > over then
        y := y + 1
        error := error - deltax
```

For each iteration: 1 int addition
Drawing Circles

- Implicit representation (centered at the origin with radius R):
 \[x^2 + y^2 - R^2 = 0 \]

- Explicit representation:
 \[y = \pm \sqrt{R^2 - x^2} \]

- Parametric representation:
 \[
 \begin{pmatrix}
 x \\
 y
 \end{pmatrix} = \begin{pmatrix}
 R \cos(t) \\
 R \sin(t)
 \end{pmatrix}
 \]
 \[t \in [0..2\pi] \]
Scan Conversion - Circles

Basic Algorithm

For \(x = -R \) to \(R \)

\[
y = \sqrt{R^2 - x^2}
\]

PlotPixel\((x, \text{round}(y))\)

PlotPixel\((x, -\text{round}(y))\)

Comments:

- Square-root operations are expensive.
- Float arithmetic.
- Large gap for \(x \) values close to \(R \).
For a circle centered at the origin:
If \((x,y)\) is on the circle then -
\((y,x)\) \((y,-x)\) \((x,-y)\) \((-x,-y)\) \((-y,-x)\) \((-y,x)\) \((-x,y)\)
are on the circle as well.
Therefore we need to compute only one octant \((45^\circ)\) segment.
Circle Midpoint Algorithm

- The circle is located at (0,0) with radius R.
- We start from \((x_0,y_0)=(0,R)\).
- One can move either East or South-East.
- \(d(x,y)\) will be a threshold criteria at the midpoint.
Threshold Criteria

- Key Idea: check the sign of the function at the midpoint and know if the circle is above or below the midpoint.

\[d(x,y) = f(x,y) = x^2 + y^2 - R^2 = 0 \]
Criterion

• At the beginning \((X_0 = 0, Y_0 = R) \).

\[d_{\text{start}} = d(x_0 + 1, y_0 - 1/2) = d(1, R-1/2) = 1 + R^2 - R + 1/4 - R^2 = 5/4 - R \]

• If \(d < 0 \) we move \textit{East}:

\[\Delta_E = d(x_0 + 2, y_0 - 1/2) - d(x_0 + 1, y_0 - 1/2) = 2x_0 + 3 \]

• If \(d > 0 \) we move \textit{South-East}:

\[\Delta_{SE} = d(x_0 + 2, y_0 - 3/2) - d(x_0 + 1, y_0 - 1/2) = 2(x_0 - y_0) + 5 \]
• Δ_E and Δ_{SE} are not constants.
• Since d is incremented by integer values, we can use $d_{\text{start}} = 1-R$, yielding an integer algorithm. This has no affect on the threshold criteria.
Midpoint Circle Algorithm

```c
Circle Octant2 (R)
begin
int x, y, d;
x := 0;
y := R;
d := 1-R;
PlotPixel(x,y);
while ( y>x ) do
    if ( d<0 ) then /* East */
        begin
            d := d+2x+3;
x := x+1;
        end;
    else begin /* South East */
            d := d+2(x-y)+5;
x := x+1;
y := y-1;
        PlotPixel( x,y );
    end;
end;

Can draw all 8 octants
```
Triangle Rasterization

- Properties of a good algorithm
 - Symmetric
 - Straight edges
 - Antialiased edges
 - No cracks between adjacent primitives
 - MUST BE FAST!
Simple Algorithm

- Color all pixels inside triangle

```c
void ScanTriangle(Triangle T, Color rgba) {
    for each pixel P at (x, y) {
        if (Inside(T, P))
            SetPixel(x, y, rgba);
    }
}
```
Inside Triangle Test

- A point is inside a triangle if it is in the positive halfspace of all three boundary lines.
 - Triangle vertices are ordered counterclockwise.
 - Point must be on the left side of every boundary line.
Boolean Inside(Triangle T, Point P) {
 for each boundary line L of T {
 Scalar d = L(Px,Py);
 if (d < 0.0) return FALSE;
 }
 return TRUE;
}
Triangle Sweep-Line

- Take advantage of spatial coherence
 - Compute which pixels are inside using horizontal spans
 - Process horizontal spans in scan-line order

- Take advantage of edge linearity
 - Use edge slopes to update coordinates incrementally
void ScanTriangle(Triangle T, Color rgba) {
 for each edge pair {
 initialize x_L, x_R;
 compute dx_L/dy_L and dx_R/dy_R;
 for each scanline at y
 for (int $x = x_L$; $x <= x_R$; $x++$)
 SetPixel(x, y, rgba);
 $x_L += dx_L/dy_L$;
 $x_R += dx_R/dy_R$;
 }
}

Use Bresenham Algorithm
Rasterizing Triangles

- There are two questions:
 1. Which pixels to draw?
 2. What color to give them?
Assume we know the color at vertices (later…)

We want to determine color values of points (pixels) inside the triangle based on the vertices

How?

