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Abstract. Algebraic Multigrid (AMG) methods are known to be efficient in solving linear
systems arising from the discretization of partial differential equations and other related problems.
These methods employ a hierarchy of representations of the problem on successively coarser meshes.
The coarse-grid operators are usually defined by (Petrov-)Galerkin coarsening, which is a projec-
tion of the original operator using the restriction and prolongation transfer operators. Therefore,
these transfer operators determine the sparsity pattern and operator complexity of the multigrid
hierarchy. In many scenarios the multigrid operators tend to become much denser as the coarsening
progresses. Such behavior is especially problematic in parallel AMG computations where it imposes
an expensive communication overhead. In this work we present a new algebraic technique for con-
trolling the sparsity pattern of the operators in the AMG hierarchy, independently of the choice
of the restriction and prolongation. Our method is based on the aggregation multigrid framework,
and it “sparsifies” Smoothed Aggregation operators while preserving their right and left near null-
spaces. Numerical experiments for problems of convection-diffusion and diffusion with discontinuous
coefficients demonstrate the efficiency and potential of this approach.
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1. Introduction. Multigrid methods are well known for their efficiency in solv-
ing linear systems arising from the discretization of elliptic partial differential equa-
tions (PDEs) [14, 44, 19, 52]. The discretization yields a sparse, large linear system,

Ax = b, (1.1)

where A ∈ Rn×n, and x,b ∈ Rn. AMG methods use two complementary components:
relaxation, and coarse-grid correction (CGC). The relaxation is a simple and local
iterative method, such as Jacobi or Gauss-Seidel, and is usually inefficient in handling
certain error modes, called “algebraically smooth”, which relate to the low energy
eigenvectors of A. CGC aims at handling these modes, and is performed by solving
smaller-size coarse-grid problems of the form,

Acec = rc. (1.2)

In most AMG methods, problem (1.2) is defined by the Galerkin or Petrov-Galerkin
coarsening,

(RAP )ec = R(b−Ax), (1.3)

which is a projection of the error equation, Ae = b− Ax, onto the subspace defined
by the full-rank prolongation and restriction operators, P ∈ Rn×nc and R ∈ Rnc×n,
respectively, with nc < n1.
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Suppose that ec is the solution of the smaller system (1.2). Then, we aim for
Pec to be a good approximation to the error of the original fine-grid system. The
two-level CGC error-propagation operator is now given by

ETG = I − P (Ac)
−1RA. (1.4)

The coarsening process is applied recursively, employing successively coarser systems.
A drawback of Galerkin coarsening is that the sparsity of RAP is determined by
P and R. This often leads to relatively dense coarse-grid operators with increased
operator complexity (defined as the total number of non-zeros in the entire multigrid
hierarchy divided by the number of zeros in the fine-grid matrix). Thus, we must
often compromise between quality of coarse-level operators and the aggressiveness of
coarsening, both of which affect the rate of convergence and the operator complexity.

In addition, algorithms that employ high-quality transfer operators, such as clas-
sical AMG or Smoothed Aggregation (SA), typically lead to a severe stencil growth
on coarse grids, even when the operator complexity remains moderate. That is, cer-
tain rows of the coarse-grid matrix become dense, even if the overall density of the
matrix is moderate. In large-scale parallel computing, stencil growth leads to high
communication overhead on coarse grids [37, 34] and loss of scalability, especially
in 3D. In [38] it is suggested to apply aggressive coarsening on the finer levels to
reduce the complexities. Such coarsening is defined by generalizing the strength of
connection between neighboring variables to short-distance paths. Similar coarsen-
ing schemes were introduced in [37]. With this approach it is necessary to modify
the prolongation. In particular, in the classical AMG interpolation there cannot be
strong connections between F-points without a mutual neighboring C-point. This
rule breaks if aggressive coarsening is applied, and to overcome this [50, 18] suggest
modifications to support long-range interpolation. This in turn reduces the quality
of the prolongation, and the resulting algorithms typically require more iterations to
converge. For more information about parallel AMG see [4, 17, 1, 2, 3] and references
therein.

Recently, there has been an effort to develop multigrid algorithms that explic-
itly control the sparsity pattern of the multigrid hierarchy [47, 43], or sparsify the
Galerkin operators [34]. These ideas have yet to reach their full potential and were
only applied for symmetric problems. We follow a similar framework, and propose a
new method that is applicable also to non-symmetric problems. Other related works
include [39, 26, 25], which apply similar sparsification techniques for solving graph-
Laplacian problems that arise from computer vision applications. In these methods,
the multilevel transfer operators are defined by a Schur complement, or “exact inter-
polation”, and the resulting coarse operators are sparsified to maintain a reasonable
coarsening rate and operator complexity.

To demonstrate our algorithm on non-symmetric problems, we focus on the
convection-diffusion equation

−ε∆u+ v · ∇u = f, (1.5)

that is commonly studied in the context of geometric and algebraic multigrid [8, 9, 51,
53, 20, 13, 33, 30]. One popular AMG approach to treating this problem is by using
aggregation-based AMG methods [45, 20, 11, 13, 33, 28, 29, 30], where the coarsening
is done by clustering (aggregating) the grid unknowns. In the simple aggregation
method (AGG), P and R are typically sparser than those obtained by most other
AMG approaches, and the operator complexity of the multigrid hierarchy is usually
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Fig. 1.1. A comparison between the sparsity patterns of AGG and SA on level 3, for the 3D
Poisson equation on a 643 grid, using a 7-point stencil. The left matrix corresponds to the AGG
algorithm; It is of size 6538 × 6538, and contains 99, 878 non-zeros—about 15 non-zeros per row.
The right matrix corresponds to the SA algorithm, and is smaller because of the more aggressive
coarsening. It is of size 1645× 1645, and contains 120, 299 non-zeros—about 73 non-zeros per row.

well-bounded and attractive. However, it is difficult to obtain grid independent con-
vergence using this approach, and therefore the approach of Smoothed Aggregation
(SA) [45, 11, 13, 33, 22] is often preferred. In SA we smooth the simple aggregation
operators by a relaxation operator. This improves the convergence properties of the
multigrid solver, but it also increases the operator complexity. Therefore, when using
SA we must make sure that our coarsening is aggressive enough to prevent exagger-
ated stencil growth on coarse grids. However, for a convection-dominated problem
(1.5), such aggressive aggregation coarsening (say 3 × 3 for 2D problems on struc-
tured meshes) significantly harms the quality of the aggregation operators compared
to moderate coarsening (say, 2 × 2) [20]. The latter, on the other hand, leads to an
unbounded operator complexity using SA. We note that there are more sophisticated
methods to improve SA by changing the values of the transfer operators P and R. For
example, “energy-minimization” methods [27, 48, 10, 31, 35] optimize the non-zero
entries of the transfer operators for some constrained energy measure given a prede-
fined sparsity pattern. This improves the quality of the transfer operators without
increasing the operator complexity. Also related are the adaptive and bootstrap AMG
methods [12, 11, 13, 7] that involve adaptive learning of algebraically smooth errors.

As mentioned before, multigrid algorithms often exhibit a severe stencil growth on
coarse grids, even though their operator complexity may remain moderate. Figure 1.1
compares between the sparsity patterns of AGG and SA on the third level, both using
the aggregation algorithm of [45], for the solution of the 3D Poisson equation on a 643

cubic grid, using a 7-point stencil. The coarsening of SA is more aggressive, but the
matrix of AGG is sparser than that of SA, where the stencil growth is evident. This
stencil growth further increases on coarser grids. Nevertheless, both algorithms exhibit
a well bounded operator complexity (1.25 and 1.6 for AGG and SA respectively). In
other numerical results we observe much worse scenarios. We note that the stencil
growth of SA in Figure 1.1 can be prevented if 3× 3× 3 aggregates are chosen for the
finest grid instead of the neighborhood aggregation of [45]. Then, a 27-point stencil
is maintained on all levels.

In the recent paper [30], problem (1.5) is solved using plain aggregation with
a moderate coarsening of factor close to 4. To overcome the slow convergence, the
multigrid process includes acceleration on all levels of the hierarchy, requiring a more
elaborate recursive structure (usually W-cycles with recursive Krylov accelerations,
known as K-cycles). However, such cycles may be costly, especially when considering
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parallel multigrid computations [37, 16].
In this paper, we present a new AMG algorithm that controls the sparsity pattern

of the multigrid hierarchy, using ideas related to [43, 34]. The new algorithm is
developed for non-symmetric problems but it preserves the symmetry property of
the coarse-grid operators for symmetric fine-grid operators. Our algorithm uses the
aggregation framework as a basis platform, by applying SA to define the prolongation
and restriction, and AGG Galerkin coarse-grid operators for defining a sparse non-
zero pattern of Ac. Once the transfer operators and the target sparsity pattern are
set, our algorithm sparsifies the Galerkin SA coarse-grid operator to match the chosen
sparsity pattern of Ac.

