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The system of equations describing the effects of heating, evaporation, and combustion of fuel droplets in a
monodisperse spray is simplified assuming that the Nusselt and Sherwood numbers are equal to 2. The radiative
energy exchange between fuel droplets surface and gas is described by using the P-1 model with Marshak
boundary conditions. The chemical term is presented in the Arrhenius form with the pre-exponential factor
calculated from the enthalpy equation, using the Shell autoignition model. The resultant, singularly perturbed
system of ordinary differential equations is analyzed, based on the geometrical version of the integral manifold
method. The ignition process is subdivided into two stages: droplet evaporation and ignition of the gaseous
mixture. Results predicted by the analytical solutions are compared with those predicted by the CFD package
VECTIS. It is suggested that the analytical solution underpredicts the evaporation time. A considerably better
agreement between the evaporation times predicted by VECTIS and the proposed theory is achieved when the
gas temperature is assumed to be equal to the local temperature in the vicinity of droplets. The effects of
thermal radiation are significant, especially at high temperatures and with large droplets, and cannot be
ignored. © 2001 by The Combustion Institute

NOMENCLATURE

a radiation absorption coefficient
a0,1 coefficients defined in Eq. (34)
as scattering coefficient
au,r coefficients defined in Eqs. (28) and

(29)
A constant pre-exponential rate factor
Af4 rate of production of the intemediate

agent
c9 molar concentration
Cpg specific heat capacity of gas
Di binary diffusion coefficient
E activation energy
f, F, g coefficients defined in Eqs. (30) and

(31)
h convection heat transfer coefficient
HL «1ru=1 1 bu 1 «1«3r2[(1 1

bu )4 2 1]
HR h exp (u/1 1 bu)
hm mass transfer coefficient
L enthalpy of evaporation
n droplet number density
Nu Nusselt number
p pressure or ln (1 1 bu)

Pr Prandtl number
q r3

qr heat flux
Q specific (unit mass) heat of reaction
r Rd/Rd0

Rd radius of droplets
Ru universal gas constant
Re Reynolds number
s (cr3/e2) 1 h
Sc Schmidt number
Sh Sherwood number
t time
tr A21 exp (1/b)
T temperature

Greek symbols

a volume fraction
b RuTs0/E
g rg0CpgTgob/rffQf

ed emissivity of droplets
e1 2ed/(2 2 ed)
«1 4pRd0nlg0Ts0

3/ 2b(rffagQf A=Tg0)21

exp (1/b)
«2 Qf rff ag(rlLal)

21

«3 Ts0
5/ 2Tg0

1/ 2Rd0s1/(lg0b)
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c Qf/L
u (Tg 2 Ts0)Ts0

22ERu
21

k coefficient defined in Eq. (37)
l thermal conductivity
m molar mass of fuel
r density
s Stefan–Boltzmann constant
s1 se1
t t/tr

V slow surface

Subscripts

atm atmospheric
cf saturated vapor
d droplet
evap evaporation
g gas
f fuel
ff overall fuel
l liquid
r radiation
s surface of droplets
w wall
0 initial values
1 perturbation

INTRODUCTION

The problem of thermal explosion and ignition
in a gas containing fuel droplets is a long-
standing one and has numerous applications to
furnaces, gas turbines and internal combustion
engines [1–3]. Over recent years the theoretical
analysis of this problem has been mainly based
on computational fluid dynamics (CFD) pack-
ages [3–5]. This approach has a number of
attractive features since it potentially can ac-
count for the various heat transfer and combus-
tion processes in a self-consistent way. It does
not, however, allow the separation of the con-
tribution of different processes and, as a result,
it cannot be particularly helpful in aiding under-
standing of the relative contributions of these
processes. An alternative approach to this prob-
lem is based on analytical analyses of the un-
derlying equations in some limiting cases. This
approach cannot replace the CFD approach but
can effectively complement it. One of these
analyses is based on the geometrical asymptotic
method of integral manifolds suggested and

developed by Babushok and Gol’dshtein [6] and
Gol’dshtein and Sobolev [7]. This method has
been successfully applied to thermal explosions
in a number of papers [8–10]. Goldfarb et al. [8,
9] assumed heat to be transferred to droplets by
thermal conduction rather than convection.
McIntosh et al. [10] considered the convection
heat transfer, but assumed the convective heat
and mass transfer coefficients to be constants
which were independent of temperature or
droplet radii [11]. None of these papers consid-
ered the effect of thermal radiation on heat
transfer between droplets and gas, a process
that is not negligibly small in many practical
applications, including diesel engines [12–16].

The present paper discusses a new analytical
solution of the underlying equations. Our ap-
proach is based on the further development of
some ideas originally suggested in [8–10]. In
particular, the dependence of the convective
heat transfer coefficient on both gas tempera-
ture and droplet radii is taken into account. The
contribution of the thermal radiation is included
based on the P-1 approximation for the thermal
radiation transfer with Marshak boundary con-
ditions [17–19]. As in [8–10], all droplets are
assumed to have the same radii (monodisperse
spray). Most of the analysis of this paper is
equally applicable to the thermal explosion of
preheated droplets [8, 20] and the thermal
ignition of cold droplets in a hot gas [9]. The
results of the analysis are mainly applied to the
latter problem, which is particularly important
in diesel engines, although the model is appli-
cable to the initial stage of ignition process only,
before the rapid increase of gas temperature.

BASIC EQUATIONS AND
APPROXIMATIONS

The radiative heat exchange between fuel drop-
lets and the surroundings in many industrial
environments, including diesel engines, is com-
plicated by the formation of soot. The presence
of soot substantially increases the absorptivity
and emissivity of gas. As a result, the gas
emissivity may exceed the emissivity of walls.
Large concentrations of soot allow the gas to be
considered as optically thick and hence the
differential P-1 model can be applied to model-
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ling the thermal radiative transfer [17–19]. This
model can be applied even if the condition of
large optical thickness is not satisfied (in the
initial stage before ignition) although in this
case one can expect overprediction of radiative
fluxes from localized sources [19]. Assuming
that the droplets are opaque, their surfaces are
gray, and the so called radiative temperature Tr

is equal to gas temperature Tg, the energy
balance equation for the gas can be written as
[20]:

rgCpgag

dTg

dt
5 hc9ffmfagQf A exp S2

E
RuTg

D
2 4pRd

2nh~Tg 2 Ts!

