מבני נתונים
עץ חיפוש בינארי
Dynamic Sets

- Elements have a **key** and **satellite data**
- **Dynamic sets** support queries such as:
 - Search(S, k)
 - Minimum(S)
 - Maximum(S)
 - Successor(S, x)
 - Predecessor(S, x)
 - Insert(S, x)
 - Delete(S, x)
Binary Search Trees

• **root**[T] points to the root of tree T

• In addition to satellite data, elements have:

 – **key**: an identifying field inducing a total ordering
 – **left**: pointer to a left child (may be null)
 – **right**: pointer to a right child (may be null)
 – **p**: pointer to a parent node (null for root)
Binary Search Trees

• **Binary Search tree property:**

 \[\text{key}[y] \leq \text{key}[x] < \text{key}[z], \text{ for any nodes } x, y \text{ and } z, \text{ such that } y \text{ in left sub tree of } x \text{ and } z \text{ in right sub tree of } x \]

• Example:
Tree Walk

• **Inorder tree walk:**
 - walk left
 - visit root
 - walk right

• **Preorder tree walk:**
 - visit root
 - walk left
 - walk right

• **Postorder tree walk:**
 - walk left
 - walk right
 - visit root

• **Complexity:** $O(n)$, where n is the number of nodes of the tree

```plaintext
inorder (node x)
if (x ≠ null) then
  inorder (left[x])
  visit (x)
  inorder (right[x])
```

```
Inorder:    A B D F H K
Preorder:  F B A D H K
Postorder: A D B K H F
```
Tree Search

\textbf{search} (node x, key k)
\begin{itemize}
\item \textbf{if} (x = null | k = key[x]) do
 \textbf{return} x;
\item \textbf{if} (k < key[x]) then
 \textbf{return} search(left[x], k)
\item else
 \textbf{return} search(right[x], k)
\end{itemize}

- **Complexity**: $O(h)$, where h is the height of the tree
Iterative Tree Search

search(node x, key k)

while (x != null & k != key[x]) do
 if (k < key[x]) then
 x = left[x]
 else
 x = right[x]

return x

Tzachi (Isaac) Rosen
Minimum, Maximum, Successor and Predecessor

- **Minimum:**
 return leftmost node in tree or null

- **Successor** (node x):
 if (x has a right subtree) then
 successor is minimum node in right subtree
 else
 successor is first ancestor of x whose left child is also ancestor of x

- **Maximum:**
 return rightmost node in tree or null

- **Predecessor:**
 - symmetric to successor

- **Complexity:** $O(h)$, where h is the height of the tree

```plaintext
successor (node x)
  if (right[x] ≠ null) then
    return minimum (right[x])
  y = p[x]
  while (y ≠ null & x = right[y]) do
    x = y
    y = p[y]
  return y
```
Tree Walk

walk (node x)

\[
x = \text{minimum}(x) \\
\text{while} \ (x \neq \text{null}) \ \text{do} \\
\quad \text{visit}(x) \\
\quad x = \text{successor}(x)
\]

- **Complexity**: \(O(n)\), where \(n\) is the number of nodes of the tree
Insertion

• Adds an element x to the tree so that the binary search tree property continues to hold
• The basic algorithm
 – Like the search procedure above
 – Insert x in place of null
 – Use a “trailing pointer” to keep track of where you came from (like inserting into singly linked list)
• **Complexity**: $O(h)$, where h is the height of the tree
insert (tree T, node z)
 y = null
 x = root[T]
 while (x ≠ null) do
 y = x
 if (key[z] < key[x]) then
 x = left[x]
 else
 x = right[x]
 p[z] = y
 if (y = null) then // T was empty
 root[T] = z
 else
 if (key[z] < key[y]) then
 left[y] = z
 else
 right[y] = z
Deletion

• 3 cases:
 – x has no children:
 • Remove x
 – x has one child:
 • Splice out x
 – x has two children:
 • Swap x with successor
 • Perform case 1 or 2 to delete it