2. Motivation and Background. Similarly to [47, 43], we fix the sparsity
pattern of Ac and, independently, use high quality transfer operators P and R. Denote
the Galerkin operator by

Ag = RAP,

and assume that the current error, e, is in the range of P , i.e., e = Pec, where ec ∈ Rnc

is some coarse vector. Also, assume that our coarse operator, Ac, is constructed such
that Acec = Agec. Then, the two-level cycle using Ac eliminates the error e:

enew =
[
I − P (Ac)

−1RA
]
e = [I − P (Ac)

−1RA]Pec
= P [I − (Ac)

−1Ag]ec = P (Ac)
−1[Ac −Ag]ec = 0.

(2.1)

Because Ac has fewer non-zeros than Ag, the equality Acec = Agec cannot hold
for all ec. However, because the CGC (coarse-grid correction) is applied after the
relaxation, the error e before the CGC is typically smooth, and so is its coarse version
ec. Motivated by this property and (2.1), [47, 43] suggest to define the operator Ac
such that Acec = Agec is satisfied with respect to algebraically smooth errors, which
are not reduced efficiently by the relaxation. If Ac and Ag yield a similar coarse grid
correction for those errors, the efficiency of our solution process will not degrade due
to the use of Ac instead of Ag. Additionally, note that multigrid algorithms rely on the
property that the algebraically smooth errors are in the range of P , and therefore they
influence the definition of P . Therefore, when applying the non-Galerkin approach,
the characterization of the smooth error modes should already be available to us from
the construction of P . In some cases, the algebraically smooth errors are known. In
the context of discretizations of scalar PDEs, they correspond to the constant and
linear functions.

In addition, several existing algorithms show that the large Galerkin stencil is not
necessary, at least for simple cases. The oldest of those is the geometric multigrid,
where the PDE on the fine grid is re-descretized on coarse grids, retaining the stencil
of the fine-grid operator. This approach is limited to numerical solution of PDEs on
structured grids. Additionally, [28, 29, 30, 32, 36, 5, 46] apply simple aggregation,
along with multilevel acceleration. This approach relies on the fact that the two-level
AGG cycle has a mesh-independent convergence, and the convergence deteriorates
only in multilevel cycles. This may suggest that the coarse grid sparsity patterns of
AGG may suffice for mesh-independent convergence, so long as we adapt the values
of the nonzero coefficients. This motivates our choice of using AGG for the sparsity
pattern of Ac.

All the algorithms in [47, 43, 34, 39, 26, 25, 6] apply a sparsification mechanism
within some multilevel framework, aiming to reduce the number of non-zeros of the
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coarse-grid operators while maintaining “spectral equivalence” to the original coarse
operator. The simplest of those is [6], which is limited to circulant matrices. It shows
how to generate spectrally equivalent coarse operators using 5-pt stencils instead of 9-
pt stencils in 2D, or 7-pt stencils instead of 27-pt stencils in 3D. The simplest example
is as follows: let the fine level A be the 5-pt Laplacian operator, then the classical
AMG coarsening generates a 9-pt stencil on the coarse grid (Ag). This stencil can be
replaced by a spectrally equivalent 5-pt stencil (Ac) as follows:

A :

 −1
−1 4 −1

−1

 , Ag :
1

64

−1 −2 −1
−2 12 −2
−1 −2 −1

 , Ac :
1

16

 −1
−1 4 −1

−1

 . (2.2)

This equivalence can be also seen from the fact that both Ag and Ac are discretizations
of the ‘−∆’ operator with an equal scaling of 1

16 , which comes from the multiplication
of A with P and PT . We note that our sparsification method in this paper yields the
same Ac, as do the methods of [47, 25]. Paper [34] shows a condition for the non-
Galerkin method to work, which is related to (2.1). It shows that spectral equivalence
between the two SPD coarse operators can be measured by

‖I − (Ac)
−1Ag‖2. (2.3)

If (2.3) is smaller than 1, then the two-level cycle with Ac instead of Ag converges,
and the performance of the two cycles becomes more similar as (2.3) tends to 0.

In the next section we describe our Sparsified Smoothed Aggregation (SpSA)
framework, which uses SA for the transfer operators, and AGG for the sparsity pat-
tern. Our version of SA is similar to the classical SA [45] except a few small changes
that are summarized in Appendix A. Even though these are small, in some cases they
dramatically change the properties of the SA solver compared to the classical one.
Generally, our version of SA has better convergence, but also has a higher operator
complexity than the original SA method. To set the stage for our framework, we first
briefly describe the general SA method.

2.1. Smoothed Aggregation. An aggregation is a partitioning of the fine-grid
index set {1, ..., n} into nc disjoint subsets {Cj}nc

j=1, called aggregates. Given these
aggregates, a piece-wise constant tentative prolongation operator, which we denote
by Pt (t for tentative), is defined:

(Pt)i,j =

{
1 i ∈ Cj ,
0 otherwise.

(2.4)

Rt = PTt is the tentative restriction operator. We define our aggregation by a neigh-
borhood approach, similar to the classical one of [45]. Other aggregation methods as
in [41, 42, 29, 30] may also be suitable for our algorithm.

As mentioned above, we use SA to improve the convergence of AGG, by smoothing
the operators Pt and Rt. More precisely, the SA operators P and R are defined by

P = (I − ωQAF )Pt, R = Rt(I − ωAFQ), (2.5)

where the matrix Q is a diagonal preconditioner of A, ω is a damping parameter,
and AF is a filtered version of the matrix A. The specific details of the aggregation
algorithm, and specific choices of Q, ω, and AF , are summarized in Appendix A.



6 Eran Treister, Irad Yavneh

3. The Sparsified Smoothed Aggregation (SpSA) Algorithm. Our algo-
rithm, similarly to all the other non-Galerkin algorithms mentioned above, consists
of three separate tasks:

1. Choose the transfer operators R and P .
2. Choose the sparsity pattern for Ac.
3. Calculate the entries in Ac.

The first step is essential to every algebraic multigrid method and the other two are
needed only in non-Galerkin AMG.

As mentioned above, our algorithm uses the aggregation framework. For the first
task, it uses transfer operators R and P based on SA as in (2.5). For the second and
third tasks, we use two Galerkin operators

At = RtAPt, and Ag = RAP, (3.1)

that are based on the non-smoothed and smoothed aggregation operators in (2.4) and
(2.5), respectively. Once the target pattern At, and the Galerkin SA operator Ag are
set, our algorithm sparsifies Ag to match the chosen sparsity pattern of At; the result
is the coarse operator Ac. This setup process is described in Algorithm 1.

Algorithm: SpSA-Setup

1. Define the tentative prolongation Pt and restriction Rt = PTt .
2. Define SA operators P , R (see (2.5)).
3. Apply Galerkin Coarsening: At = RtAPt, Ag = RAP .
4. Sparsify Ag to the sparsity pattern of At: Ac = Sparsify(Ag, At)
5. Apply recursion on Ac to generate the next levels.

Algorithm 1: Sparsified Smoothed Aggregation (SpSA) Setup

3.1. Sparsity Patterns in the Aggregation Framework. The operators in
(2.5) and (3.1) have some unique properties that are related to their sparsity patterns.
These will be used in our sparsening algorithm, described later. We denote the sparsity
pattern of any matrix A as

SP(A) = {(i, j) : Ai,j 6= 0}. (3.2)

By (2.5), we have that

SP(Ag) ⊇ SP(At), (3.3)

up to chance cancellations of elements which we ignore in our description. In addition,
since SP(A) = SP(I −QA) for any diagonal matrix Q, we have that

SP(At) ⊇ SP(RPt) and SP(At) ⊇ SP(RtP ), (3.4)

with equalities in the case of no filtering in (2.5).
As mentioned above, the tentative operators (2.4), and their associated Galerkin

operator, may be efficient when used directly in a multigrid process with acceleration.
This suggests that the sparsity pattern of At will not miss important non-zero entries.
For example, if the graph of Ag is connected, i.e., there is a path from each node i
to node j in the graph, then the graph of At is connected as well. To illustrate
this, consider the grid-aligned anisotropic Laplacian using 5-point finite-difference
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discretization as in [34]. The stencil of the fine-level A, and stencil Ag using classical
AMG intepolation with semi-coarsening are given by:

A :

 −ε
−1 2 + 2ε −1

−ε

 , Ag :
1

4

 −ε −6ε −ε
−2 + 6ε 4 + 12ε −2 + 6ε
−ε −6ε −ε

 .