2 4pRd
2nse1~Tg

4 2 Ts
4! (1)

where rg is the gas density, Cpg the specific heat
capacity of gas, ag the non-dimensional volu-
metric gas content, h 5 c9f/c9ff the non-dimen-
sional mole fraction of the combustible gas, c9ff
the overall fuel molar concentration, c9f the fuel
molar concentration far from droplets, mf the
molar mass of fuel (rf 5 mfcf), Qf specific (per
unit mass) heat of reaction, A a constant pre-
exponential rate factor (in s21), E the activation
energy, Ru the universal gas constant, Rd the
droplet radius, h the convection heat transfer
coefficient, n the droplet number density, e1 5
2ed/(2 2 ed), ed the emissivity of the droplet
surfaces, s the Stefan–Boltzmann constant, Ts

the temperature of droplet surfaces. The pa-
rameter A has a slightly different meaning when
compared with the parameters A used in [8–10].

When deriving Eq. 1 the Marshak boundary
condition was assumed at the droplet surfaces
[21]. The radiative exchange with semi-transpar-
ent droplets was considered in [22–24], but this
is beyond the scope of this paper. In the limiting
case of an optically thin gas (the start of the
combustion process in diesel engines) the same
Eq. 1 could be used but with e1 replaced by ed

and Tr replaced by the wall temperature Tw.
The choice of the normalizing factor c9ff ensures
that h # 1 [9]. Apart from the last (radiation)
term on the right hand side, Eq. 1 is similar to
Eq. 1 in McIntosh et al. [10]. When deriving 1
the chemical term is effectively presented in the
form appropriate to a one step reaction with
A 5 const [1, 25]. This is justified if the

concentration of fuel is assumed to be so small
that the percentage of oxygen consumed can be
ignored. An alternative simplified presentation
of the chemical term has been discussed by
Bergeron and Hallett [26]. The value of A is
adjusted to give agreement between the reac-
tion rate predicted by the one step reaction and
by a more realistic autoignition model (see
Appendix). The equation for the radius of a
droplet is taken in the form identical to that
given by McIntosh et al. [10] [see their Eq. (2)]:

dRd

dt
5 2

hmmf~c9fs 2 c9f!

rl
, (2)

where rl is the density of the liquid fuel, c9fs the
saturated vapor molar concentration, and hm

the mass transfer coefficient.
The equation for the concentration of com-

bustible gas is:

mf c9ffag

dh

dt
5 2mfc9ffhag A exp S2

E
RuTg

D
1 4pRd

2nhmmf~c9fs 2 c9f!. (3)

In Eqs. 1–3 it is implicitly assumed that the
Spalding number is small, a reasonable assump-
tion when the molar fraction of fuel is small.
The latter assumption was already used when
we presented the chemical term in the one step
reaction form with A 5 const.

The characteristic times of droplet, td, and
gas, tg, heating can be estimated as

td 5 ClrlRd0
2 /~3lg0!

tg 5 Cpgrg0Tg0/~c9fmf Qf A! exp ~E/~RuTg0!!.

The first expression assumes the droplets to be
heated mainly by convection and their temper-
ature is similar to that of the gas. The second
expression assumes that the leading contribu-
tion comes from the chemical term. For the
typical diesel engine parameters td ,, tg and
the droplet heating can be neglected [10]. This
outcome allows the approximation Ts 5 const,
justified by rigorous numerical simulation of
heating and evaporation of fuel droplets, as
discussed later, and supported by experiments
[27, 28].

When analyzing Eqs. 1–3 without radiation
terms McIntosh et al. [10] assumed that rg, h,
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and hm are constants which depend on neither
the droplet radii nor the temperature of the
surrounding gas. These assumptions are not
used in our analysis. Restricting the analysis to
the case of constant pressure, rg 5 rg0Tg0/Tg,
where rg0 is the gas density at the initial tem-
perature Tg0. Introducing Nusselt and Sher-
wood numbers h 5 lgNu/ 2 Rd, hm 5 DiSh/
2 Rd, where lg is the gas thermal conductivity
and Di the binary diffusion coefficient. The
thermal conductivity of both monoatomic and
polyatomic gases is proportional to =Tg [29].
The temperature dependence of the specific
heat is ignored, while Di is proportional to Tg

3/ 2

and inversely proportional to p [11]. Hence:

lg 5 lg0ÎTg

Tg0
, (4)

Di 5
Di0 patm

Tg0
3/ 2

Tg
3/ 2

p
, (5)

where suffix 0 indicates values at Tg0, and patm is
the atmospheric pressure.

In view of Eqs. 4 and 5 and with Nu 5 Sh 5
2, expressions for h and hm become:

h 5
lg0

ÎTg0

ÎTg

Rd
, (6)

hm 5
Di0p

Rd
S Tg

Tg0
D3/ 2

, (7)

where Di0p 5 Di0patm
/p.

The assumption that Nu 5 Sh 5 2 implies
that the droplets are suspended in stationary
environment. The relative motion between
droplets and gas can be taken into account if we
replace lg0 by 2lg0/Nu and Di0 by 2Di0/Sh,
where Nu 5 2.0 1 0.6Re1/2Pr1/3 and Sh 5 2.0 1
0.6Re1/2Sc1/3. In the case of diesel engines most
droplets are entrained in the flow of air/fuel
vapor mixture, except in the immidiate vicinity
of the nozzles, where the relative velocities of the
small droplets are small, Re ,, 1. With Pr ' 0.7
for air and Sc ' 2 for the diffusion of heptane in
air [30] (data for diesel fuel vapor is not avail-
able), 0.6Re1/2Pr1/3 ,, 1 and 0.6Re1/2Sc1/3 ,, 1.
This justifies the application of the model to
diesel engines.

From Eqs. 6 and 7, Eqs. 1–3 can be written in
dimensionless forms as:

g~1 1 bu !21 du

dt
5 h exp

u

1 1 bu

2 «1ru ~1 1 bu !1/ 2

2 «1«3r2@~1 1 bu !4 2 1#,

(8)

dr3

dt
5 2«1«2ur~1 1 bu !1/ 2

2 «1«2«3r2@~1 1 bu !4 2 1#, (9)

dh

dt
5 2h exp

u

1 1 bu
1 «1cru ~1 1 bu !1/ 2

1 «1«3cr2@~1 1 bu !4 2 1#, (10)

where g 5 rg0CpgTgob/rffQf, b 5 RuTs0/E,
u 5 (Tg 2 Ts0)Ts0

22ERu
21, t 5 t/tr, tr 5 A21 exp

(1/b), «1 5 4pRd0nlg0Ts0
3/2b(rffagQfA=Tg0)

21 exp
(1/b), r 5 Rd/Rd0, «2 5 Qfrffag(rlLal)

21,
«3 5 Ts0

5/ 2Tg0
1/ 2Rd0s1/(lg0b), c 5 Qf/L, s1 5

se1, rff 5 c9ffmf, al 5 (4/3)pRd
3n is the volume

concentration of liquid fuel droplets.
Parameters b and g are conventional param-

eters in the Semenov theory of thermal explo-
sion and their physical meanings are well-known
[31, 32]; b is the reduced initial temperature
(with respect to so-called activation tempera-
ture E/Ru) and g represents the final dimen-
sionless adiabatic temperature of the thermally
insulated system after explosion. Characteristic
values of both these parameters are small
compared with unity for most gaseous mix-
tures, because of the high exothemicity of the
chemical reaction and the high activation
energy. The parameters «1, «2 describe the
interaction between gaseous and liquid phases.
The parameter «3 describes the impact of ther-
mal radiation and represents the ratio of radia-
tive and convective heat transfer coefficients
[20]. Characteristic values of c lie in the range
10–100.

