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Abstract—The area of sparse approximation of signals is
drawing tremendous attention in recent years. Typically, sparse
solutions of underdetermined linear systems of equations are
required. Such solutions are often achieved by minimizing an
1 penalized least squares functional. Various iterative-shrinkage
algorithms have recently been developed and are quite effective
for handling these problems, often surpassing traditional opti-
mization techniques. In this paper, we suggest a new iterative
multilevel approach that reduces the computational cost of
existing solvers for these inverse problems. Our method takes
advantage of the typically sparse representation of the signal,
and at each iteration it adaptively creates and processes a
hierarchy of lower-dimensional problems employing well-known
iterated shrinkage methods. Analytical observations suggest, and
numerical results confirm, that this new approach may signifi-
cantly enhance the performance of existing iterative shrinkage
algorithms in cases where the matrix is given explicitly.

I. INTRODUCTION

Sparse approximation of signals is an emerging area of
research that is drawing vast interest and finding use in
numerous applications. One popular application is sparse
representation of signals and images, where the key underlying
observation is that natural signals, such as images, admit
sparse decompositions over specific spatial transforms [1], [2].
Another popular application is known as compressive sensing
[31, [4], [5] where signals are reconstructed from only a
few linear measurements. Other applications include statistical
analysis, machine learning, and coding theory [6].

There has been an enormous effort in recent years to develop
mathematical formulations and computational methods for
applying such reconstructions. The simplest way to mathe-
matically formulate this idea is to assume that the sought
signal y € R"™ can be approximately represented by only a
few columns of a matrix A € R™*"™, That is, y = Ax, where
the representation vector x € R™ is sparse, containing few
non-zero elements. The matrix A, often called the dictionary,
is usually over-complete, having more columns than rows,
m > n. This means that the underdetermined system Ax =y
has infinitely many solutions, and we seek the sparsest one by
solving the problem

min ||x||o subject to Ax =y, (1)
x€R™
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where the sparseness measure ||x||o = | {7 : 2; # 0} is called
the [y quasi-norm, defined as the number of non-zero elements
in the vector x. There are alternative formulations based
on the [y quasi-norm. However, these optimization problem
are non-convex and generally very hard to solve, as their
solution usually requires an intractable combinatorial search
[7]. Nevertheless, the solution for such problems can be
approximated using so-called “greedy algorithms” such as
(Orthogonal) Matching Pursuit (OMP/MP) [8], [9], [10], [11],
[12], Stagewise OMP (StOMP) [13], CoOSAMP [14], Subspace
Pursuit (SP) [15], iterative hard thresholding [16], [17], [18],
[19], [20], [21], and others.

A common alternative approach is to relax (1) by replacing
the [y quasi-norm with the well-known [; norm, which has
somewhat similar “sparsity properties” [3], [5], [22], [24]. The
new problem,

min ||x||; subjectto Ax =y, (2)
xER™

called Basis Pursuit [23], is convex. Its solution may not
be unique, but if more than one solution exists then all the
solutions belong to a convex and compact set; that is, any
convex combination of the basic solutions is itself a solution
[24]. A typical solution vector x* of (2) is relatively sparse,
and under certain conditions it is in fact equal to a global
minimizer of (1). Problem (2) can be formulated and solved
as a linear programming problem [23].

Because observed signals typically contain some noise,
which has no sparse representation, the constraint Ax =y is
usually relaxed in both (1) and (2), with approximate equality
measured using the quadratic penalty function ||Ax — y/|2,
where y henceforth denotes the observed noisy signal. Two
other approaches to treat this case are LASSO [25], and the
common Basis Pursuit denoising (BPDN) [23]. The latter
features an [; penalized least-squares functional minimization:

1

min F(x) = min C[lAx —yl[3 +plxll, 3
with p a scalar parameter that balances between sparsity
and adherence to the data. Generally, a larger parameter u
yields a sparser minimizer x*, but also a greater discrepancy
||Ax* —y||3. Although this problem is an unconstrained con-
vex optimization problem, traditional optimization methods,
such as gradient descent or quasi-Newton methods, tend to be
slow due to the discontinuity of the gradient, which arises
from using the [y norm. Therefore, various computational
optimization methods were developed for the task. The most
common methods are the so-called “iterative shrinkage” or
“iterative soft thresholding (IST)” methods that are often
used together with some accelerations [26], [27], [28], [29],