• **Complexity**: \(O(h) \), where \(h \) is the height of the tree
Deletion

delete (tree T, node z)

// Determine which node y to splice out.
if (left[z] = null | right[z] = null) then y = z else y = successor(z)

// x is set preferably to a non-null child of y.
if (left[y] ≠ null) then x = left[y] else x = right[y]

// y is removed from the tree by manipulating pointers of p[y] and x.
if (x ≠ null) then p[x] = p[y]
if (p[y] = null) then
 root[T] = x
else if (y = left[p[y]]) then left[p[y]] = x else right[p[y]] = x

// If it was z’s successor that was spliced out, copy its data into z.
if (y ≠ z) then key[z] = key[y] and copy y’s satellite data into z
• All the **basic operations** in $O(h)$ time, where h is the height of the tree.

Worst case height $n - 1$.
 - Degenerate tree

Best case height $\lg n$.
 - Compressed tree of size n
 - 2^i nodes at each level i
 - except maybe at last level.
 - Hence, $2^h \leq n$.
 - Hence, $h \leq \lg n$
Randomly built binary search trees

- The **average height** is much closer to the best case.
- Little is known about the average height when both insertion and deletion are used.
- **Randomly Built Binary Search Tree**
 - Keys inserting in **random order** into an initially empty tree.
 - Each of the $n!$ **permutations** of the input keys is equally likely.
Randomly built binary search trees

• Theorem:
 – The **average depth** of a node in a randomly built binary search tree is $O(\log n)$.

• Proof:
 – Define **the internal depth** of a tree T to be the sum, over all nodes x in T, of the depth of x.
 – Let $P(n)$ denotes the internal depth of a randomly built binary search tree T with n nodes.
 – We will show that $P(n) = O(n\log n)$.
 – Thus, since T has n nodes, the average depth of a node in T will be $P(n)/n = O(\log n)$.

Tzachi (Isaac) Rosen
Randomly built binary search trees

Notice:

- The tree T will have one node as a root.
- Thus, there will be $n - 1$ nodes distributed among the left and right sub-trees.
- This distribution is random, and follows the pattern:

<table>
<thead>
<tr>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$n - 1$</td>
</tr>
<tr>
<td>1</td>
<td>$n - 2$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$n - 2$</td>
<td>1</td>
</tr>
<tr>
<td>$n - 1$</td>
<td>0</td>
</tr>
</tbody>
</table>
Randomly built binary search trees

• Since there are n total possible distributions, and they are all equally likely, we get:

\[
P(n) = \frac{1}{n} \sum_{i=0}^{n-1} (P(i) + P(n - i - 1) + n - 1)
\]

\[
= \frac{1}{n} \left(\sum_{i=0}^{n-1} P(i) + \sum_{i=0}^{n-1} P(n - i - 1) + \sum_{i=0}^{n-1} (n - 1) \right)
\]

\[
= \frac{1}{n} \left(\sum_{i=0}^{n-1} P(i) + \sum_{j=0}^{n-1} P(j) + n(n - 1) \right)
\]

\[
= \frac{2}{n} \sum_{i=0}^{n-1} P(i) + n - 1
\]

\[
= \frac{2}{n} \sum_{i=0}^{n-1} P(i) + \Theta(n)
\]
Randomly built binary search trees

- Solve the recurrence \(P(n) = \frac{2}{n} \sum_{q=1}^{n-1} P(q) + \Theta(n) \) by the substitution method.
- Guess: \(P(n) \leq a n \lg n + b \)
- Substitute:

\[
P(n) = \frac{2}{n} \sum_{q=1}^{n-1} P(q) + \Theta(n)
\]

\[
\leq \frac{2}{n} \sum_{q=1}^{n-1} (aq \lg q + b) + \Theta(n)
\]

\[
= \frac{2a}{n} \sum_{q=1}^{n-1} q \lg q + \frac{2b}{n} (n - 1) + \Theta(n)
\]
Randomly built binary search trees