Apart from the difference in the definitions of
h, «3 and u, Eqs. 8–10 are identical to those
used in [20]. Initial conditions for Eqs. 8–10:
u 5 u0 5 u (Tg0), h 5 h0 5 c9f 0/c9ff and r 5 1
when t 5 0. These are more general than those
used in [8] where it was assumed Ts 5 Tg0 at
t 5 0. The case of Tg0 . Ts, but without
thermal radiation, was considered in [9]. The
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latter approximation describes droplet ignition
and is applicable when cold droplets are in-
jected into hot gas.

The energy integral for the Eqs. 8–10 can be
written as:

h 5 h0 2
g

b
ln S 1 1 bu

1 1 bu0
D 1

c 2 1
«2

~1 2 r3!.

(11)

Combination of Eqs. 8 and 11 gives:

g~1 1 bu !21 du

dt
5 Fh0 2

g

b
ln S 1 1 bu

1 1 bu0
D

1
c 2 1

«2
~1 2 r3!G

z exp
u

1 1 bu

2 «1ru ~1 1 bu !1/ 2

2 «1«3r2@~1 1 bu !4 2 1#.

(12)

Eqs. 8–10 allow steady state conditions to be
found. It is expected that once droplet evapora-
tion and gaseous combustion have been com-
pleted, then r 5 h 5 0. This allows the final
temperature to be found as:

ufinal 5
1
b Hexp Fb

g Fh0 1
c 2 1

«2
G

1 ln ~1 1 bu0!G 2 1J . (13)

ANALYSIS

Dynamics of the System

In Eq. 8 the chemical reaction term is exother-
mic, whereas the heat transfer terms are endo-
thermic. In Eq. 10 the chemical reaction term
depletes the fuel vapor, whereas the heat trans-
fer terms produce it. The two-phase mixture is a
multiscale system with differences in character-
istic relaxation times of the different physico-
chemical processes. Equations 8–10 are a sin-
gularly perturbed system of ODEs, a system
with small parameters before the derivatives.

The advantage of this system is that it can be

analysed by subdividing it into a number of
consequent steps. The relative rates of change
of the variables are estimated, to ascertain
which are fast and which are slow. The system is
shown to be bi-hierarchical and essential fea-
tures are presented by the method of integral
manifolds. Finally, the method is applied to the
analysis of the dynamics of the system.

Multiscale System

Eqs. 8–10 can be rewritten in the form:

g~1 1 bu !21 du

dt
5 HR~u, h! 2 HL~u, h, r!,

(14)

d~r3!

dt
5 2«2HL~u, h, r!, (15)

dh

dt
5 2HR~u, h! 1 cHL~u, h, r!, (16)

where HR(u, h) and HL(u, h, r) indicate the
chemical heat release and the heat loss because
of convection and radiation; these parameters
are defined as:

HR~u, h! 5 h exp S u

1 1 bu
D ;

HL~u, h, r! 5 «1ruÎ1 1 bu

1 «1«3r2@~1 1 bu !4 2 1#.

With the new variables: p 5 ln (1 1 bu ); q 5
r3; s 5 (cr3/«2) 1 h Eqs. 14–16 simplify to:

g

b

dp
dt

5 HR~u, h! 2 HL~u, h, r!, (17)

1
«2

dq
dt

5 2HL~u, h, r!, (18)

ds
dt

5 2HR~u, h!, (19)

where (u, h, r) on the right of Eqs. 17–19 are
functions of p, q, and s.

For typical values of parameters for a diesel
engine, the inequalities 1/«2 ,, g/b , 1 hold
(for values of parameters discussed later g/b 5
0.268, 1/«2 5 0.0058 for Ts0 5 600 K and
1/«2 5 0.0084 for Ts0 5 300 K). This allows the
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differences in the values of 1/«2, g/b, and unity
to be taken into account and different scales of
characteristic times to be introduced in Eqs.
17–19, creating a bi-ierarchy in this system of
equations: the variable q is fast, the variable p is
intemediate and the variable s is slow.

A number of asymptotic methods can be
applied for qualitative study of multi-scale sys-
tems of this type. The approach adopted decom-
poses the multiscale system into so called ‘fast’
and ‘slow’ subsystems on the ‘fast’ and ‘slow’
integral manifolds. The advantage of this is that
these integral manifolds have lower dimensions
than the original problem.

Method of Integral Manifolds

A general theory of integral manifolds was
developed for non-linear mechanics and has
been described in detail in the books [33, 34], as
well as the paper [35]. An original geometrical
version of the general integral manifolds ap-
proach was adopted for the stiff problems of
chemical kinetics and combustion by
Gol’dshtein and Sobolev [7]. The high efficiency
of this mathematical tool has been demon-
strated in a variety of applications and results
appear in [8–10] and [20].

To demonstrate the essence of this approach
a singularly perturbed system of ordinary differ-
ential equations is considered:

dx
dt

5 F~ x, y! (20)

e
dy
dt

5 G~ x, y!, (21)

where x and y are n- and m-dimensional vector
variables, and e ,, 1 is a positive parameter.

According to a standard definition [34] a
manifold (surface) M :5 {( x, y) : y 5 h( x, e)}
is an integral manifold of the Eqs. 20–21 if any
phase trajectory g( x, y) of the Eqs. 20–21
intersecting with M belongs to M in the domain
of existence of M. The general theory of integral
manifolds states that integral (invariant) mani-
folds M belong to the e-neighborhood of the
slow (quasistationary) manifold M0 :5 {( x, y) :
y 5 h0( x)}, where y 5 h0( x) is an isolated
solution of Eq. 21 with e 5 0:

G~ x, h0~ x!! 5 0. (22)

Moreover there exists a unique representation
of h( x) as an asymptotic series with respect to
the small parameter e:

h~ x, e! 5 h0~ x! 1 O
i51

`

eihi~ x!. (23)

An effective analytical algorithm for the eval-
uation of hi( x) for an arbitrary i exists (by
iteration) and it has been proved that under
specific conditions [34] the series converges to
the function h( x, e). The conditions for exis-
tence and the uniqueness of the manifold M :5
{( x, y) : y 5 h( x, e)} in the e-neighborhood of
the slow manifold M can be determined, but the
discussion of these aspects is beyond the scope
of the present paper, see [34].