Now, it is important that any non-Galerkin operator will have some of the weak
ε entries in Ag. A stencil of Âc =

[
− 1

2 1 − 1
2

]
, for example, would split the graph

of Ag into disconnected strong diffusion lines. As shown in [34], this would not be
a good choice of a coarse-grid stencil, even though the norm of their difference is
small: ‖Âc − Ag‖F = O(ε), where ‖ · ‖F is the Frobenius norm. In our case, the
stencil of At will always contain some of the non-zeros in the weak directions. More
importantly, recall that (at)ij =

∑
k∈Ci,`∈Cj ak`, so if the graph of the fine-grid matrix

A is connected, then so is the graph of At, given that no chance cancellations of
elements occur, as in M-matrices.

3.2. The Sparsening Procedure. We next describe our sparsening procedure
used to approximate Ag using the sparsity pattern of At. Our process aims to generate
a coarse matrix Ac that, on top of its sparsity constraints, has the same product as
Ag and (Ag)

T with typical algebraically smooth error modes. As mentioned before,
if Acec = Agec for any smooth error ec, the efficiency of our solution process will
not degrade due to the sparsification of Ag. The typical smooth error modes are also
necessary in the construction of the prolongation and restriction, and in the context of
elliptic PDEs, they are often chosen to be represented by the constant vector. Thus,
motivated by (2.1), we impose

Ag1 = Ac1 and (Ac)
T1 = (Ag)

T1, (3.5)

where 1 is the vector of ones.
We start by copying the values in the entries of Ag that belong to SP(At),

if (At)k,i 6= 0 then (Ac)k,i ← (Ag)k,i. (3.6)

Otherwise, we have an entry satisfying (At)k,i = 0 and (Ag)k,i 6= 0; this is an entry
that we wish to eliminate (set (Ac)k,i = 0), while maintaining (3.5). Now, by setting
(Ac)k,i = 0, we break the equalities in (3.5), and thus we need to correct them by
changing other entries as well. Our correction will be done by collapsing (Ag)k,i on
other entries that correspond to variables that are “strongly connected” to k and i.
In this context, the main heuristic that is used in multigrid is that if k and some
variable m are strongly connected, then a typical algebraically smooth error e will
satisfy ek ≈ em. We will use this heuristic in our algorithm. We elaborate on the
choice of these entries in the next section.

3.2.1. Obtaining a surrogate path for eliminating the (k, i) entry. First,
we remark that we must avoid the simplest choice of entries to make up for an elim-
ination of a (k, i) entry—the diagonal and “mirror” entries, (k, k), (i, i) and (i, k).
Considering that we might need to eliminate both (Ag)k,i and (Ag)i,k, we have to
satisfy four equations: the equalities in (3.5) for both i and k row and column. Since
we have only the two diagonal entries (k, k), (i, i) at our disposal (the off-diagonals are
zeroed), this task is impossible because we have four equations and only two variables
to satisfy them. Thus, we conclude that, generally, additional or other entries need
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to be changed. We note, however, that this is not true in the symmetric case where
(Ag)k,i = (Ag)i,k. Then, (3.5) can be satisfied by adding the following 2× 2 block

i
k

i k(
+(Ag)k,i −(Ag)k,i
−(Ag)k,i +(Ag)k,i

)
(3.7)

which changes only the diagonal entries, and has zero row and column sums. This
property has led to various sparsification schemes in [34, 39, 26, 25]. Because we
consider both symmetric and non-symmetric problems in this paper, we assume
(Ag)k,i 6= (Ag)i,k and do not use (3.7) in our sparsening scheme. In fact, we show
that other corrections must be applied in this case.

We next describe a set of entries in At that are non-zeros and available to use for
eliminating (Ag)k,i. In Galerkin coarsening, every non-zero entry satisfies

(Ag)k,i =
∑
j

∑
`

(R)k,jAj,`(P )`,i, (3.8)

which means that every entry in Ag is generated by a sum of three-term multipli-
cations. Now, if (At)k,i = 0 and (Ag)k,i 6= 0, then we have at least one non-zero
term (R)k,jAj,`(P )`,i in the right hand side of (3.8), in which ` belongs to Cm1

and j
belongs to the aggregate Cm2 , and at least one of them is different from k and i (note
that j and ` are fine-grid variables while the rest are coarse-grid variables). Also,

(RPt)k,m2
6= 0, (RtP )m1,i 6= 0, and (At)m2,m1

6= 0. (3.9)

Furthermore, by (3.4), all these entries also belong to SP(At), and hence can be used
together with their associated diagonal entries to eliminate (Ag)k,i. Overall, in order
to eliminate (Ag)k,i we add to Ag a submatrix of the form

i
m1

m2

k

i m1 m2 k
0 0 0 0
× × 0 0
0 × × 0

−(Ag)k,i 0 × 0

 (3.10)

where × denotes a non-zero entry, and require that it has zero row and column sums.
We excluded (i, i) and (k, k) because they are singles in their row and column, respec-
tively, and hence cannot be changed. Because the marked non-zero entries constitute
a distance-three path i → m1 → m2 → k in At, we will denote by (i,m1,m2, k) the
“surrogate path” for eliminating the (k, i) entry. Figure 3.1 demonstrates this path.

3.2.2. Setting values in the surrogate path for eliminating the (k, i)
entry. We now describe how to set the values in the submatrix (3.10) so that (3.5)
is satisfied, or equivalently, that (3.10) has zero row and column sums.

By imposing (Ac)k,i = 0, or by setting −(Ag)k,i in the (k, i) entry of (3.10), we
break the zero sum of the k-th row and i-th column. To satisfy them we must set:

(Ac)m1,i ← (Ac)m1,i + (Ag)k,i
(Ac)k,m2 ← (Ac)k,m2 + (Ag)k,i.

(3.11)

Now, the corresponding zeros sum for them1-th row and them2-th column are broken,
so we must satisfy them as well by applying

(Ac)m1,m1
← (Ac)m1,m1

− (Ag)k,i
(Ac)m2,m2

← (Ac)m2,m2
− (Ag)k,i.

(3.12)
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Fig. 3.1. A surrogate path of (Ag)k,j . The dashed arrow represents the eliminated entry, while
the surrogate path is comprised of solid arrows.

This again breaks the zero sum for the m2-th row and m1-th column, and to finally
satisfy them both we must apply

(Ac)m2,m1
← (Ac)m2,m1

+ (Ag)k,i. (3.13)

Overall, following (3.11)-(3.13), the submatrix (3.10) is given by

i
m1

m2

k

i m1 m2 k
0 0 0 0

(Ag)k,i −(Ag)k,i 0 0
0 (Ag)k,i −(Ag)k,i 0

−(Ag)k,i 0 (Ag)k,i 0

 ,
(3.14)

and it has a zero row and column sum.

3.2.3. Partitioning the corrections onto several surrogate paths. In prac-
tice, there may be several paths from i to k, so we eliminate (Ag)k,i using all paths
simultaneously, each eliminating a portion 0 < θ(i,m1,m2,k) < 1 of (Ag)k,i, where
the portions sum to one. The weights θ(i,m1,m2,k) are chosen proportionally to the
strength of the connection in the associated path. More specifically, we use

θ(i,m1,m2,k) = |(RtP )m1,i(At)m2,m1
(RPt)k,m2

| (3.15)

as the strength of the path (i,m1,m2, k). However, there are situations where there
is a distance-two path between i and k, featuring only one connector, i.e., m1 = m2.
In such cases, which are also computationally easier to find, we choose the weight
associated with the path (i,m,m, k) as |(RtP )m,i(RPt)k,m| and set the weight of the
distance-three paths to 0. We note that if we consider only symmetric problems, then
our distance-two correction is similar to that of [25]. A motivation for our choice of
the partitioning weight in (3.15) can be found in [40].

The accuracy of our sparsification depends on the local smoothness of the error.
We wish to collapse entries on strongly connected neighbors of the two vertices i and k
of the sparsified edge Aik (we elaborate on this later in the discussion around (3.21)).
For M-matrices, large values in the terms in (3.15) indicate strong connections between
each couple along the path. For example, if |(At)m1,m2| is relatively large in the row
m1, thenm1 and m2 are strongly connected. The same is true for RtP and RPt. Other
definitions for strength of paths may be used instead of (3.15). A precise description
of the sparsening algorithm appears in Algorithm 2. Our sparsening process treats
the designated non-zero entries one by one, independently of their order, and hence
it can be fully parallelized.