[30], [31], [32], [33], [34], [35]. Other related approaches for
solving (3) include [36], [37], [38], [39], [40], [41], [42].
Similarly to (2), problem (3) may also have more than one
globally optimal solution. In this work we adopt the common
practice of seeking any one of those solutions and refer to it
as “the minimizer” of (3), denoted by x*.

This paper introduces a straightforward multilevel method
for [; penalized least-squares problems like (3), based on
the main concept of classical algebraic multigrid methods
[43]; that is, we accelerate the convergence of simple iterative
methods for (3) using a nested hierarchy of smaller versions
of the problem. Multigrid methods are commonly applied to
linear systems arising from discretization of partial differential
equations as well as other ill-conditioned systems. In many
cases algebraic multigrid methods enable us to treat such
problems effectively regardless of their condition number.
This is done by projecting the original problem to a lower-
dimensional subspace that contains the error components that
are not treated effectively by standard iterative methods, such
as Jacobi and Gauss-Seidel. Then, these error components
are corrected by solving a lower-dimensional problem. This
correction together with the standard iterative methods serve
as two complementary processes which combine to yield an
effective solver. The idea of introducing multigrid-like meth-
ods for (3) has yet to be explored and it has great potential.
In this work we follow the idea of “multiplicative correction”
multigrid methods, which exploit a hierarchy of approximate
operators that evolve with the solution process, eventually
becoming exact—see [44], [45] and references therein.

In classical multigrid methods, the aim is to define a mul-
tilevel solver with optimal asymptotic convergence behavior,
because the asymptotic convergence rates of simpler iterative
solvers tend to be slow for problems of interest. However,
the present problem is different as the main challenge is
finding the non-zero elements of the minimizer x* and its sign-
pattern. Therefore, our algorithm is different from the classical
multigrid approach. At each iteration (called a “multilevel V-
cycle”) it reduces the dimension of the problem and creates
a multilevel hierarchy of smaller and smaller problems, in-
volving a lower dimensional dictionary at each “level”. We
take advantage of the typical sparsity of x and reduce the
dimension of the problem (3) by ignoring ostensibly irrelevant
columns from A. That is, each low-level problem is defined by
(3), restricted to a specially chosen subset of the columns of
A, resulting in a nested hierarchy of sub-dictionaries. It then
performs sub-space correcting shrinkage sweeps over each of
the low dimensional problems in turn, that aim to activate the
atoms that comprise the support of a true minimizer. Under
suitable conditions, our algorithm converges to the global
minimizer of (3)—we do not compromise solution quality in
return for improved performance.

II. ITERATED SHRINKAGE METHODS AND ACCELERATIONS

Many of the simple iterated shrinkage methods for solving
(3) are of the form

1
7z = S/L/c <CAT(y — Ax’f) + xk> , (@)

xF = xF 4 a(z — Xk), (5)

where x* is the approximate solution at the k-th iteration,

a > 0 is a line-search scalar, ¢ > 0 is method dependent, and
S,(t) = sign(t) - max(0, [¢t| — q) (6)

is the “soft shrinkage” function, so dubbed because the size
of the argument ¢ is reduced by ¢ (or set to zero if ¢ > [t]).
Some methods, such as [28], [38], simply choose o« = 1 in
(5), i.e., x**1 = z. Others, such as [31], [34], apply a line-
search by choosing « that minimizes the functional (3) of
x**1 according to the search direction (5).

The constant ¢ > 0 in (4) can be chosen in different ways
and is the main difference between the various shrinkage
methods. For example, in SSF [28], ¢ is chosen such that
c > p(ATA); in SpaRSA [38] c is recalculated at each
iteration via a linesearch over F'(z) defined in (3); in [34]
c is adapted throughout the iterations, and in PCD [31] 1/c is
replaced by the inverse of a diagonal matrix D which is equal
to the diagonal of AT A.