The general theory, which has become known
as the geometrical asymptotic version of inte-
gral manifolds method [33–35], leads to a num-
ber of important conclusions. In particular, it
can be shown that the slow surface (slow man-
ifold) M0 is a O(e) approximation of the inte-
gral manifolds, except at the points where the
basic assumptions are no longer valid (the so-
called turning points). This allows us to write
the equation for the slow sub-system Eq. 20 on
the slow surface in the form:

dx
dt

5 F~ x, h0~ x!!

[which has a lower dimension than the original
system, Eqs. (20–21)] and to study the system
dynamics on it. The asymptotic series, Eq. 23, is
not time-dependent and standard methods of
time-dependent asymptotic series are not rele-
vant to its analysis. Asymptotic series of integral
manifolds of the type shown by Eq. 23 are
asymptotic expansions of ‘fast’ phase variables
based on ‘slow’ phase variables. This may be
interpreted in the following way. Each solution
of the system of Eqs. 20–21 can be presented as
a trajectory in the phase space of the variables x
and y. This trajectory can be subdivided into fast
and slow parts. On the fast part, the slow
variable x is assumed to be constant (quasi-
stationary). On the slow parts, the fast variable
y changes with approximately the same rate as
the slow one (on the corresponding slow inte-
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gral manifold fast and slow processes are bal-
anced). The slow parts of the trajectory are
located on the integral manifold M (a curve in
the two-dimensional case). For the purpose of
qualitative analysis its zero approximation, M0,
can be taken. This means that the application of
the technique presented above to the solution of
Eqs. 20–21 should start with an estimate of the
relative rates of change of the variables and a
decision as to which of them are fast and which
are slow.

Consider an arbitrary hierarchical level of the
system with several characteristic rates of
changes. For processes of the same order, all
the slower ones are assumed to be ‘frozen’,
whereas all the faster ones are expected to reach
their quasi-stationary state. Eventually, how-
ever, the processes at the hierarchical level
under consideration approach their quasi-sta-
tionary state. This state of relative balance is, in
general, temporary and these processes can
become fast once again [33–35]. This phenom-
enon is not always well understood and it is
sometimes believed that the processes always
become quasistationary after the first quasi-
relaxation [7].

Application of the Method

The bi-hierarchical behavior of Eqs. 17–19 al-
lows separation of the variables according to
their rates of change and application of the
method of integral manifolds for the analysis of
these equations.

When this system is applied to a diesel en-
gine, the condition h(t 5 0) 5 0 must be
imposed. The term HR is zero at the beginning
of the process as the initial concentration of the
gaseous fuel is zero. On the other hand, the
initial value of HL is, in general, large. As
already mentioned, for a diesel engine, 1/«2 ,,
g/b , 1. Because the right sides of Eqs. 17 and
18 are rather close (as HR ,, HL), it is to be
expected that q changes faster than p from the
beginning of the process until such time as HL

becomes small enough (in the zeroth approxi-
mation with respect to the small parameter
1/«2). A similar analysis of Eqs. 17 and 19 shows
the variable p to be fast relative to s, since g/b ,
1 and HR ,, HL at the beginning of the

process. Later, the chemical reaction terms bal-
ance the heat transfer terms, due to the temper-
ature rise. Eventually this leads to HR exceeding
HL. At this stage, explosion of the gaseous
mixture can be expected. The two different
hierarchies of variables can be recognized: s is
the slowest, q the fastest, and p is intermediate.

In general, the analysis of a bi-hierarchal
system presents a rather complicated mathe-
matical problem. It includes the study of two
different slow manifolds: the slow surface V
(the variable p is fast and changes, whereas the
variables q and s are slow and ‘frozen’) and the
slow curve L lying on this slow surface V (the
variables q and p are fast and change with
balanced rates, whereas the variable s is slow
and ‘frozen’). The analysis of possible trajecto-
ries is naturally subdivided into three stages.
First we focus on the fast part of the trajectory
in which the variable q changes, whereas two
others ( p and s) conserve their values. This
stage is completed when the trajectory reaches
the slow surface V: the rates of change of the
variables q and p become balanced. In accor-
dance with the above analysis the slow surface V
is determined by HL 5 0. Once the trajectory
reaches the slow surface it starts to move along
it. At the second stage, the direction of motion
is determined by the vector field at the point of
intersection. The exact location of the trajectory
lies in the neighborhood of small 1/«2 on the
slow surface; the trajectory adheres to the slow
surface V. At this stage the variables p and q are
considered as fast, whereas the variable s is
considered as slow (it conserves its initial value).
This continues until the trajectory intersects the
slow curve L, defined by the condition HL ;
HR. At the point of intersection the relative
rates of change of all three variables become
approximately equal and the trajectory is iden-
tified with the slow curve L (the third and the
last stage of the analysis). This continues until
the trajectory approaches the turning point or
the steady state of the system (explosion). At
this stage, the trajectory reaches the slow sur-
face HL 5 0.

It follows from this analysis that the equation
for the slow surface V can be written as:

V 5 $~u, h, r!uHL 5 0% (24)
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Eq. (24) describes two branches of the slow
surface:

r 5 0 (25)

uÎ1 1 bu 1 «3r@~1 1 bu !4 2 1# 5 0. (26)

The analysis of the vector field in the space
(u, h, r) shows that the first branch is stable and
attractive, whereas the second branch has no
physical meaning, as it implies that r , 0 when
u . 0. In the ( p, q, s) space shown in Fig. 1,
this first branch reduces to the ( p, s) plane.
Starting with the initial point P, the trajectory
moves on this branch parallel (in the zeroth
approximation with respect to the small param-
eter b/g«2) to the q axis, as shown in Fig. 1.
Once the trajectory has reached the slow sur-
face, Eq. 25, at the point Q the droplets evap-
orate (r 5 0). The s-coordinate of this point is
equal to unity as s continues to conserve its
initial value. Therefore, h 5 1 as r 5 0 (evap-
oration has been completed). The originally
formulated problem of thermal ignition in a
multiphase medium at this point turns into the
conventional problem of a thermal explosion in
a flammable gas. The constant value of p indi-
cates that the temperature of the mixture does
not change (in the zeroth approximation with
respect to the small parameter b/g«2) at the
initial stage of the process (part PQ of the
trajectory). The problem of finding the curve L
does not appear in this case.