Remark 1 (Treatment of non-constant near null-space). The way Algorithm 2
is written in this paper, it is suitable only for matrices that have the constant vec-
tor as a single near null-space prototype. The same approach can be generalized for
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Algorithm: Ac ← Sparsify(Ag, At, RPt, RtP )
% Ag - a Galerkin smoothed aggregation operator that needs to be sparsified
% At - a Galerkin aggregation operator that defines the desired sparsity pattern
% Ac - SpSA coarse-grid operator. Has the sparsity pattern of At.
foreach (k, i) ∈ SP(At) do (Ac)k,i ← (Ag)k,i.
foreach (k, i) ∈ SP(Ag)\SP(At) do

% Seek a set of distance-two surrogate paths:
Sk→i = {(i,m,m, k) : (RtP )m,i 6= 0 & (RPt)k,m 6= 0}.
if Sk→i 6= ∅ then

foreach (i,m,m, k) ∈ Sk→i, associate a weight
θ(i,m,m,k) = |(RtP )m,i(RPt)k,m|

Normalize the weights: θ(i,m,m,k) ←
(∑

p θ(i,p,p,k)

)−1
θ(i,m,m,k)

foreach (i,m,m, k) ∈ Sk→i do
Define a portion of (Ag)k,i: δ = (Ag)k,i · θ(i,m,m,k).
Collapse δ onto the path (i,m,m, k):
Add δ to the entries (Ac)m,i and (Ac)k,m.
Subtract δ from the entry (Ac)m,m.

end

else
% Define a set of distance-three surrogate paths:

Sk→i = {(i,m1,m2, k) :
(RtP )m1,i 6= 0 & (At)m2,m1

6= 0 & (RPt)k,m2
6= 0}.

foreach (i,m1,m2, k) ∈ Sk→i, associate a weight
θ(i,m1,m2,k) = |(RtP )m,i(At)m2,m1(RPt)k,m|

Normalize the weights: θ(i,m1,m2,k) ←
(∑

p,q θ(i,p,q,k)

)−1
θ(i,m1,m2,k)

foreach (i,m1,m2, k) ∈ Sk→i do
Define a portion of (Ag)k,i: δ = (Ag)k,i · θ(i,m1,m2,k).
Collapse δ onto the path (i,m1,m2, k):
Add δ to the entries (Ac)m1,i, (Ac)k,m2

and (Ac)m2,m1
.

Subtract δ from the entries (Ac)m1,m1
and (Ac)m2,m2

.

end

end

end

Algorithm 2: The Sparsening procedure

matrices with a single non-constant near null-space by applying a diagonal scaling,
similarly to the way it is applied for the restriction and prolongation in standard adap-
tive AMG [13, 42]. That is, let x and y be the (positive) right and left near null-space
prototypes, respectively, and let X = diag(x) and Y = diag(y) be diagonal matrices
whose diagonal elements are the entries in x and y respectively. Then the re-scaled
matrix Y AX has a constant right and left near null-space prototype and can be treated
by Algorithm 2. The case of multiple near null-space prototypes, as in the elasticity
problem, requires a different treatment—see [34] for a discussion about this matter in
the context of non-Galerkin coarsening.

Remark 2 (Computational cost). The computational cost of Algorithm 2 is
comparable to the cost of the Galerkin product RAP , because finding a distance 2
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path between two variables is similar to applying an inner product between two sparse
vectors. For example, the non-zeros of the product RP correspond to all distance 2
paths in the first branch of Algorithm 2. In a way, the sparsening procedure tracks
the three-term products of the Galerkin operator for sparsified entries and updates the
entries of Ac accordingly. Our computational savings come from the third level on,
since then all matrices are much sparser than in the non-sparsified SA. We note that
most of the sparsified non-zeros are treated as distance 2 paths which are cheaper to
process.

3.3. Theoretical results. In this section we state some of the theoretical prop-
erties of the sparsening procedure.

Proposition 3.1. If the fine matrix A is symmetric, Rt = PTt , and R = PT ,
then Ac is symmetric as well.

Proof. By the given symmetries and (3.1), we get that Ag and At are symmetric,
and so are their sparsity patterns. Now, if the entry (k, i) needs to be eliminated,
i.e., (k, i) ∈ SP(Ag)\SP(At), then the entry (i, k) needs to be eliminated as well.
Furthermore, if there is a path from i to k such that

(PTPt)k,m2 6= 0, (PTt P )m1,i 6= 0, and (At)m2,m1 6= 0, (3.16)

then the same path exists from k to i in the opposite direction (i.e., via m2 and m1),
because (PTPt)

T = (PTt P ) and (At) is symmetric. Using this path, the submatrix
(3.14) that corresponds to the elimination of (Ag)i,k is given by:

i
m1

m2

k

i m1 m2 k
0 (Ag)i,k 0 −(Ag)i,k
0 −(Ag)i,k (Ag)i,k 0
0 0 −(Ag)i,k (Ag)i,k
0 0 0 0

 . (3.17)

If we set (Ag)i,k = (Ag)k,i in (3.17) and in (3.14), we can see that they are the trans-
pose of each other. This means, that the sum of (3.14) and (3.17) is a symmetric
submatrix under these conditions. Furthermore, under the above symmetries, also
each portion θ(i,m1,m2,k) equals θ(k,m2,m1,i) according to (3.15). Thus, when eliminat-
ing each portion of a pair (i, k) and (k, i), we add a symmetric submatrix to Ag, and
therefore Ac remains symmetric.

In the next proposition, we consider diagonally dominant M-matrices. A matrix
A is called an M-matrix if it is of the form of A = sI −B, where B ≥ 0 and s ≥ ρ(B)
(ρ(B) = maxi{|λi|} is the spectral radius of B). Furthermore, a matrix A is called
diagonally dominant if every row i satisfies Ai,i ≥

∑
j 6=i |Ai,j |.

Proposition 3.2. If Ag is a diagonally dominant M-matrix, then Ac is a diag-
onally dominant M-matrix as well.

Proof. Since Ag is a diagonally dominant M-matrix, then for every row k:
(Ag)k,k ≥ −

∑
j 6=k (Ag)k,j , or in matrix form: (Ag)1 ≥ 0, where 1 is the vector

of ones. By the sparsening construction in Algorithm 2, (Ac)1 = (Ag)1 ≥ 0. Fur-
thermore, any eliminated off-diagonal entry (Ag)k,i is non-positive, so the submatrix
(3.14) for replacing it has only non-positive off-diagonal entries, except the (k, i) en-
try which cancels. Also, its diagonal entries are non-negative. This means that the
sign-structure of Ac still corresponds to an M-matrix. This, together with (Ac)1 ≥ 0
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means that (Ac) is diagonally dominant. Finally, by the Gerschgorin theorem, Ac is
also positive definite and hence an M-matrix.

Our final observation deals with the energy preservation of our sparsification
mechanism, and the spectral equivalence between Ag and Ac. It shows that the prop-
erties that were discussed in [6, 25, 47] are achieved also in our algorithm. Consider
the following 5-point and 9-point 2D stencils that represent circulant matrices:

H1 =

c b c
a −2(a+ b)− 4c a
c b c

 , H2 =

 b+ 2c
a+ 2c −2(a+ b)− 8c a+ 2c

b+ 2c

 . (3.18)

These two stencils were shown to be spectrally equivalent in [6]. The algorithm of
[47] would find the entries of H2 given those of H1 by imposing that the response of
both of them to the monomials {1, x, y, x2, y2} given by1 1 1

1 1 1
1 1 1

 ,

1 0 −1
1 0 −1
1 0 −1

 ,

 1 1 1
0 0 0
−1 −1 −1

 ,

1 0 1
1 0 1
1 0 1

 ,

1 1 1
0 0 0
1 1 1

 , (3.19)

respectively, is equal. That is, the values of H1 and H2 times the stencils of each of
those basis functions is equal.