The iterative shrinkage methods mentioned above are much
faster than standard first-order minimization methods such as
classical Steepest Descent, however, some of them may remain
relatively slow, requiring acceleration. In [31], [35] an op-
timization method called “sequential subspace optimization”
(SESOP) was considered, together with the PCD and SSF
iterations. Other acceleration methods include FISTA [46],
TwlIST [32], and a version of nonlinear Conjugate Gradients
(CG) [35]. In this paper, we use a non-linear CG approach
that is slightly different from that of [35], and is also based
on the Polak-Ribiere CG method [47]. Given a search direction
r* = z — x* obtained in (5) at the k-th iteration, we compute
x**1 via a line-search along the direction r* = r* 4 gr*—1,

where
(rk)T(rk _ rszl) 0}
(e R

Bmax{

Another type of acceleration technique that can be used
with the above methods is the “continuation” strategy, also
known as “warm-start”, that is applied in [33], [34], [36], [38].
In this approach, a large parameter p is first chosen for the
problem (3) (lower than but proportional to ||ATy|/~). Once
(3) is solved approximately for this value of p, it is gradually
decreased, and at each stage the new initial guess is given by
the approximate solution to (3) obtained with the previous,
bigger, parameter u. This way, a sequence of problems is
solved corresponding to the sequence of the decreasing u’s,
until some convergence criterion is satisfied.

Asymptotically, once the sign-pattern of the minimizer x*
is recovered and fixed by the iterations, the functional in
(3) becomes quadratic and can normally be solved efficiently
either by the CG method or directly by solving the system
that corresponds only to the non-zeros of the vector x*.
Furthermore, in most applications the /; norm is only used
as a regularizer for promoting sparsity of x, and so, once we
determine the support of x*, we may ignore the regularization
term in (3) and only consider the quadratic term [36], [38] (an
approach known as “debiasing”). Overall, the main effort in



solving (3) is invested in determining the non-zero elements
of the minimizer x* and their signs.

III. A MULTILEVEL ITERATED SHRINKAGE APPROACH

We next describe our new multilevel approach for solving
(3). At each iteration, called a “V-cycle”, we define a hierarchy
of reduced problems, referred to as low-level problems. Each
low-level problem is defined by (3), restricted to a specially
chosen subset of the columns of A, and in each V-cycle we
traverse the entire hierarchy of levels. We iteratively repeat
these V-cycles, reducing the functional of (3) at each one, until
some convergence criterion is satisfied. A precise description
is given in the following sections in a two-level framework,
with the extension to the multi-level framework obtained by
recursion. In this description, all elements that are related to
the low-level problem are denoted by a subscript c. Keeping
with common practice, we use the terms “matrix” and “dictio-
nary” interchangeably, and similarly the terms “column” and
“atom”.

A. Definition of the low-level problem

In this subsection we define the reduced problem given its
designated subset of atoms, C C {1,...,m}, while the choice
of C will be discussed later. Given C, we define a so-called
prolongation matrix P € R™*ICl_ that transfers a low-level
vector x. € RIl into an upper-level vector x € R™ by the
relation x = Px.. We choose P to be a zero-filling operator,
which zeros the elements of x that do not belong to C, while
retaining the values of x. in the elements that do belong to C.
We have found this simple approach to be effective, but more
sophisticated choices of P may be worthy of investigation for
more general problems.

Next, we restrict (3) onto the atoms in C, or more generally,
onto the range of P. That is, we substitute Px, for x in the
objective (3), and get the new problem:

min  F.(x.) = min F(Px.) =
x.ERICI x.ERICI
1 (N
min o [[APxc = y|3 + pl Pxc|1,
x.cRlcl 2
which has only |C| degrees of freedom. Since our P is zero-
filling, we have that || Px.||1 = ||x||1 holds for all x., and
therefore we can write

min F.(x.) = min

1
—||Acx. — y||3 8
R . eRicl 2” Xe = yl5 + pllxell, ()

where A, = AP is the reduced sub-dictionary of the upper-
level dictionary A, with columns given by the columns of A
corresponding to the indices in C. Note that if C contain the
support of the true minimizer of (3), and (8) is solved exactly,
then Px. is in fact a solution of (3). Furthermore, because
this problem is similar to (3), we can recursively extend this
two-level framework to multi levels.