The slow pace of gas temperature variation
during the evaporation process allows us to
simplify Eqs. 9 and 12 considerably and obtain
their analytical solutions. These are now dis-
cussed.

Evaporation Time

It can be assumed that the gas temperature
remains close to Tg0 during the heating, evapo-
ration and initial combustion processes. This
approximation allows us to write:

u 5 u0 1 u1, (27)

where uu1u ,, u0.
The approximation is justified when the con-

tribution of droplets is sufficiently small. Also, it
can be used during the initial stage of combus-
tion, before the actual explosion. This case is
particularly important for diesel engines where
the evaporation time of droplets and the values
of gas temperature, fuel concentration and
droplet radii can be estimated before explosion.
Analysis of critical conditions for the explosion
process requires a different approximation [36].

Having substituted Eq. 27 into Eqs. 12 and 9,
and retained only the first order terms the
following expressions are obtained:

du1

dt
5 au 1 buu1 (28)

r
dr
dt

5 ar 1 bru1, (29)

where

au 5 au0 1 au1r 1 au2r2 1 au3r3,

bu 5 bu0 1 bu1r 1 bu2r2 1 bu3r3,

ar 5 ar0 1 ar1r, br 5 br0 1 br1r,

au0 5 Sh0 1
c 2 1

«2
D 1 1 bu0

g
exp S u0

1 1 bu0
D ,

au1 5 2
«1u0~1 1 bu0!

3/ 2

g
,

au2 5 2
«1«3~1 1 bu0!@~1 1 bu0!

4 2 1#

g
,

Fig. 1. Schematic view of the ( p, q, s) space and the ‘fast’
trajectory PQ in it.

691THERMAL IGNITION ANALYSIS OF SPRAY



au3 5 2
~c 2 1!~1 1 bu0!

«2g
exp S u0

1 1 bu0
D ,

bu0 5 F21 1
1
g
S1 2

b

1 1 bu0
DSh0 1

c 2 1
«2

DG
z exp S u0

1 1 bu0
D ,

bu1 5 2
«1

g
S1 1

3
2

bu0D ~1 1 bu0!
1/ 2,

bu2 5 2
4«1«3b

g
~1 1 bu0!

4,

bu3 5 2
c 2 1

«2g
S1 2

b

1 1 bu0
D exp S u0

1 1 bu0
D ,

ar0 5 2
«1«2u0~1 1 bu0!

1/ 2

3
,

ar1 5 2
«1«2«3

3
@~1 1 bu0!

4 2 1#,

br0 5 2
«1«2~1 1 bu0!

1/ 2

3 F1 1
bu0

2~1 1 bu0!
G ,

br1 5 2
4«1«2«3b

3
~1 1 bu0!

3.

Rearranging Eqs. 28 and 29 gives:

du1

dr
1 fu1 5 g, (30)

where

f 5 Sbrau

ar
2 2

bu

ar
D r, g 5

rau

ar

The solution of Eq. 30, subject to the bound-
ary condition u1(r 5 1) 5 0 is:

u1 5 e2F E
1

r

geF dr, (31)

where F 5 *1
0 f dr. Having substituted Eq. 31

into Eq. 29, the implicit expression for the time
dependence of r can be found:

t 5 E
1

r r dr
ar 1 bru1~r!

. (32)

Assuming that r 5 0 in Eq. 32, the explicit
expression for the time for complete evapora-
tion of the fuel droplet is:

tevap 5 E
1

0 r dr
ar 1 bru1~r!

. (33)

This expression is accurate if the condition uu1u
,, u0 is satisfied throughout the whole process.
If this is not the case, then Eq. 33 gives the
upper limit of the physical ignition time delay.
The latter is a rough indicator of the total
ignition delay time, bearing in mind that the
chemical ignition delay time for diesel engines is
generally much less than the physical ignition
delay time [37].

Once the temporal dependence of tempera-
ture and droplet radii are obtained, the time
dependence of fuel concentration can be calcu-
lated from Eq. 11. With the assumption that uu1u
,, u0, the changes in Tg can be ignored when
estimating droplet radius. In this case combin-
ing Eqs. 2, 6, 7, and the assumption Ts 5 const
gives:

dr
dt

5 2a0 2
a1

r
, (34)

where r 5 Rd/Rd0, a0 5 se1(Tg0
4 2 Ts

4)/
LrlRd0, a1 5 lg0(Tg0 2 Ts)/LrlRd0

2 .
Having integrated Eq. 34 then:

t 5 2E
1

r r dr
a0r 1 a1

5
1
a0

F1 2 r 1
a1

a0
ln

a1 1 a0r
a1 1 a0

G . (35)

The assumption that the contribution of ther-
mal radiation is small implies that ua0u ,, ua1u
and Eq. 35 can be simplified to (ignoring the
fourth order terms):

t 5
1

2a1
~1 2 r2! 2

a0

a1
2 ~1 2 r3!. (36)

The first term in Eq. 36 gives the well known
d2-law for droplet evaporation. The second
term describes the correction due to the contri-
bution of thermal radiation.

Assuming r 5 0 in Eq. 36, an alternative
expression for droplet evaporation time can be
obtained in the form:
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tevap 5 tevap(0)~1 2 k!, (37)

where tevap(0) 5 LrlRd
2/ 2lg0(Tg0 2 Ts) is the

evaporation time in the absence of thermal
radiation, k 5 2se1Rd0(Tg0

4 2 Ts
4)/3lg0(Tg0 2

Ts) accounts for the effect of this.

APPLICATION TO DIESEL FUEL
DROPLETS

Following [37, 38], diesel fuel is approximated
by n-dodecane (C12H26). It is assumed that the
initial droplet radii are equal to Rd0 5 6 mm
and all droplets are identical. This enables the
analytical results to be employed. It is assumed
that once droplets have evaporated, the mixture
becomes stoichiometric with an air/fuel mass
ratio 11.7. This implies that the number density
of droplets is equal to 3.02 3 1012 m23, which
corresponds to al 5 2.73 3 1023 if the
droplets’ temperature is equal to 300 K and
their density is equal to 744 kg/m3 (thermal
expansion of droplets was taken into account).
The mixture practically never becomes stoichi-
ometric, since the evaporation of droplets is
accompanied by their combustion. The initial
gas temperature is assumed equal to Tg0 5 880
K and the initial pressure is assumed equal to 6
MPa, to compare the computations with avail-
able experimental data. These values of temper-
ature and pressure are higher than those cur-
rently used in most diesel engines (cf. Fig. 3.10
of [2]), but reflect current trends [39, 40]. It is
assumed that the initial temperature of droplets
is equal to 300 K. The heating of the droplets by
the surrounding gas increases their temperature
until it reaches about 600 K. At this stage, it is
expected that the quasistationary approxima-
tion becomes valid and it seems reasonable to
assume that Ts 5 600 K. At this temperature,
n-dodecane has the physical properties: Cl 5
2.83 kJ/(kg K), rl 5 600 kg/m3, L 5 250 kJ/kg,
Qf 5 43 MJ/kg. The molar mass of n-dodecane,
mf, is equal to 170 kg/kmol. The increase in
droplet temperature from 300 to 600 K de-
creases the density from 744 to 600 kg/m3. This
increases the droplet radius from 6 to 6.445 mm
and al from 2.73 3 1023 to 3.39 3 1023. For
comparison, calculations are also performed for
a droplet temperature of 300 K at which n-