Algorithm 2, similarly to the work of [25], would find the entries of H2 given those
of H1 by imposing an equal response to the constant vector from right and from left.
Consider the sparsification of the northwest (NW) entry of H1, which equals c. Since
H2 is a 5-pt stencil, the surrogate paths for elimination the NW entry are through
the north entry (N), which equals b in H1, and the west entry (W) which equals a
in H1. Each of these paths is a distance-two path. Furthermore, assume that the
portions of both paths, θNW,N,C and θNW,W,C , are both equal to 0.5 (C denotes the
center). This would be the case if H1 is a Galerkin operator, and the coefficients in the
prolongation P also correspond to a similar stencil coming from the fine-level matrix.
In this situation, when eliminating the NW edge, we add 1

2c to the N entry and to
the W entry for each direction of this edge. Since the matrix that corresponds to H1

is symmetric, this will add a full value of c to both N and W entries. An additional c
will be added in a similar way when eliminating the other entries that relate to those
paths (the SW and NE edges). Overall, for this correction, we add the following sub
matrix for each path  0 δ −δ

δ −2δ δ
−δ δ 0

 . (3.20)

This sub-matrix corresponds to the [NW,N,C] entries or to the [NW,W,C] entries,
and in both options, δ = 1

2c. This matrix has a zero energy not only for the constant
vector, but also for vectors in one of the two following subspaces:NW

N/W
C

 : Span


1

1
0

 ,

0
0
1

 and Span


0

1
1

 ,

1
0
0

 . (3.21)

These subspaces can span all the functions in Equation (3.19) for the [NW,N/W,C]
entries, which implies the equivalence between the above algorithms. Similar equiva-
lence is also evident in 3D for spectral equivalence between 7-pt and 27-pt stencils.
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Let us now show some measures that demonstrate the spectral equivalence achieved
by our algorithm (and all the algorithms that produce (3.18)). We refer again to the
example in (2.2), and test two measures for this example on a 32 × 32 grid: one is
(2.3), and the other is the operator in (2.3) multiplied by a smoothing operator. The
multiplication by a smoothing operator aims (roughly speaking) to restrict the spec-
tral equivalence measure to smooth modes. In Table 3.3 we show the measures for Ag
and Ac in (2.2), and also for the pure aggregation operator At, which is equal to 2Ac
in this case. The table shows that all measures are below 1, as is expected, given that
the two-level cycles with either operator converge. However, we get better equivalence
using Ac. Moreover, introducing the relaxation operators SJ improves the equivalence
measure of Ac up to a value close to 0, whereas the measure for At stagnates at 0.5.
We note that 0.5 is indeed the convergence factor of the aggregation two level cycle
for this example, and it deteriorates as more levels are used in a V-cycle. Further
investigation of the required characteristics for spectral equivalence in the context of
non-Galerkin multigrid is a subject of our future research.

B = Ac B = At

‖I −B−1Ag‖2 0.49887 0.74943
‖(I −B−1Ag)SJ‖2 0.15815 0.49907
‖(I −B−1Ag)S2

J‖2 0.05611 0.49758
Table 3.1

Spectral equivalence measures. SJ denotes the damped Jacobi operator (I − 2
3
D−1Ag).

4. Numerical Results. In this section, the Sparsified Smoothed Aggregation
(SpSA) method is compared to both Smoothed Aggregation (SA) and simple aggre-
gation (AGG). We consider three groups of problems: non-symmetric 2D and 3D
convection-diffusion problems, symmetric 2D and 3D diffusion problems with dis-
continuous coefficients, and symmetric 2D and 3D unstructured homogenous and
non-homogenous graph-Laplacian problems on random graphs. For all problems, we
compare the performance of the above algorithms as preconditioners to GMRES or
PCG, and compare both iteration count and running time of our code. We consider
only V-cycles in the work as it is the most suitable for parallel computations.

In the tables below, we present four measures for each run: ‘it’ denotes the
number of V-cycles needed to reduce the initial residual by a factor of 108, starting
with a zero initial guess. ‘op’ denotes the operator complexity, which is the total
number of non-zero elements in the operators A on all the grids, divided by that of
the fine-level operator. Our coarsening is performed until n < 100. ‘st’ denotes the
maximal stencil size, that is, the maximal number of non-zeros in any row in the whole
hierarchy of operators. The maximal (or average) stencil size reflects the amount of
communication required in parallel computations [49, 34]. Lastly, ‘WU ’ denotes the
number of work-units required for the solution—for the setup and solution phases
combined. Each work-unit is a matrix-vector multiplication and the values in the
table are calculated by measuring the time needed for the solution and dividing it by
the time of one fine-level matrix-vector multiplication. We note that such timings are
highly implementation and machine dependent, but still, they provide some indication
for comparing between the algorithms. Our code is MATLAB based with several
procedures written in C using the mex environment. The experiments were performed
using MATLAB R2013b on a machine with an Intel core i7 quad-core CPU with 8
GB of RAM memory, running Windows 7.
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Fig. 4.1. 2D convection-diffusion problems: velocity fields.

4.1. Non-symmetric test cases: convection-diffusion. We consider the 2D
and 3D convection-diffusion equation (1.5) on the unit square/cube with Dirichlet
boundary conditions. The problem is discretized using the first order upwind finite
differences method, leading to a five-point stencil on a discrete domain. We use several
of the harder problems in [21, 30, 33]:

recirc: vT = (x(1− x)(2y − 1),−(2x− 1)y(1− y)),
bent-pipe: vT = (x(x− 2)(1− 2y),−4y(y − 1)(1− x)),

2D-3 : vT =

{
if x, y < 0.5, (cos(2πx) sin(2πy),− sin(2πx)cos(2πy))
otherwise 0,

3D-1 : vT = (2x(1− x)(2y − 1)z, (2x− 1)y(y − 1), (2x− 1)(2y − 1)z(z − 1)),
3D-2 : vT = (x(1− 2y)(1− z), y(1− 2z)(1− x), z(1− 2x)(1− y)),
3D-3 : vT = (x(1− y)(2− z), y(1− z)(2− x), z(1− x)(2− y)),

(4.1)
and following [33] generate f in (1.5) so that the solution is given by u = sin(πx)2 +
sin(πy)2 for 2D or u = sin(πx)2 + sin(πy)2 + sin(πz)2 for 3D. Figure 4.1 shows the
2D velocity fields v.

We use GMRES(10) acceleration, preconditioned with V-cycles. On the top level,
we apply one pre-smoothing of forward Gauss-Seidel and one post-smoothing of back-
ward Gauss-Seidel, and on coarser levels we apply one pre and post symmetric Gauss-
Seidel smoothing.

Table 4.1 compares the three aggregation methods AGG, SA and SpSA for the
2D convection-diffusion (1.5) with the first three velocity fields in (4.1). Fields with
’—’ show that convergence was not achieved in 100 iterations. It is clear that the
AGG method is not mesh independent and not efficient, especially for the recirc

problem. It also struggles for the diffusion-dominated problems (ε = 10−2 and 2D-3

that has a large diffusive domain for all ε). The SA method shows good scalability
for all combinations. It has a higher operator complexity than the other two meth-
ods, especially in the more convective problems, where the coarsening becomes less
aggressive. The SpSA obviously has the low and attractive operator complexity of
AGG, but also enjoys the scalable convergence behavior of SA for both the diffusive
and convective problems. The maximal stencil sizes, ‘st’, are similar between AGG
and SpSA, and are higher in SA—as are the operator complexities. Since these are
only 2D problems, the stencil growth of SA is moderate. In terms of the computing
time of the algorithms, which is measured in work-units, ‘WU’, both SpSA and SA
beat AGG even though the setup phase of AGG is about 2-3 times faster (not shown
in the tables). SA and SpSA have surprisingly similar timings in our implementation,
and in both cases the timing of the setup and solution phases are quite similar, each
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recirc: AGG SpSA SA
ε n it op st WU it op st WU it op st WU

10−2

2562 80 1.3 8 1103 12 1.3 10 426 13 1.4 31 394
5122 — 1.3 8 — 13 1.3 10 287 13 1.4 34 269
10242 — 1.3 10 — 14 1.3 10 293 15 1.4 35 297
20482 — 1.3 9 — 14 1.3 10 300 16 1.4 36 309

10−4

2562 — 1.5 13 — 12 1.4 11 663 13 2.2 50 702
5122 — 1.4 12 — 13 1.4 12 341 13 1.9 52 338
10242 — 1.4 11 — 15 1.4 17 370 14 1.8 51 367
20482 — 1.3 12 — 17 1.3 11 358 17 1.5 52 360

10−6

2562 76 1.5 16 1439 18 1.5 13 565 17 2 70 600
5122 — 1.5 17 — 20 1.5 12 389 19 2.1 69 392
10242 — 1.5 16 — 23 1.5 13 440 21 2.1 82 441
20482 — 1.5 15 — 27 1.5 13 512 23 2.2 80 514

bent-pipe: AGG SpSA SA
ε n it op st WU it op st WU it op st WU

10−2

2562 83 1.3 8 1299 12 1.3 10 455 12 1.4 36 419
5122 — 1.3 8 — 14 1.3 10 301 14 1.4 39 285
10242 — 1.3 9 — 15 1.3 10 321 15 1.4 48 309
20482 — 1.3 9 — 17 1.3 10 330 17 1.4 38 322

10−4

2562 25 1.5 11 542 15 1.5 12 670 14 2.4 57 661
5122 38 1.5 12 446 14 1.5 12 368 13 2.3 63 391
10242 64 1.5 12 779 12 1.4 13 366 12 2.2 59 395
20482 — 1.4 13 — 13 1.4 13 362 13 2 63 376

10−6

2562 22 1.5 13 509 16 1.5 13 649 14 2 69 650
5122 26 1.5 13 340 16 1.5 13 343 15 2 76 342
10242 34 1.5 14 462 16 1.5 18 382 15 2 89 374
20482 48 1.5 14 609 17 1.5 17 383 15 2.1 88 380