B. Choosing the low-level variables

Our low-level definition above suggests that we need to
select a subset of low-level variables, C, that is as likely

as possible to contain the support of the true minimizer.
Therefore, for choosing C we use the approximate solution at
the k-th iteration, x*, which is the best one currently available.
Let

supp(x) = {i : x; # 0},

denote the support of any vector x. Then evidently, if
supp(x*) C C, then x* is in the range of P. Indeed, x* = Px.
where x, is the vector x* restricted to the indices in C.
Therefore, we start by requiring supp(x*) C C, so that by
(7)-(8) we have that F'(x*) = F,(x.) holds. This implies
that the prolongation matrix P changes during the iterations,
depending on x*.

Next, we decide on the additional atoms in C, besides those
in supp(x*), aiming to limit its size to |C| = [m/2] (this
choice will be discussed later). If [supp(x¥)| > [m/2], then
we choose C = supp(x¥). Otherwise (the common case)
we add [m/2] — |supp(x*)| atoms that are currently not in
supp(x*), and yet have a relatively good chance of being in the
support of the true solution x*. These correspond to atoms ¢
with a relatively large value of |al (Ax* —y)|, since including
them in the support reduces the first term in the functional of
(3) more significantly per given increase in the second term
(see also Proposition 5 below). This rationale is commonly
employed in existing “greedy algorithms” mentioned earlier.
This leads to the following definition of C at the k-th iteration:

C = supp(x*) U likely(x),

where k = max{[m/2] — |supp(x*)]|, 0}, likely(0) = 0, and
likely(x) is the set of indices of the x largest elements in the
likelihood vector |AT (Ax* —y)|.

C. Definition of the multi-level V-cycle

For solving (3), we repeat
M = Veeycle(A, x*y, v) 9)

iteratively, until some convergence criterion is satisfied. The
multilevel V-cycle() procedure, along with its parameters, is
defined in Algorithm 1. The algorithm creates a reduced
version of the problem (3) as described above, and then treats
it recursively, yielding a hierarchy of smaller and smaller
problems. The recursion is terminated (Step 3a) when one
of the following happens. The common base case is when
|supp(x)| > [m/2]— then we cannot reduce the problem
further. In this case we choose C = supp(x), and solve
the problem (8) directly. The second base case is when the
problem becomes sufficiently small and can be solved easily.
In practice, we choose a minimal number of allowable columns
Mumin, and if |C| < 2myy,;, then we process (8) directly rather
than continuing recursively. (In our tests we use M, = 10.).

The algorithm uses iterated shrinkage methods as so-called
“relaxations”—the usual name for the iterations employed
within multilevel algorithms—carrying out v such relaxations
at each level (v = 1 in our tests). All shrinkage methods of
the form (4), as well as most other shrinkage methods, can be
incorporated into this multilevel approach.

In terms of cost, if we reduce the number of unknowns by a
factor of two at each level (|C| = [m/2]), then the total cost of



Algorithm: x + V-cycle(A4,x,y, )
%lterative Shrinkage method: Relax(A,X,y).
YoNumber of relaxations at each level: v.
YoMinimal number of columns allowed: M in.

1) Choose the low-level variables C and define the
prolongation P.
2) Define the low-level dictionary A, and
approximation x, = PTx.
3) If C = supp(x) or |C] < 2min,
a) Solve the lowest-level problem (8).
Else x. < V-cycle(A., x.,y,v) % Recursive call
4) Prolong solution: x <— Px. % Solution update.
5) Apply v relaxations: x « Relaxz(A,x,y).

Algorithm 1: V-cycle for [; penalized LS minimization

a V-cycle (excluding the treatment of the lowest level) is only
about twice the cost of v iterated shrinkage relaxations on the
highest level. This means that, although we include a relatively
large fraction of the atoms in the next low level, the cost of
the entire V-cycle remains relatively small, possibly excluding
the lowest level solution. The latter is a key component of our
algorithm, and it will be discussed later.

