Abstract: Posted price mechanisms are simple, straightforward, and strategyproof. We study two scenarios of combinatorial markets where sequential posted price mechanisms achieve optimal or nearly optimal welfare. The first scenario is matching markets with full information, where optimal welfare is obtained. The second is markets with submodular (and XOS) valuations with Bayesian information, where half of the optimal welfare is obtained. We distinguish between static and dynamic pricing, and present various extensions of the above findings. Based on joint works with Vincent Cohen-Addad, Alon Eden and Amos Fiat (2016), with Nick Gravin and Brendan Lucier (2015) and with Paul Duetting, Thomas Kesselheim and Brendan Lucier (2016).

Bio: Michal Feldman is a Professor of computer science in the Blavatnik School of Computer Science at Tel Aviv University and a researcher at Microsoft Research (MSR) Herzliya. Her research focuses on the intersection of computer science, game theory and microeconomics. She received her Ph.D. from the University of California at Berkeley in 2005, and did her postdoc at the Hebrew University (2005-07). She was a faculty member in the School of Business Administration and the Center for the study of rationality at the Hebrew University (2007-13), and a visiting professor at Harvard University and Microsoft Research New England (2011-13). She serves on the editorial board of various journals, including GEB, MOR, JCSS and ACM TEAC. She is the vice chair of ACM SIGEcom, and served as the PC chair of ACM Conference on Economics and Computation 2015. She is the recipient of various grants and fellowships, including ERC (European Research Council), Marie Curie IOF, Alon, and ISF. She is a member of the Israeli Young Academy and an alumna of the Global Young Academy.