2D-3: AGG SpSA SA
ε n it op st WU it op st WU it op st WU

10−2

2562 — 1.3 8 — 13 1.3 11 519 13 1.4 30 470
5122 — 1.3 8 — 14 1.3 10 289 14 1.4 36 283
10242 — 1.3 8 — 15 1.3 11 304 17 1.4 41 315
20482 — 1.3 9 — 17 1.3 11 331 18 1.4 36 331

10−4

2562 — 1.3 15 — 18 1.3 11 549 18 1.6 53 548
5122 — 1.3 13 — 18 1.3 12 377 18 1.6 52 360
10242 — 1.3 11 — 18 1.3 12 370 18 1.6 54 380
20482 — 1.3 13 — 18 1.3 13 357 18 1.5 54 358

10−6

2562 93 1.3 15 1518 23 1.3 11 650 21 1.5 56 582
5122 — 1.3 15 — 25 1.3 14 411 22 1.5 70 382
10242 — 1.3 17 — 25 1.3 12 420 26 1.5 76 437
20482 — 1.3 16 — 26 1.3 13 440 27 1.5 84 453

Table 4.1
2D convection-diffusion. ‘#it′ denotes the number of V cycles, ‘op′ is the operator complexity,

‘st′ is the maximal stencil size in the hierarchy, and ‘WU ′ is the work units measures.

about half of the WUs that are shown in the table.

Table 4.2 shows the results for the 3D problems. Here, we see even larger operator
complexities for SA than in 2D, especially for the convection-dominated problems
(ε = 10−4, 10−6). In most of these cases, we also see a severe stencil growth in SA,
which reaches thousands of non-zeros in some cases. By changing the strength of
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3D-1: AGG SpSA SA
ε n it op st WU it op st WU it op st WU

10−2

643 39 1.3 28 456 11 1.3 26 360 11 1.6 149 324
963 49 1.3 35 561 12 1.2 30 391 12 1.6 213 362
1283 59 1.3 30 626 12 1.3 34 362 13 1.6 248 358
1923 75 1.3 32 — 14 1.2 35 — 14 1.7 244 —

10−4

643 20 1.5 51 316 12 1.5 47 695 11 4.8 837 847
963 28 1.5 64 409 11 1.5 55 655 11 4.7 1092 840
1283 35 1.5 49 465 11 1.5 60 644 10 4.5 996 784
1923 48 1.5 53 — 11 1.5 54 — 10 4.2 1053 —

10−6

643 19 1.5 67 313 14 1.5 67 554 13 3.7 1027 636
963 21 1.5 83 338 14 1.5 83 532 13 3.8 1711 670
1283 23 1.5 81 327 14 1.5 98 482 12 3.9 2503 629
1923 27 1.5 106 — 13 1.5 112 — 12 3.9 3935 —

3D-2: AGG SpSA SA
ε n it op st WU it op st WU it op st WU

10−2

643 40 1.3 27 486 12 1.2 27 416 13 1.7 176 384
963 55 1.3 31 625 13 1.2 29 403 13 1.6 229 378
1283 67 1.3 30 699 13 1.3 32 365 14 1.6 242 364
1923 84 1.3 31 — 15 1.2 33 — 15 1.7 241 —

10−4

643 32 1.5 55 475 14 1.5 53 704 12 4.7 992 833
963 40 1.5 61 552 14 1.5 64 694 12 5 1173 904
1283 48 1.5 67 616 13 1.5 80 683 12 5.1 1307 919
1923 70 1.5 65 — 14 1.5 66 — 12 5 1126 —

10−6

643 86 1.5 58 1195 34 1.5 56 813 30 3.3 920 892
963 71 1.5 79 941 22 1.5 72 602 18 3.3 1508 673
1283 77 1.5 101 938 24 1.5 73 600 24 3.3 2227 755
1923 91 1.5 103 — 25 1.5 96 — 21 3.3 2746 —

3D-3: AGG SpSA SA
ε n it op st WU it op st WU it op st WU

10−2

643 56 1.3 31 718 14 1.3 39 522 14 2.4 240 516
963 79 1.3 30 872 15 1.3 38 458 15 2 266 474
1283 97 1.3 34 1005 15 1.3 32 422 16 1.8 253 437
1923 — 1.3 31 — 16 1.2 35 — 16 1.7 290 —

10−4

643 37 1.5 29 515 15 1.5 29 550 13 3.5 424 564
963 46 1.5 29 610 15 1.5 43 521 14 3.9 771 660
1283 54 1.5 36 665 16 1.5 51 548 14 4.4 892 741
1923 72 1.5 36 — 16 1.5 65 — 14 5.1 1824 —

10−6

643 82 1.5 28 1052 20 1.5 28 530 17 2.8 117 503
963 — 1.5 28 — 23 1.5 33 546 15 2.8 142 462
1283 — 1.5 30 — 20 1.5 34 488 14 2.8 170 438
1923 — 1.5 35 — 21 1.5 45 — 16 2.9 309 —

Table 4.2
Convection diffusion 3D. ‘#it′ denotes the number of V cycles, ‘op′ is the operator complexity,

‘st′ is the maximal stencil size in the hierarchy, and ‘WU ′ is the work units measures.

connection parameters in (A.2) we may control the stencil growth, but at the same
time impair the convergence rate of SA, which is rather good and scalable, as in the 2D
case. Unlike in 2D, the AGG method shows moderate convergence, albeit not mesh-
independent in several cases. Its convergence is expected to further deteriorate as
the problem gets bigger. Again, ‘—’ denotes the cases where AGG failed to converge
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Fig. 4.2. 2D diffusion problems with discontinuous coefficients: square, diamond, and L shapes.

in less than 100 iterations, or it shows that the timings in WUs of the run are not
relevant. This happens in the 1923 3D problems, where the memory in our machine
ran out in the setup phase and the execution was dominated by memory swapping.
As in 2D, SpSA has the low operator complexity and maximal stencil sizes of AGG,
and convergence similar to SA. In terms of work-units, all algorithms are competitive
with some advantage to SpSA in the majority of the cases. In 3D, the setup of
AGG is about 3-5 times faster than the setup of SA and SpSA, because of the stencil
growth, and the need to multiply much denser matrices, in the case of SA. In SpSA,
more non-zeros need to be eliminated using more surrogate paths. In most cases
where the operator complexity is high, the setup cost of SA and SpSA dominated
their execution time. Other than that, the SpSA method again seems to be the most
efficient. Although the timings of SA and SpSA are similar in our serial code, we
expect to see advantage for SpSA in parallel settings, especially in the solution phase.

4.2. Diffusion with discontinuous coefficients. In the next group of test
cases we consider the two- and three-dimensional diffusion equation on the unit
square/cube, Ω, with Dirichlet boundary conditions

∇ · (κ∇u) = f, in Ω
u = g, on ∂Ω.

(4.2)

The diffusion problem is discretized by the vertex-centered finite differences method,
leading to a five-point stencil on a discrete domain Ωh with regular mesh size.

We consider three classical test cases of coefficient inhomogeneities, including
jumps that are aligned with the grid lines and jumps that are not aligned (all the
problems appear in [47]). Figure 4.2 shows the three choices of coefficients which are
explicitly given by

� : κ(x) =

{
‖x− 1

2‖∞ < 1
4 104

otherwise 1
; � : κ(x) =

{
‖x− 1

2‖1 <
1√
8

104

otherwise 1

L : κ(x) =

{
1
4 < ‖x‖∞ < 1

2 104

otherwise 1
.

(4.3)
The resulting linear systems are symmetric.