Remark 1: As one can see, our algorithm can be readily
applied when the columns of A can be easily extracted. This
requires A to be given explicitly as a matrix, rather than a
fast transform operator as in the Wavelet or DCT transforms.
Such explicit dictionaries are mostly used in the context of
“trained dictionaries”, where they may be either sparse or
dense; see [48], [49], [50], [51], [52], [53] and references
therein. Furthermore, in many applications the dictionary A
takes the form

A=H-B, (10)

where H is an operator that acts on the columns of the matrix
B [35]. For example, in the image deblurring problem the
operator H is a low-pass filter while B is the underlying
dictionary. In this scenario, our algorithm is applicable if either
H or B are given as explicit matrices, and the other is cheap
to apply. In most cases, it is the matrix B which is explicit.

Remark 2: Algorithm 1 is a multilevel framework wrapped
around a chosen iterative shrinkage (soft thresholding) method.
In spirit, it bears some relation to accelerated iterative hard
thresholding [19], [21] and subspace pursuit [14], [15] meth-
ods. However, the objectives, the techniques, and the avail-
able theoretical observations, are quite different. At the k-th
iteration, these algorithms update the solution by minimizing
||[Ax* — y||2 with respect to a small subspace restricting the
support of x*. This is similar to the lowest-level solution in
Step 3a of our V-cycle, but with a different objective. In [14],
[15], a sparse approximation with a small, fixed, support size
is sought, and the selection of the atoms is done according
to the largest elements in AT (Ax* — y). In [19], [21], the
selection of atoms is done by iterative hard thresholding.

In our approach we target /1 penalized problems, as opposed
to lp penalized problems in [19], [21] and support-size con-
strained problems in [14], [15]. We use the likelihood criterion

AT(Ax* — y) only to create a hierarchy of subspaces (low-
level dictionaries), while the iterated shrinkage (relaxation)
method is responsible for selecting the atoms assumed to
belong to the support. We elaborate on this mechanism in
the next section. Unlike these methods, the subspaces in our
hierarchy are very large (until we get to the lowest level) and
the problem we target at each level is non-quadratic, and is
analogous to the fine-level problem.

D. Theoretical properties of the V-cycle

This section is devoted to theoretical performance obser-
vations regarding Algorithm 1. In some cases we refer to its
two-level version, which differs from the original algorithm
only in Step 3. There, the recursive call is replaced with an
exact solution of the problem (8) on the second level, that
is, the condition in Step 3 is removed and Step 3a is always
performed.

In the following discussions we use the iteration specific
notation x* and the generic notation x, depending on the
context. Both relate to an approximate solution to (3). Also,
as before, we denote a solution to the problem (3) by x*, and
assume that it is a stationary point of any relaxation method.

By (7), together with supp(x*) C C, we can write

F.(x.) = F(Px.) = F.(PTx*) = F(x"), (11)

from which the next two observations follow immediately.

Proposition 1: (Inter-level Correspondence.) Let x be an
approximation to the minimizer of F' in (3). Let z. be a better
approximation than x. to the minimizer of the low-level prob-
lem (8), such that Fi.(z.) < F.(x.). Then F(Pz.) < F(x).

Proposition 2: (Direct Solution.) If ¢ 2 supp(x*), then
x* = PTx* is a solution of the low-level problem (8), and

the two-level Algorithm 1 solves problem (3) in one V-cycle.

Equation (11) relates the original problem (3) to any of the
problems (8) on any level of the V-cycle. Let the original
problem (3) define level 0, and let P; be a prolongation from
level i to level ¢ — 1. Then (11) holds for F.(x.) on any level
1 together with the so-called “composite prolongation”,

Pf=P Py P, (12)

that transfers from level 7 to level 0. Using Py, Proposition 1
holds for any level ¢ of the V-cycle. The next corollary is an
extension of Proposition 2 to the multilevel case, and its proof
follows immediately from Proposition 2 using the composite
prolongation (12).