dodecane has the physical properties: Cl 5
1.655 kJ/(kg K) and L 5 360 kJ/kg. The initial
density of air at Tg0 5 880 K and p 5 6 MPa is
estimated as: rg0 ' 23.8 kg/m3, Cpg 5 1.12
kJ/(kg K), lg0 5 6.1 3 1022 W/(m K). The
selected parameters are for a stoichiometric
mixture and: rff 5 rg0/11.7 5 2.034 kg/m3,
c9ff 5 rff/mf 5 0.012 kmol/m3. Assuming that
the emissivity of droplets, «d, is equal to 1, s1 5
11.3 3 1028 W/(m2 K4). Because the volume
fraction of droplets is negligible, it is assumed
that ag 5 1 which implies that «2 5 c. The
value of E 76 kJ/mol and three values of A, 106

s21, 5 3 106 s21, and 107 s21 are used, the first
value from [26]. The values of A are approxi-
mations of the autoignition process by a single
step reaction. This modelling is based on the
Shell model (see Appendix), the data set gives
the values for dimensionless parameters and tr

presented in Tables 1 and 2.
With these values of parameters and A 5 107

1/s, Eqs. 17–19 were solved numerically for
Ts0 5 600 K to obtain the dependence of p, q,
and s on t. The results are shown in Fig. 2. This
figure confirms the main results of the analysis,

TABLE 1

Values of b, g, tr, «1,2,3, and c for Initial Droplet
Surface Temperature 600 K, Initial Gas Temperature 880

K, and A Equal to 106, 5 3 106, and 107 1/s

A 5 106 1/s 5 3 106 1/s 107 1/s

b 5 6.56 3 1022 6.56 3 1022 6.56 3 1022

g 5 1.76 3 1022 1.76 3 1022 1.76 3 1022

tr 5 4.13 s 0.827 s 0.413 s
«1 5 22.93 4.586 2.292
«2 5 c 5 172.0 172.0 172.0
«3 5 4.758 3 1022 4.758 3 1022 4.758 3 1022

TABLE 2

The Same as Table 1, but for Initial Droplet Surface
Temperature 300 K

A 5 106 1/s 5 3 106 1/s 107 1/s

b 5 3.28 3 1022 3.28 3 1022 3.28 3 1022

g 5 8.80 3 1023 8.80 3 1023 8.80 3 1023

tr 5 1.71 3 107 s 3.42 3 106 s 1.71 3 106 s
«1 5 1.560 3 107 3.119 3 106 1.560 3 106

«2 5 119.6 119.6 119.6
c 5 119.4 119.4 119.4
«3 5 1.566 3 1022 1.566 3 1022 1.566 3 1022
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presented earlier, regarding the rates of change
of p, q, and s. The values of p and s remain
almost constant, whereas q decreases from unity
to zero. In Fig. 3 the same results are presented,
but as plots of u versus t, h, versus t, and r
versus t. The triangles on the same figure show
the results of calculations based on the simpli-
fied analytical model discussed in the previous
section. This figure demonstrates that the pre-
dicted results from the analytical model are
close to those from the rigorous numerical
solution of the underlying equations. This gives
additional support to the approximate model.

By using the values of parameters given in
Tables 1 and 2, the temporal dependence of gas
temperature and droplet diameter have been
calculated using Eqs. 31 and 32 and the results
are shown in Figs. 4a,b. In Fig. 4b, the plots
predicted by Eqs. 35 and 36 (which are not
distinguishable within the accuracy of plotting)
are also shown. As can be seen from Fig. 4b, the
temporal dependence of droplet diameter is a
rather weak function of A. All curves are rea-
sonably close to those predicted by Eqs. 35 and
36. The closeness of these curves confirms that
thermal radiation effects are small. Based on

Fig. 2. Plots of p versus t, q versus t, and s versus t as calculated based on numerical solution of Eqs. (17–19) for the values
of parameters presented in Table 1, Ts0 5 600 K and A 5 107 1/s.
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this figure, it is to be expected that Eq. 36 gives
a reasonably good prediction of the dependence
of droplet diameter on time. On the other hand,
the values of A strongly influence the gas tem-
perature, as can be seen from Fig. 4a. When
A 5 106 1/s, the evaporation process clearly
dominates over combustion. When A 5 5 3
106 1/s and A 5 107 1/s the combustion be-
comes clearly visible at the end of evaporation.
In all cases, however, in the initial stage evapo-
ration dominates over combustion.

RESULTS OF THE CALCULATIONS BASED
ON THE VECTIS CFD CODE

The results predicted by Fig. 4 are compared
with those predicted by the CFD code VECTIS

of Ricardo Consulting Engineers. In this code
the governing equations for gas and droplets are
solved in a self-consistent way, using the eule-
rian approach for the gas phase and the lagrang-
ian approach for the droplets. All equations are
solved in three dimensions. The VECTIS tur-
bulence modelling is based on the conventional
and RNG versions of the k 2 e model. The
Magnussen–Hjertager model and the more so-
phisticated two-zone flamelet models are avail-
able for high-temperature combustion. Because
the present paper is focused on the autoignition
processes, the simpler Magnussen–Hjertager
model was used. Thermal radiation is modelled
based on a slightly modified version of the
conventional P-1 model [41]. In the customised
version of the VECTIS code used in this paper
the autoignition modelling is based on the Shell
model [42].

The lagrangian approach models the spray as
an ensemble of discrete droplets, which can
break up, coalesce and interact stochastically

Fig. 3. Same results as in Fig. 2 but as plots of u versus t (a),
h versus t (b), and r versus t (c). Triangles show results
based on Eqs. (31), (32), and (11).