We apply PCG, preconditioned using V-cycles with one pre- and post- Symmetric
Gauss Seidel relaxations for all methods on all levels. Because the plain aggregation
method, AGG, is known to struggle with such problems, we accelerate it using a
multilevel overcorrection acceleration, which we denote by AGG+. That is, we inter-
polate e = Pec, apply post relaxations for Ae = r, and then calculate [5] x← x−αe,

such that α = arg minα ‖x− αe‖A = rT e
eTAe

. Using this procedure we typically get
α > 1. This overcorrection technique may significantly accelerate the convergence of
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2D-tests: AGG+ SpSA SA
κ n it op st WU it op st WU it op st WU

�

2562 37 1.3 10 519 20 1.3 10 449 13 1.4 31 281
5122 60 1.3 10 628 20 1.3 10 338 14 1.4 37 276
10242 72 1.3 11 797 22 1.3 10 370 16 1.4 44 313
20482 — 1.3 11 — 25 1.3 11 406 17 1.4 41 319

�

2562 34 1.3 9 527 14 1.3 9 421 13 1.4 32 332
5122 57 1.3 9 616 16 1.3 10 293 14 1.4 42 272
10242 86 1.3 10 941 18 1.3 10 340 17 1.4 38 316
20482 — 1.3 10 — 20 1.3 11 346 16 1.4 41 305

L

2562 35 1.3 10 461 14 1.3 11 252 10 1.4 34 206
5122 55 1.3 10 601 15 1.3 10 299 11 1.4 35 244
10242 49 1.3 10 576 15 1.3 11 311 11 1.4 40 258
20482 72 1.3 11 813 16 1.3 11 312 14 1.4 69 287

3D-tests: AGG+ SpSA SA
κ n it op st WU it op st WU it op st WU

�

643 33 1.3 31 383 19 1.3 32 415 15 1.7 198 375
963 35 1.3 32 410 21 1.3 31 430 16 1.7 257 384
1283 46 1.3 31 517 22 1.3 30 420 17 1.6 245 388
1923 59 1.3 34 — 24 1.3 33 — 18 1.7 266 —

�

643 30 1.3 29 412 16 1.3 30 452 12 1.6 144 347
963 55 1.3 33 658 18 1.2 30 434 14 1.6 219 368
1283 49 1.3 32 545 19 1.3 30 387 15 1.6 219 360
1923 92 1.3 32 — 20 1.2 30 — 16 1.6 235 —

L

643 23 1.3 29 282 14 1.2 31 356 10 1.7 207 314
963 29 1.3 32 353 14 1.2 30 361 11 1.7 249 335
1283 38 1.3 34 443 15 1.2 33 368 12 1.7 262 351
1923 45 1.3 34 — 16 1.2 34 — 13 1.7 278 —

Table 4.3
2D and 3D diffusion problems on structured meshes. ‘#it′ denotes the number of V cycles, ‘op′

is the operator complexity, ‘st′ is the maximal stencil size, and ‘WU ′ is the work units measures.

AGG. We note that this acceleration imposes an expensive communication overhead
in parallel settings due to the inner products that are computed.

Table 4.3 summarizes the results for this group of problems. Because of the
multilevel accelerations, the AGG+ method converged moderately fast, but again,
its convergence is not mesh-independent. Again, ‘—’ denotes failure to converge, or
irrelevant timings in WUs. Like before, we see the best iteration counts in SA, with
SpSA needing a bit more iterations. In terms of timings in WUs, SpSA and SA are
comparable and generally better than AGG+, although the setup of AGG+ is much
cheaper, like in the previous examples.

For the problems considered, SA has a rather low operator complexity, and it
does not introduce a severe stencil growth. Its maximal stencil size is only in the low
hundreds, also in 3D. As before, AGG+ and SpSA have similar low complexity, and
maximal stencil size.

4.3. Random graph-Laplacian problems. In the next group of test cases we
consider a graph-Laplacian problem on a 2D/3D random graph G(V,E). We generate
our graph by first generating n random points on the unit square/cube as the nodes
V , and applying a Delaunay triangulation to generate edges in E. Such graphs were
first suggested in [22]. A 2D example of such graph is shown in figure 4.3. Given the
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Fig. 4.3. Unstructured random planar graph.

edges (i, j) ∈ E we create a matrix A which is defined by

∀(i, j) ∈ E : Ai,j = −Θij and Aii = −
∑
i6=j Aij , (4.4)

and if we set Θij = 1, it represents the homogenous graph-Laplacian operator on G.
In the inhomogenous case, we set a weight Θij > 0 as the coefficient for each edge
(i, j). The weights of the graph are symmetric, i.e Θij = Θji, and so is the associated
matrix. We use random weights Θi,j = 103u where u ∈ (0, 1) is a random uniformly
distributed number, so that Θi,j ∈ (1, 103), but obey a logarithmic distribution. This
is a much harder problem than choosing the Θ’s uniformly, because there are many
weak connections in the matrix. We note that these problems have typically large
stencils of non-uniform sizes. Therefore, we needed to change the aggregation pro-
cedure, as explained in the Appendix A. In these examples, we could not generate
the 3D 1923 problem because it exceeded the memory of our machine. We also note
that this problem is singular, with the constant vector as a true null-space. To handle
that, we apply a pseudo-inverse on the coarsest grid, and filter out the constant from
the solution. See [42] for more discussion on that regard.

Table 4.4 summarizes the results for this group of problems, where rand denotes
the case of random weights. Overall, all methods handle the problem well. AGG+
presents reasonable iteration counts, although, again it converges more slowly than
SpSA and SA. AGG+ and SpSA have similar attractive operator complexity and
maximal stencil sizes, while SA struggles somewhat to maintain low operator com-
plexity and reasonable stencil size for the 3D non-homogenous problem. We note
that in this set of examples, the sparsening mechanism in SpSA used many more
quadrilateral correction paths than in the previous structured test cases. In terms
of work-units, the methods are comparable in 2D while AGG+ is the fastest in 3D,
thanks to its fast setup phase. We again note that the recursive accelerations impose
communication costs in parallel settings.

4.4. Communication complexity. In this section we provide measures for the
communication that is involved in applying a V-cycle with SA and SpSA, using a
simplified model from [2]. In this model, the communication cost is broken down into
the start-up time α (latency) and the per-element send time β (inverse bandwidth).
If a message has m elements, then the send cost is

Tsend = α+ βm.

The constants α and β are machine dependent, and so we will focus on the factors
that multiply them. Following the descriptions of [23], we define two measures of
communication complexity as follows. Let p be the number of available computing
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2D-tests: AGG+ SpSA SA
Θ n it op st WU it op st WU it op st WU

1

2562 24 1.1 22 246 12 1.1 22 247 11 1.4 119 220
5122 29 1.2 42 332 15 1.1 42 321 13 1.4 228 257
10242 29 1.2 66 317 17 1.1 66 303 14 1.4 319 274
20482 33 1.2 55 347 20 1.1 62 334 15 1.4 659 289

rand

2562 25 1.4 25 354 17 1.4 37 418 15 2.5 251 421
5122 33 1.4 53 407 18 1.4 41 395 16 2.5 453 418
10242 51 1.4 40 662 21 1.4 36 479 16 2.5 583 437
20482 37 1.4 58 478 22 1.4 38 461 19 2.5 1249 499

3D-tests: AGG+ SpSA SA
Θ n it op st WU it op st WU it op st WU

1
643 18 1.1 163 190 10 1.1 163 270 11 1.3 1067 249
963 19 1.1 113 190 11 1.1 113 248 11 1.3 1118 249
1283 20 1.1 155 190 11 1.1 155 244 12 1.3 1826 254

rand
643 15 1.4 126 204 10 1.3 126 585 10 4.1 3117 755
963 16 1.4 145 194 10 1.3 145 546 11 4.3 5501 751
1283 17 1.4 139 202 10 1.3 130 519 14 4.4 9108 842

Table 4.4
Unstructured Graph-Laplacian.

nodes. Define a partitioning of each matrix A in the multigrid hierarchy into p clusters
of variables, with each cluster designated to a computing node. Each such node
holds the corresponding rows in the matrices and the corresponding values of the
iterate xk. We then define the communication required for applying a matrix-vector
multiplication (MAT-VEC) on each level. The latency measure is the number of
non-zero off-diagonal blocks in the matrix according to the cluster partitioning. It
does not matter how many non-zeros there are in an off-diagonal block—it is the
existence of at least one non-zero inA in that off-diagonal block that forces establishing
communication between the two associated nodes. More precisely, assume that T is a
matrix that corresponds to the p clusters just as (2.4) corresponds to the nc aggregates;
for a given multigrid hierarchy we define:

Latency =

∑L
`=0(nnz(TT` A`T`)− p)
(nnz(TT0 A0T0)− p)

, (4.5)

where ` denotes the level, the matrices T` and A` are the clustering matrix and
operator on level `, respectively, p is the number of clusters and nnz(·) is the number
of non-zeros. Next, we define the bandwidth that is needed for applying a MAT-
VEC on each level—that is, the total number of values of xk that are needed to
be sent between nodes. This corresponds to the number of non-zero columns in the
off-diagonal blocks according to the cluster partitioning. As in (4.5), we divide this
number by the required bandwidth on the finest level. We preform the partitioning
for each level using a graph partitioning software METIS [24] which aims at forming
clusters such that the number of neighbors between the clusters is minimal. We use
p = 100 clusters, and we measure the communication complexity only for levels with
n ≥ 500.