Corollary 1: If supp(x) 2O supp(x*) or C D supp(x*) on
the lowest level, then Algorithm 1 solves problem (3) in one
V-cycle. Furthermore, x* is a stationary point of Algorithm 1.

For the following propositions we use the notion of sub-
gradients [24]. OF(x), the sub-differential of F, is a non-
empty set of sub-gradients,

OF(x) = {AT(Ax —y)+pz:z € Ax)}, (13)



where A(x) is a set of all vectors z € R™ whose elements
satisfy
ifx; =0.

z; = sign(z;)

Zi € [—1,1] (14)

A vector x* is a minimizer of (3), if and only if 0 € 9F (x*).
That is, for all elements of x*, if z} # 0 then al (Ax* —y) +
usign(z}) = 0, and otherwise |al (Ax* —y)| < p. Using this,
we next show that the two-level algorithm does not stagnate.

Proposition 3: (No Stagnation.) If C 2 supp(x*), and x =
Px, is the updated upper-level solution after Step 4 of the two-
level Algorithm 1, then a single Iterated Shrinkage relaxation
as in (4) on x must cause at least one atom to be added to
supp(x).

Proof: Since x is a minimizer of the low-level functional,
then 0 € JF.(x.), and since A. is comprised of a subset of
the columns of A, and Ax = APx. = A.X., then 0 € OF,
means that for all j € C

aj (Ax —y) + psign(z;) =0 if 2; #0,

15
lal (Ax —y)| < p if z; =0. (15)

Now, since C ;é supp(x*), then x is not a minimizer of the
upper-level functional, so 0 ¢ 0F(x). Therefore, there exists
at least one variable ¢ ¢ C for which |a} (Ax—y)| > u. Since
zy = 0, then, according to (4), after one Iterated Shrinkage
relaxation, index ¢ will enter the support of x. ]

From the last two propositions we can see the complemen-
tary roles of the relaxation and solution update in Algorithm 1.
The relaxation is largely responsible for inserting the correct
atoms into the support, while the solution update is mainly
responsible for finding the optimal values of the variables that
are in the support.

For the next proposition we define the term “memory-less
monotonic iteration” (MLMI). An iterated shrinkage relaxation
T(x) is called MLMI if

F(x)=F(T(x)) > K- min ([|0F(x)|)

Vx € R™, (16)
€A (x)

where K is a positive constant and OF(x) is the sub-
differential of F' defined in (13) and (14). This defini-
tion implies that every iteration of T'(x) reduces the func-
tional F'(x) in (3) at worst proportionally to the size of
minge 4(x) (|[0F(x)||?). For example, one such method is SSF
[28], which was shown to be both MLMI and convergent under
some conditions (see Apendix B in [31]). We next prove an
auxiliary Lemma that will help us to show that Algorithm 1
is convergent under suitable conditions.

Lemma 1: (Monotonicity.) Assume that Algorithm 1 is used
together with v > 0 MLMI relaxations 7', and is applied on
x. Let Q(x) be the solution update in Step 4 of Algorithm 1
on level 0. Then F'(x) > F(Q(x)).

Proof: The proof follows from Equation (11), which holds
for any level ¢ via the corresponding composite prolongation
(12). Since an exact minimization is performed on the lowest
level, and since the relaxations that are used on each level
are MLMI, the values of consecutive low-level functionals F
cannot increase as we traverse the V-cycle hierarchy. ]

We now show that Algorithm 1 is convergent under suitable
conditions, following the idea of the convergence proof of SSF
in [31].

Proposition 4: (Convergence.) Assume that the level set
R = {x: F(x) < F(x")} is compact. Also, assume that
Algorithm 1 is applied with v > 0 MLMI relaxations 7.
Let {x"*} be a series of points produced by Algorithm 1, i.e.,
xF+1 = Vecycle(A, x*,y, v), starting from an initial guess x°.
Then any limit point x* of the sequence {x*} is a stationary
point of F in (3), i.e.,, 0 € OF(x*), and F(x*) converges to
F(x*).