Fig. 4. (a) Plots of gas temperature versus time for Ts 5
300 K [A 5 106 1/s (plot 1), A 5 5 3 106 1/s (plot 2), A 5
107 1/s (plot 3)], and for Ts 5 600 K [A 5 106 1/s (plot 4),
A 5 5 3 106 1/s (plot 5), A 5 107 1/s (plot 6)] as calculated
from Eqs. (31) and (32). (b) Same as Fig. 4a but for droplet
diameter versus time. Dotted curves calculated from Eqs.
(35) and (36) (not distinguishable within the accuracy of
plotting).
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with turbulent structures. The time-dependent
flowrate and initial droplet size distribution are
specified. The droplet size distribution during
spray development can be either taken to be an
initial distribution specified by a user (no
breakup) or calculated from one of the breakup
models in the code. These are the Reitz–Di-
wakar model [43, 44], the Liu–Mather–Reitz
model [45], and the Patterson–Reitz model [46].
Some of these models are discussed in [47]. The
present analysis employed the Reitz–Diwakar
model. The initial droplet size distribution does
not need to be very accurate because the details
of injection process are lost during the breakup
and coalescence processes [43, 44]. Attention
has been concentrated mainly on the analysis of
the spray chemical autoignition process, rather
than on the sensitivity of the results to the
choice of the model for droplet breakup.

The parameters of the Shell model were
taken as those for the primary reference fuel
RON70 in the original formulation [42], except
the coefficient Af4 describing the rate of pro-
duction of the intemerdiate agent. The value of
A was adjusted to give the best fit to available
experimental data for n-heptane (see Appen-
dix). The typical values recommended for this
coefficient were between 3 3 106 and 6 3 106

[37] although sometimes a value 3 3 107 was
preferred. In the analysis, three values of Af4
are used: 3 3 106, 6 3 106, and 3 3 107. The size
of the domain (a cube) around a droplet has
been chosen in such a way as to ensure that the
mixture becomes stoichiometric once the drop-
let has evaporated. The walls of the domain
have been taken to be adiabatic. In this case, the
heat lost from the domain is exactly compen-
sated by that gained from outside. Hence, the
results are directly applicable to monodisperse
sprays.

Plots of droplet diameter versus time for Ts 5
600 K, Ts 5 300 K and three values of Af4 are
shown in Fig. 5a when radiation is taken into
account, and when it is ignored. The depen-
dence of droplet diameter on Af4 is rather weak,
with no apparent effect for Ts 5 600 K. This
agrees with the result in Fig. 4b, that the coef-
ficient A produces only a small influence on
droplet diameter. Comparison of solid and
dashed plots in Fig. 5a shows a clear influence of
thermal radiation on droplet diameter. This also

agrees with the prediction of the simplified Eqs.
36 and 37. Similar to Fig. 4b, Fig. 5a shows that
the evaporation time for droplets with Ts 5 600
K is about half that with Ts 5 300 K. The
evaporation time of droplets is about 5 to 8
times longer than given by the approximate
formulae. Plots of droplet temperature versus
time are shown in Figs. 5b for the same values of
parameters as in Fig. 5a. The approximation of
constant droplet temperature is reasonable for
Ts 5 600 K, but can be an oversimplification for
Ts 5 300 K. The periods of rapid increase in
droplet temperature correspond to the times of
explosion in the surrounding gas. These periods
visibly depend on Af4, but cannot be described
by the qualitative model. The dependence of Ts

on thermal radiation is small. Shortly before the
droplet evaporates its temperature approaches
the critical value. The treatment of the critical
state in VECTIS assumes the specific heat of

Fig. 5. (a) Droplet diameter versus time for initial gas
temperature of 880 K, initial droplet temperature of 600 K,
Af4 5 3 3 106 (curve 1), Af4 5 6 3 106 (curve 3), Af4 5
3 3 107 (curve 5) and initial droplet temperature equal to
300 K, Af4 5 3 3 106 (curve 2), Af4 5 6 3 106 (curve 4),
Af4 5 3 3 107 (curve 6); solid curves for thermal radiation,
dashed curves without radiation. (b) As (a) but droplet
temperature versus time.
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evaporation is equal to zero, without taking into
account the modification of transport properties
under these conditions [48–50]. This simplified
approach is justified since the volume of drop-
lets at this state is negligibly small compared
with the initial volume (about 0.1% for plots 1,
3, 5 in Fig. 5b). Thus, any improvement in the
treatment of droplet evaporation under critical
conditions would have practically no effect on
the overall accuracy of the model.

When considering the gas temperature, a
distinction is made between the temperature in
the immediate vicinity of droplets (in the com-
putational cell in which the droplet is located)
and the average temperature in the domain
(averaged over all cells taking into account their
sizes). The plots of these temperatures versus
time for the same parameters as in Figs. 5a,b are
shown in Figs. 6a,b. Because the interest is
primarily in the initial stage of combustion these
plots are restricted to temperatures under 1000
K. Initially both temperatures decrease, and the

rate of this decrease is practically independent
of Af4. At a certain time, either before or after
the complete evaporation of the droplet, both
temperatures start to increase rapidly (gas ex-
plosion). The period of this increase appears to
be a strong function of Af4: increase in this
parameter and allowance for radiation leads to
a decrease in the time. Comparison of Figs. 6a
and 6b shows that the local gas temperature is
always below the global temperature before the
explosion. The local temperature drops below
700 K, while the global temperature is always
above 800 K. This reveals one of the main
limitations of the qualitative model. This model
was based on the assumption that the gas tem-
perature in the vicinity of droplets is the same as
the average temperature in the whole domain.
On the other hand, the time of evaporation
predicted by the model, including Eq. 37 is
controlled by the difference between the aver-
age gas temperature, rather than the local one.
It is believed that this is the main reason for the
descrepancy between the droplet evaporation
time predicted by the qualitative model and the
CFD code. This is shown by the plot of evapo-
ration time tevap(0) versus gas initial temperature
for Ts 5 600 K in Fig. 7a. When Tg0 ' 900 K,
tevap(0) ' 0.13 ms, in agreement with Fig. 4b. On
the other hand, when Tg0 falls to about 670 K
then tevap(0) ' 0.7 ms, in agreement with the
CFD prediction (see Fig. 5a). This result is
certainly data-specific. A similar analysis for
other fuels is beyond the scope of this paper,
although we anticipate that similar conclusions
could be obtained for them.

Figure 7b presents a plot of k versus temper-
ature. This coefficient is a relatively weak func-
tion of gas temperature, with a value close to
0.01. This is consistent with the results shown in
Fig. 5a and indicates that the radiative correc-
tions for these values of parameters are close to
1%. These radiative corrections can be consid-
erably larger for larger droplets, higher gas
temperatures and small values of gas thermal
conductivity. Hence, they must be taken into
account in practical analyses.