Table 4.5 summarizes the communication measures for eight sample hierarchies
from the previous sections. It shows that in 2D, the latency measures of both SA
and SpSA are quite comparable, and are mostly dictated by the number of levels,
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Problem SA SpSA
Name n Parameters Latency Bandwidth Latency Bandwidth

2D Conv-Diff 10242 recirc,ε = 10−6 5.98 3.02 5.26 1.97
3D Conv-Diff 963 3D-1,ε = 10−6 16.00 3.48 6.19 1.72
2D Diffusion 10242 κ = � 4.19 1.91 3.99 1.59
3D Diffusion 963 κ = � 10.08 1.82 4.39 1.41
2D RandGraph 10242 Θ = 1 5.22 2.69 4.00 1.59
3D RandGraph 963 Θ = 1 6.42 1.81 3.00 1.19
2D RandGraph 10242 Θ = rand 7.05 4.79 5.00 2.05
3D RandGraph 963 Θ = rand 12.93 4.70 4.15 1.66

Table 4.5
Communication complexity

which is equal for both algorithms in our tests. In 3D, on the other hand, there is
a huge increase in the latency of SA, which is mostly due to the coarser levels. For
SpSA, the latency measure is mostly equal to the number of levels, which is what we
expect to achieve in this algorithm. In the bandwidth measures we see comparable
complexities for diffusion and homogenous RandomGraph problems. This is also
correlated with the similar operator complexity measures in the previous sections. A
bigger difference is evident in the other problems, where we also saw an increase in
the operator complexity of SA in the previous sections. In the bandwidth measures,
we do not see a big difference between 2D and 3D problems (remember that the
measures are relative to bandwidth on the finest grid). Obviously, SpSA required less
communication in all the cases.

5. Conclusions. In this paper we have presented a new algebraic multigrid algo-
rithm where the choice of the sparsity pattern of the coarse operators is independent of
the choice of the high-quality transfer operators. This property makes the algorithm
particulary worthwhile for parallel settings.

The new algorithm uses the well-known aggregation framework, adopting simple
non-smoothed aggregation for determining the sparsity pattern of the coarse opera-
tors, and smoothed aggregation for high-quality transfer operators. It sparsifies the
smoothed aggregation coarse operators onto the simple aggregation sparsity patterns.
Numerical experiments show that the algorithm has promising capabilities for 2D
and 3D convection-diffusion problems, diffusion problems with varying coefficients
and unstructured graph-Laplacian problems. It seems scalable and robust and may
be advantageous in cases where strict sparsity constraints prevent us from using high-
quality Galerkin operators, as in parallel settings.
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Appendix A. Smoothed Aggregation.
In this section we describe the details of the version of the SA method that we use

in this paper as the “Galerkin” method. We note that for some of the non-symmetric
problems that we tested, it performs significantly better than the original SA method
[45], which was shown exhibit slow convergence for some convection-diffusion problems
also in [33, 30, 13]. Our most significant change involves using two different parameters
for strength of connections: one rather large in the aggregation procedure, and one
rather small in the prolongation filtering procedure. In [45], these parameters are
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equal. Using two different values in this way may result in rather smaller aggregates
and rather large stencils on coarse grids, together with better convergence rates.

We note, however, that for isotropic problems we typically do not get a signifi-
cantly different strength-of-connection matrix for the aggregation and also typically
no filtering is performed. In particular, for a 5-point Laplacian operator, all the entries
are considered strong and no filtering is applied. Therefore, for isotropic problems
our version of SA behaves similarly to the original SA in terms of operator complexity
and stencil sizes—this is evident in our numerical results. For other problems, e.g.,
convection dominated (1.5) and non-homogenous graph Laplacian, using the original
version of SA (or, using just one parameter in our version) generates lower operator
complexity. However, it also significantly degrades the convergence—especially for
the 2D problems, which are harder because of their small mesh size. This is also
evident in the literature mentioned earlier. Below, we choose the parameters for our
method such that SA has mesh independent convergence for all problems, and those
parameters were mostly dictated by the 2D problems.

To define the aggregations used in (2.4), we first define a strength of connec-
tion matrix, and then apply a neighborhood aggregation algorithm. To compute the
strength of connection matrix, we first calculate:

Sij =


1 i = j

−Ai,j

maxk 6=i {−Ai,k} i 6= j

0 otherwise

, (A.1)

and treat (i, j) as strongly connected if Sij > θ, where 0 < θ < 1 as a strength
parameter. This definition corresponds to the strength condition that is used in
classical AMG [19], which is usually written as: −Ai,j ≥ θmaxk 6=i{−Ai,k}.

For the aggregation procedure, we use a symmetric version of the strength matrix,
S(θ), such that:

Sij(θ) = 1
2 (Sij + Sji) : Sij > θ, (A.2)

with a rather large θ = 0.5. Generally, the larger θ we use, the smaller will be our
aggregates, since less strong connections are considered.

Given the above strength of connection matrix, we found the original aggregation
algorithm of [45] to be efficient, and most importantly—very fast to compute. How-
ever, for the unstructured problems that we test there are cases where some rows in
the matrix have significantly more non-zeros than the rest of the rows. Such a row
may result in a very large aggregate if it is chosen as a seed of an aggregate. It may
also have the same effect even if it is not chosen as a seed. To solve this, in the first
pass we ignore points with a relatively large number of strong connections, and treat
them separately in a second identical pass. Algorithm 3 summarizes our aggregation
scheme. In the original aggregation algorithm in [45], only the first and third passes
are applied for N1 = {1, ..., n} and N2 = ∅. We use τ = 3 as the relative threshold
for large neighborhoods, but note that any τ ∈ [1.5, 4] seems reasonable for us.

As noted before, the next step in the SA algorithm includes smoothing the tenta-
tive operators (Equation (2.5)), and for that, the filtered matrix AF and the diagonal
preconditioner Q need to be defined. The filtering aims at removing small entries
from P and R, which may have little influence on their quality. Our filtering process
to define AF is similar to [45], only again we use a different strength of connection
matrix, based on (A.1). Specifically, we define Ŝi(ε) = {j : |Si,j | < ε}. Then, AF is
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Algorithm: {CJ}nc

J=1 ← Neighborhood-Aggregation(A, θ, τ)
% θ - Strength of connection parameter.
% τ - Relative neighborhood size parameter.

S(θ): Strength of connection matrix based on (A.2).
Let Si = {j : Sij(θ) 6= 0} denote the strong neighborhood of each point i

Compute average neighborhood size: s̄ = 1
n

∑n
j=0 |Si|

Set N1 ← {i : |Si| ≤ τ s̄}, N2 = {i : |Si| > τs̄}, and J ← 0

% First Pass: Assign only relatively small neighborhoods to aggregates.
foreach i ∈ N1 do

if each j ∈ Si does not belong to an aggregate then

Set J ← J + 1, CJ ← Si \ N2, and ĈJ ← CJ .
end

end

% Second Pass: Assign neighborhoods to aggregates for the rest of the points.
foreach i ∈ N2 do

if each j ∈ Si does not belong to an aggregate then

Set J ← J + 1, CJ ← Si, and ĈJ ← CJ .
end

end

% Third Pass: Assign remaining points to the aggregates.
nc ← J
foreach unassigned point i do

Set CJ ← ĈJ ∪ {i}, where J ← arg maxK=1,..,nc

{
1
|ĈK |

∑
j∈ĈK Sij

}
end

Algorithm 3: Neighborhood-based Aggregation

defined by

AFi,j =

{
Ai,j if j ∈ Ŝi(ε)

0 otherwise

}
, AFi,i = Ai,i +

∑
j 6∈Si(ε)

Ai,j . (A.3)

In this work we use ε = 0.02. Note that A1 = AF1.
For the smoothing preconditioner Q in (2.5), the inverse of the diagonal of A is

usually chosen, and then I − ωQA is the error propagation matrix associated with
the damped Jacobi relaxation. In this work, we use the SPAI diagonal preconditioner
[15] for Q, i.e., Q is the diagonal matrix that minimizes ‖I −QAF ‖F which leads to

Qii =
AF

i,i∑
j (AF

i,j)
2 for i = 1, ..., n. This is a more sophisticated operator than Jacobi,

and in the context of smoothing Pt it is related to the energy minimization diagonal
preconditioner (EMIN) in [33]. As in [33], we also found that such a Q is more efficient
for solving (1.5) than the Jacobi operator. We also found that additional weighting is
needed. While minimizing ‖I −QAF ‖F minimizes the mean squared singular values
of the matrix I − QAF , prolongation smoothing is often related to a minimization
of the maximal eigenvalue of the Galerkin coarse operator Ag (at least in the sym-
metric case). Therefore, for symmetric problems we follow the classical prolongation
smoothing weight which is based on the Chebychev polynomials, ω = 4

3ρ(QAF )
, and
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for non-symmetric problems we use a lower value: ω = 5
4ρ(QAF )

, following [41]. In

both cases, ρ(QAF ) is approximated by ‖QAF ‖∞.
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