Proof: We start by showing that the series {F(x*)}
is monotonically decreasing. By Lemma 1 we have that
F(xF) > F(Q(x*)) where Q(x*) is the solution update on
level 0. Then, following the algorithm, we apply v relaxations
on Q(x*). By (16), and v > 0, we can bound

F(x") = F(xMY) > F(x*) — F(T(Q(x")))
F(Q(x*)) = F(T(Q(x")))

K min [|[0F(Q(x"))|?,
zeA@(xk))H Q)

a7)

(AVAAY]

which implies that { F(x*)} is monotonically decreasing.

Since the functional F' in (3) is non-negative, then it is
bounded from below, and hence the series { F'(x*)} converges
to a limit. Because the level set R is compact by assumption,
we have that {x*} is bounded in R, and therefore there exists
a sub-series {x*»} converging to a limit point x*.

Assume to the contrary that x* is not stationary, i.e.,
0 € OF(x*). It is known that OF(x) is always a non-empty
convex compact set, which means that min,c 4x) [|OF (x)||
always exists. That, together with 0 ¢ OF(x*) ensures that
minge 4(x+) |OF (x*)|| > 0. Denote min, ¢ g(x+) [|OF (x*)| =
e. Since x*» — x*, then there are infinitely many k,’s
satisfying min,e 4(xkn) |0F(x*)|| = e. By (17) we have
infinitely many k,,’s satisfying

F(Xk”) _ F(an+1) > K- 62, (18)

which contradicts the fact that F’ is bounded from below. This
shows that the point x* is stationary. Since F' is continuous,
xFr — x* yields F(x"r) — F(x*). The limit of {F(x*)}
equals to that of any of its sub-series, specifically {F(x*)},
and thus F(x*) — F(x*). ]

The next proposition justifies our criterion for the choice of
the set C of atoms comprising the low level. This result is in
the spirit of thresholding algorithms, as well as other greedy
algorithms, which apply the same approach for selecting the
support [24].

Proposition 5: (C-Selection Guarantee.) Without loss of
generality, assume that the columns of A are normalized such
that diag(AT A) = 1, and then let § be the so-called mutual
coherence of the dictionary A, defined by

§ = max {|al a;|}.
i#]

Let x* and x be the solution and the approximate solution
at the time C is chosen, respectively, and let e = x* — x be
the current error. Let ¢ be an index satisfying ¢ € supp(x*)
and ¢ & supp(x). Then, so long as |C| > |supp(x)|, index 4



is guaranteed to be included in the set C prior to any index
¢ ¢ supp(x) U supp(x*) if

|z >

lellx - 19)

26
146
Proof: The choice of C is based on the likelihood mea-
sure. We derive a condition that guarantees that index ¢ be
included in C prior to any index ¢ not belonging to supp(x*),
ie.,

laf (Ax —y)| > [af (Ax — )] (20)

for any ¢ ¢ supp(x) U supp(x*). To this end, we bound the
left-hand side of (20) from below and the right-hand side from
above, obtaining the condition (19).

Since i € supp(x*) and 0 € OF (x*), then al (Ax* —y) +
wsign(z}) is equal to zero and may be subtracted from or
added to the left-hand side of (20) yielding

laf (Ax —

iz (] aj)ej + e + psign(z})|,

y)l = |a] Ae + psign(a7)| =
@1

where we have used the fact that the dictionary columns are
normalized, aiTai = 1. Observe that e; = z] because i ¢
supp(x). Using this, the triangle inequality |a + b| > |a| — |b],
the fact that =} and psign(z}) have the same sign, and the
definition of mutual coherence, we obtain

af (Ax —y)| > |af[+p— 03, el
= [af|(1+0) + p —lefx.

(22)

Next, we bound from above the right hand side of (20). Since
¢ ¢ supp(x*), there exists a scalar z € [—1,1] for which
al (Ax* —y) + uz is equal to zero and may be subtracted
from or added to the right-hand side. Therefore,

laj (Ax — y)| = |aj Ae + pz| < dle[ls +p,  (23)

where the last inequality uses e, = 0. Comparing the bounds
(22) and (23), we obtain that p drops out and the condition
(20) is guaranteed if (19) is satisfied. [ |

This proposition implies that if the dictionary A is far
from being degenerate, i.e, 6 < 1, then, as our approximate
solution gets better, any atom that contributes significantly to
the solution is guaranteed to be chosen to the low-level set C.