Convex combination → Barycentric Coordinates:

\[\alpha_1 + \alpha_2 + \alpha_3 = 1 \]

\[p = \alpha_1 p_1 + \alpha_2 p_2 + \alpha_3 p_3 \]

\[F(p) = \alpha_1 F_1 + \alpha_2 F_2 + \alpha_3 F_3 \]
Barycentric Coordinates

For triangles (and tetrahedra in 3D etc.) the convex combination defines barycentric coordinates for each point inside the triangle:

\[p = \alpha_1 p_1 + \alpha_2 p_2 + \alpha_3 p_3 \]

\[\alpha_1 = \frac{A_1}{A_0} \]
\[\alpha_2 = \frac{A_2}{A_0} \]
\[\alpha_3 = \frac{A_3}{A_0} \]
\[\alpha_1 + \alpha_2 + \alpha_3 = 1 \]
Barycentric Coordinates

\[
x = \lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 \\
y = \lambda_1 y_1 + \lambda_2 y_2 + \lambda_3 y_3
\]

\[
x = \lambda_1 x_1 + \lambda_2 x_2 + (1 - \lambda_1 - \lambda_2) x_3 \\
y = \lambda_1 y_1 + \lambda_2 y_2 + (1 - \lambda_1 - \lambda_2) y_3
\]

\[
\lambda_1 (x_1 - x_3) + \lambda_2 (x_2 - x_3) + x_3 - x = 0 \\
\lambda_1 (y_1 - y_3) + \lambda_2 (y_2 - y_3) + y_3 - y = 0
\]

\[
T = \begin{pmatrix} x_1 - x_3 & x_2 - x_3 \\ y_1 - y_3 & y_2 - y_3 \end{pmatrix} \\
T \cdot \lambda = r - r_3 \\
\begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = T^{-1} (r - r_3)
\]

\[
\lambda_1 = \frac{(y_2 - y_3)(x - x_3) + (x_3 - x_2)(y - y_3)}{\det(T)} = \frac{(y_2 - y_3)(x - x_3) + (x_3 - x_2)(y - y_3)}{(y_2 - y_3)(x_1 - x_3) + (x_3 - x_2)(y_1 - y_3)},
\]

\[
\lambda_2 = \frac{(y_3 - y_1)(x - x_3) + (x_1 - x_3)(y - y_3)}{\det(T)} = \frac{(y_3 - y_1)(x - x_3) + (x_1 - x_3)(y - y_3)}{(y_3 - y_1)(x_2 - x_3) + (x_1 - x_3)(y_2 - y_3)},
\]

\[
\lambda_3 = 1 - \lambda_1 - \lambda_2.
\]
Simpler:
(Bi-)Linear Interpolation

- Assumption: Data varies linearly between adjacent data points (vertices).
- On triangle edges:
 \[(1-t)f_0 + tf_1 \text{ when } 0 \leq t \leq 1 \]
- Linear interpolation (a mapping from \([0,1]\)):
- What happens inside the triangles?
Bi-Linear Interpolation

- We can use two linear interpolations:
f varies linearly in the triangle

- This means we can find a plane
 \[f(x,y) = Ax + By + C \]
- If we find A, B, C we can set \(f(x_0, y_0) = Ax_0 + By_0 + C \)
- But the plane passes through \((x_1, y_1, f_1)\), \((x_2, y_2, f_2)\) and \((x_3, y_3, f_3)\) so:

\[
\begin{align*}
 f_1 &= Ax_1 + By_1 + C \\
 f_2 &= Ax_2 + By_2 + C \\
 f_3 &= Ax_3 + By_3 + C
\end{align*}
\]

\[
\begin{pmatrix}
 x_1 & y_1 & 1 \\
 x_2 & y_2 & 1 \\
 x_3 & y_3 & 1
\end{pmatrix}
\begin{pmatrix}
 A \\
 B \\
 C
\end{pmatrix} =
\begin{pmatrix}
 f_1 \\
 f_2 \\
 f_3
\end{pmatrix}
\]

\[
\begin{pmatrix}
 A \\
 B \\
 C
\end{pmatrix} =
\begin{pmatrix}
 x_1 & y_1 & 1 \\
 x_2 & y_2 & 1 \\
 x_3 & y_3 & 1
\end{pmatrix}^{-1}
\begin{pmatrix}
 f_1 \\
 f_2 \\
 f_3
\end{pmatrix}
\]
Polygon Rasterization (non-triangular)

- Fill pixels inside a polygon
 - Triangle
 - Quadrilateral
 - Convex
 - Star-shaped
 - Concave
 - Self-intersecting
 - Holes

What problems do we encounter with arbitrary polygons?