In Figs. 8a,b plots, similar to those shown in
Figs. 4a,b but for Tg0 5 670 K and the droplet
temperatures 600 K, are presented. The droplet
evaporation time is close to 0.8 ms, in agree-
ment with Fig. 5a. This time is a rather weak

Fig. 6. (a) Plots of local gas temperature versus time: initial
gas temperature of 880 K, initial droplet temperature of 600
K, Af4 5 3 3 106 (curve 1), Af4 5 6 3 106 (curve 3), Af4 5
3 3 107 (curve 5) and initial droplet temperature of 300 K,
Af4 5 3 3 106 (curve 2), Af4 5 6 3 106 (curve 4), Af4 5
3 3 107 (curve 6); solid plots for thermal radiation, dashed
curves without radiation. (b) As (a) but for the average gas
temperature.
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function of A, similar to the case shown in Fig.
4b. On the other hand, the value of A strongly
influences the values of gas temperature, as
shown in Fig. 8a. The initial decrease of this
temperature indicates that the heat for evapo-
ration dominates over the heat produced during
combustion. This agrees with the predictions
shown in Figs. 6a.

CONCLUSIONS

Results of a qualitative analysis of evaporation
and ignition of liquid fuel droplets in monodis-
perse sprays in the presence of convective and
radiative heat exchanges with the surrounding
hot gas, have been presented. The radiative
energy exchange between fuel droplets surface
and gas is described using the P-1 model with
Marshak boundary conditions. The system of
equations describing the effects of heating,
evaporation and combustion of fuel droplets is
simplified assuming that the Nusselt and Sher-
wood numbers to be equal to 2. The chemical
term is presented in the Arrhenius form with a
pre-exponential factor calculated from the en-

thalpy equation using the Shell autoignition
model, with the parameters corresponding to
the primary reference fuel RON70. Three val-
ues of the pre-exponential factor are employed
for the rate of production of the intermediate
agent: 3 3 106, 6 3 106, and 3 3 107. The
resultant singularly perturbed system of ordi-
nary differential equations is analysed based on
the geometrical version of the integral manifold
method. The ignition process is subdivided into
two stages: droplet evaporation and ignition of
gaseous mixture. The basic system of equations
is eventually reduced to the system of just two
equations: one for the normalized gas temper-
ature and another for the normalized droplet
radii. These equations are further simplified
assuming that the changes of gas temperature
are small, which is justified in the initial stages
of the combustion process. Results predicted by
the analytical solutions are compared with the
results predicted by the CFD package VECTIS.
The analytical solution underpredicts the evap-
oration time. A considerably better agreement
between the evaporation times predicted by

Fig. 7. (a) Plot of tevap(0) versus gas temperature. (b) Plot of
k in Eq. (37) versus gas temperature.

Fig. 8. (a) Plots of the local gas temperature versus time:
initial gas temperature of 670 K, initial droplet temperature
of 600 K, Af4 5 3 3 106 (curve 1), Af4 5 6 3 106 (curve
2), Af4 5 3 3 107 (curve 3) (with thermal radiation). (b) As
(a) but for the droplet diameter.
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CFD and the qualitative theory is achieved
when the gas temperature is assumed to be
equal to the local temperature in the vicinity of
droplets. The effects of thermal radiation are
noticeable, especially at high temperatures, and
large droplets and cannot be ignored.
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APPENDIX: CALCULATION OF THE PRE-
EXPONENTIAL FACTOR A

One of the most serious limitations of the model
is the assumption about the Arrhenius form of

the chemical terms in Eqs. (1) and (3). In
reality, the form of these terms is far more
complicated and involves hundreds of compet-
ing chemical reactions. In the case of diesel fuel
droplets ignition, these reactions can be reason-
ably approximated by the Shell model [37]. At
the same time, the presentation of the chemical
term in the form more complicated than the
Arrhenius one makes the whole problem un-
tractable by analytical methods.

A compromise is sought between the accu-
racy and simplicity of the presentation of the
chemical term. The approach is based on a
rigorous calculation of Tg by using the commer-
cial CFD code VECTIS with the Shell model
implemented in it. Droplets of n-dodecane and
gas are considered with the initial parameters
given earlier. The gas temperature close to the
droplets is different from that remote from
them. The average temperature in the domain is
Tg. The concentration of droplets is chosen to
provide a near stoichiometric mixture (air/fuel
mass ratio equal to 11.7) once the droplets have
evaporated.

Once values of Tg as functions of time have
been calculated, they are substituted into Eq.
(1) and the values of A can be found as:

A 5

rgCpgag

dTg

dt
1 4pRd

2nh~Tg 2 Ts! 1 4pRd
2nse1~Tg

4 2 Ts
4!

hc9ffmfagQf exp S2
E

RuTg
D . (A1)

In Eq. (A1) all the parameters except E and
A are either known parameters of the system or
calculated values (Tg). Thus Eq. (A1) allows
pairs of values of A and E to be specified which
satisfy Eq. (1) at any instant. To simplify the
problem, following [26], E 5 76 kJ/mol.

Because experimental data for the chemical
autoignition delay for n-dodecane are not avail-
able, those for n-heptane are used, following
[37]. This assumption is similar to that in [51]
although there are the differences in fuel prop-
erties. Ignition time delays for premixed n-

heptane predicted by [37] using the kinetic rate
parameters corresponding to the Primary Ref-
erence Fuel RON70 show good agreement with
experimental results when Af4 (pre-exponential
factor in the rate of production of the interme-
diate agent) is in the range between 3 3 106 and
6 3 106 [37].

The results of calculations of A are shown in
Fig. 9 for Af4 5 3 3 106, Af4 5 6 3 106, and
Af4 5 3 3 107 and initial droplet temperatures
equal to 300 K and 600 K. Although the third
value of Af4 is beyond the range of Af4 recom-

700 S. S. SAZHIN ET AL.



mended in [37] it is included to investigate the
sensitivity of the results to the choice of Af4. As
can be seen from this figure, A is a rather strong
function of time and the approximation of a
constant value of A is generally not valid. The
rapid decrease of A during and after explosion
reflects the rapid increase of Tg in the exponen-
tial term in the denominator in the right of Eq.
(A1). Because account cannot be taken of the
temporal variations of A this dependence is
allowed for by using 3 values of A: A 5 106 1/s;
A 5 5 3 106 1/s and A 5 107 1/s.Fig. 9. Plots of pre-exponential factor A versus time as

calculated from Eq. (A1) for initial gas temperature of 880
K, initial droplet temperature of 600 K, Af4 5 3 3 106

(curve 1), Af4 5 6 3 106 (curve 3), Af4 5 3 3 107 (curve
5) and initial droplet temperature of 300 K, Af4 5 3 3 106

(curve 2), Af4 5 6 3 106 (curve 4), Af4 5 3 3 107 (curve
6); solid curves for thermal radiation, dashed curves without
thermal radiation.
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