- Splitting the sum into two parts:

\[
\sum_{q=1}^{n-1} q \lg q = \sum_{q=1}^{\lceil n/2 \rceil - 1} q \lg q + \sum_{q=\lceil n/2 \rceil}^{n-1} q \lg q \\
\leq \sum_{q=1}^{\lceil n/2 \rceil - 1} q \lg \frac{n}{2} + \sum_{q=\lceil n/2 \rceil}^{n-1} q \lg n \\
= \sum_{q=1}^{\lceil n/2 \rceil - 1} q(\lg n - 1) + \sum_{q=\lceil n/2 \rceil}^{n-1} q \lg n \\
= (\lg n - 1) \sum_{q=1}^{\lceil n/2 \rceil - 1} q + \lg n \sum_{q=\lceil n/2 \rceil}^{n-1} q \\
= \lg n \sum_{q=1}^{n-1} q - \sum_{q=1}^{\lceil n/2 \rceil - 1} q \\
\leq \lg n \frac{n(n-1)}{2} - \frac{(n/2 - 1)n/2}{2} \\
\leq \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2, \text{ if } n \geq 2
\]
Randomly built binary search trees

• Back to $P(n)$, we get:

\[
P(n) \leq \frac{2a}{n} \left(\frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \right) + \frac{2b}{n} (n - 1) + \Theta(n)
\]

\[
\leq an \lg n - \frac{a}{4} n + 2b + \Theta(n)
\]

\[
= an \lg n + b + (\Theta(n) + b - \frac{a}{4} n)
\]

\[
\leq an \lg n + b
\]
Randomly built binary search trees

Theorem:
- The **average height** of a randomly-built binary search tree of \(n \) distinct keys is \(O(\lg n) \)

Proof:
- Define the following random variables:
 - \(X_n \) - The **height** of a randomly built binary search tree on \(n \) keys.
 - \(Y_n = 2^{X_n} \) - The **exponential height**.
 - \(R_n \) - The **rank** of the root within the set of \(n \) keys used to build the binary search tree
 - Equally likely to be any element of \(\{1, 2, \ldots, n\} \).
 - If \(R_n = i \), then
 - Left subtree is a randomly-built binary search tree on \(i - 1 \) keys.
 - Right subtree is a randomly-built binary search tree on \(n - i \) keys.

- We will show that \(E[Y_n] \) is polynomial in \(n \), which will imply that \(E[X_n] = O(\lg n) \).
Randomly built binary search trees

• Formula for Y_n:
 – Knowing $R_n = i$

 – $Y_n = 2 \cdot \max(Y_{i-1}, Y_{n-i})$.

 – $Y_1 = 1$ (expected exponential height of a 1-node tree is $2^0 = 1$).
 – Define $Y_0 = 0$.

Tzachi (Isaac) Rosen
Randomly built binary search trees

• Define **indicator random variables** \(Z_{n,1}, Z_{n,2}, \ldots, Z_{n,n} \), where \(Z_{n,i} = I\{R_n = i\} \)

• \(R_n \) is equally likely to be any element of \(\{1, 2, \ldots, n\} \)
 \[\Rightarrow \Pr \{R_n = i\} = \frac{1}{n} \]
 \[\Rightarrow \mathbb{E}[Z_{n,i}] = \frac{1}{n} \text{ (since } \mathbb{E}[I\{A\}] = \Pr\{A\} \text{)} \]

• Consider a given \(n \)-node binary search tree.
• Exactly one \(Z_{n,i} \) is 1, and all others are 0.
• Hence, \(Y_n = \sum_{i=1}^{n} Z_{n,i} \cdot (2 \cdot \max(Y_{i-1}, Y_{n-i})) \)
Randomly built binary search trees

• Thus,

\[
E[Y_n] = E\left[\sum_{i=1}^{n} Z_{n,i} \cdot (2 \cdot \max(Y_{i-1}, Y_{n-i}))\right]
\]

\[
= \sum_{i=1}^{n} E[Z_{n,i}] \cdot E[2 \cdot \max(Y_{i-1}, Y_{n-i})]
\]