Flood Fill

- Assume a polygon is simple (no self intersections, no holes)
- Let P be a polygon with n vertices, v_0 to v_{n-1}. Denote $v_n = v_0$.
- Let c be the color to paint this polygon.
- Let $p=(x,y)$ be a point in P.
Flood Fill Algorithm

FloodFill(P,x,y,c)
if (OnBoundary(x,y,P) or Colored (x,y,c))
 then return;
else begin
 PlotPixel(x,y,c);
 FloodFill(P,x+1,y,c);
 FloodFill(P,x,y+1,c);
 FloodFill(P,x,y-1,c);
 FloodFill(P,x-1,y,c);
end;

Comment: Slow algorithm due to recursion.
Polygon Scan Conversion

- Need better test for points inside polygon
 - Triangle method works only for convex polygons
Inside Polygon Rule

- What is a good rule for which pixels are inside?

Concave Self-Intersecting With Holes
Inside Polygon Rule

- Odd-parity rule
 - Any ray from P to infinity crosses odd number of edges

Concave

Self-Intersecting

With Holes
Polygon Sweep-Line Algorithm

- Incremental algorithm to find spans
 - Determine insideness with odd parity rule
 - Takes advantage of scanline coherence
Scan Conversion - Basic Algorithm

ScanConvert \((P, c)\)

For \(j:=0\) to \(\text{ScreenYMax}\) do

\[I := \text{points of intersection of edges from } P \text{ with line } y=j; \]

Sort \(I\) in increasing \(x\) order and fill
with color \(c\) alternating segments;

end;

How do we find the intersecting edges?
What happens in such cases?
Polygon Sweep-Line Algorithm

One can maintain an active list of edges A, that contains the edges that currently intersect with the scan line:

```c
void ScanPolygon(Triangle T, Color rgba){
    sort edges by maxy
    make empty “active edge list”
    for each scanline (top-to-bottom) {
        insert/remove edges from “active edge list”
        update x coordinate of every active edge
        sort intersections by x coordinate
        for each pair of intersections (left-to-right)
            SetPixels($x_i$, $x_{i+1}$, $y$, rgba);
    }
}
```
Implementation with Linked List

Edge List
(Ordered by Y_{min}) \rightarrow easy to insert

![Edge List Diagram]

Active Edges
(Ordered by Y_{max}) \rightarrow easy to remove

![Active Edges Diagram]
Why do we need x-sorting?

- Edge \((a,b)\) will be placed before edge \((c,d)\) in the active list because it has smaller \(y_{\text{Max}}\).
- Therefore, the right intersection point will be found before the left intersection point.
Flood Fill vs. Scan Conversion

<table>
<thead>
<tr>
<th>Flood Fill</th>
<th>Scan Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very simple.</td>
<td>More complex.</td>
</tr>
<tr>
<td>Requires a seed point.</td>
<td>No seed point is required.</td>
</tr>
<tr>
<td>Requires very large stack size.</td>
<td>Requires small stack size.</td>
</tr>
<tr>
<td>Common in paint packages.</td>
<td>Used in image rendering.</td>
</tr>
<tr>
<td>Unsuitable for line based Z-buffer.</td>
<td>Suitable for line based Z-buffer.</td>
</tr>
</tbody>
</table>
Hardware Scan Conversion

- Convert everything into triangles
 - Scan convert the triangles
Aliasing

Jaggies
Anti-Aliasing
Anti-Aliasing
Hardware Antialiasing

- Supersample pixels
 - Multiple samples per pixel
 - Average subpixel intensities (box filter)
 - Trades intensity resolution for spatial resolution
Super Sampling

Original 100x100

Original 50x50

Averaged and reduced to 50x50

(+): simple & general
(-): x4 memory size
(-): x4 scan conversion + reduction