(linearity of expectation)

\[
= \sum_{i=1}^{n} E[Z_{n,i}] \cdot E[2 \cdot \max(Y_{i-1}, Y_{n-i})]
\]

\[E[Z_{n,i}] = 1/n\]

\[
= \sum_{i=1}^{n} \frac{1}{n} \cdot E[2 \cdot \max(Y_{i-1}, Y_{n-i})]
\]

\[E[aX] = a \cdot E[X]\]

\[
\leq \frac{2}{n} \sum_{i=1}^{n} (E[Y_{i-1}] + E[Y_{n-i}])
\]

\[E[\max(X, Y)] \leq E[X] + E[Y]\]
Randomly built binary search trees

- Observe that the last summation is
 \[(E[Y_0] + E[Y_{n-1}]) + \cdots + (E[Y_{n-1}] + E[Y_0]) = 2 \sum_{i=0}^{n-1} E[Y_i]\]
- Hence,
 \[E[Y_n] \leq \frac{4}{n} \sum_{i=0}^{n-1} E[Y_i]\]
- We will show that for all integers \(n > 0\),
 \[E[Y_n] \leq \frac{1}{4} \binom{n+3}{3}\]
- Hence,
 \[E[Y_n] \leq \frac{1}{4} \binom{n+3}{3} = \frac{1}{4} \cdot \frac{(n+3)(n+2)(n+1)}{6} = O(n^3)\]
- But,
 \[2^{E[X_n]} \leq E[2^{X_n}] = E[Y_n] \quad (Jensen’s inequality: E[f(X)] \geq f(E[X])\)
 provided the expectations exist and are finite, and \(f(x)\) is convex
- Taking logs of both sides gives \(E[X_n] = O(lg n)\).
Convex Functions

\(f(x) \) is **convex** if for all \(x, y \) and all \(0 \leq \lambda \leq 1 \),

\[f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda) f(y). \]
Randomly built binary search trees

\[E[Y_n] \leq \frac{1}{4} \binom{n+3}{3} \]

Basis: \(n = 1 \).

\[1 = Y_1 = E[Y_1] \leq \frac{1}{4} \binom{1+3}{3} = \frac{1}{4} \cdot 4 = 1. \]

Inductive step: Assume that \(E[Y_i] \leq \frac{1}{4} \binom{i+3}{3} \) for all \(i < n \). Then

\[E[Y_n] \leq \frac{4}{n} \sum_{i=0}^{n-1} E[Y_i] \quad \text{(from before)} \]

\[\leq \frac{4}{n} \sum_{i=0}^{n-1} \frac{1}{4} \binom{i+3}{3} \quad \text{(inductive hypothesis)} \]

\[= \frac{1}{n} \sum_{i=0}^{n-1} \binom{i+3}{3} \]

\[= \frac{1}{n} \binom{n+3}{4} \quad \text{(lemma)} \]

\[= \frac{1}{n} \cdot \frac{(n+3)!}{4! (n-1)!} \]

\[= \frac{1}{4} \cdot \frac{(n+3)!}{3! n!} \]

\[= \frac{1}{4} \binom{n+3}{3}. \]
Randomly built binary search trees

Lemma

\[
\sum_{i=0}^{n-1} \binom{i+3}{3} = \binom{n+3}{4}.
\]

Proof

Use Pascal’s identity: \(\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}\).

Also using the simple identity \(\binom{4}{4} = 1 = \binom{3}{3}\), we have

\[
\binom{n+3}{4} = \binom{n+2}{3} + \binom{n+2}{4} = \binom{n+2}{3} + \binom{n+1}{3} + \binom{n+1}{4} = \binom{n+2}{3} + \binom{n+1}{3} + \binom{n}{3} + \binom{n}{4}.
\]

\[\vdots\]

\[
= \binom{n+1}{3} + \binom{n}{3} + \cdots + \binom{4}{3} + \binom{4}{4} = \sum_{i=0}^{n-1} \binom{i+3}{3}.
\]

Tzachi (Isaac) Rosen