E. Treatment of the lowest level

One key component of our algorithm is the treatment of the
lowest-level problem, whose dimension is typically the size of
the current support. Assuming that in the lowest level of a V-
cycle, x. is dense and of length |C|, the cost of the shrinkage
iterations (relaxations) discussed above is O(n|C|) operations
each. Therefore, applying many relaxations for solving the
lowest-level problem may be costly. Moreover, although the
solution x* is normally sparse, there is no such guarantee for
x throughout the entire solution process. An exact solution
might be wasteful if x is too dense or if C 2 supp(x*).

Following the above reasoning, we limit the number of
relaxations done on the lowest level to balance between cost
and efficiency of the V-cycle. We aim to apply relaxations
only until we increase the accuracy of x. by some order of

magnitude compared to the initial x, on that lowest level.
More specifically, we apply relaxations until the value of the
expression ||x. — S, (x. + AL (y — Ax.))|| becomes 10 times
smaller than it is initially on the lowest level. We found that
this ratio balances well between the cost and efficiency of the
V-cycles.

In addition, we explicitly limit the number of iterations
proportionally to the cost ratio between a highest level re-
laxation and the lowest level relaxation, i.e., % Thus, the
cost of the lowest-level solution will not exceed the cost of
several high-level relaxations. In our tests, we apply at most
5[%} relaxations which cost roughly the same as 10 high
level relaxations.

F. A gradual initialization— “full multilevel cycle”

Our strategy aims at limiting the support of x throughout
the solution process, thus saving unnecessary computations.
The key problem is that if we initialize the solution process
with x = 0, and do a shrinkage iteration of the form (4), then
many atoms will enter the support because of the rather large
residual. This might happen with most shrinkage methods. Our
way to prevent this from happening is to start our solution
process from the bottom, instead of the top. That is, initialize
x = 0, choose a small set of atoms that are most likely to be in
supp(x*) (as in section III-B), and solve the reduced problem
(8). Then, gradually enlarge the relevant set of columns, and
apply a V-cycle for each level. This strategy, together with
the exact solution of the lowest-level problem, is expected to
maintain a sparse x throughout the solution process. Figure
1 and Algorithm 2 describe this approach. A similar strategy
is used in multigrid methods and is called a “full multigrid
algorithm” (FMG) [43]. The input parameters for Algorithm
2 are identical to those of Algorithm 1.

Algorithm: F-cycle(A,x,y,v)
1) Choose C = likely([m/2]) and define P.
2) Define A, = AP and restrict x, = P7x.
3) If |C| < 2Mynin, solve the problem (8).
Else x. «+ F-cycle(A.,x.,y,v) % Recursive call
X < V-cycle(A.,x.,y,v) % Algorithm 1
4) Prolong solution: x + Px.
5) Apply v relaxations: x < Relax(A,x,y).

Algorithm 2: Full multilevel cycle initialization.

Fig. 1. Full multilevel cycle initialization.

“\/ refers to choosing C and reducing the problem, ‘CJ’ refers to performing
a lowest-level solve, ‘" refers to prolonging the solution, and ‘e’ refers to
applying v relaxations.



G. A note on implementation

Algorithm 1 is presented in a rather symbolic way. In
practice, we do not explicitly construct either the prolongations
P or the low-level operators A.. Instead, we use a single
vector x and at low levels we address only the indices of
x belonging to that level. This saves the need to store and
extract the dynamic hierarchy of low-level matrices which
usually changes from one V-cycle to the next. This also lets
us apply multiple-point methods (such as SESOP, CG and
TwIST) on consecutive approximations from different levels
(i.e., while traversing up the V-cycle). This approach, however,
requires the ability to efficiently multiply a vector by AT
using A and the subset C (in n|C| operations). Similarly,
since x is sparse, for all the methods we compute Ax while
ignoring the zero entries of x (i.e., in n||x||op operations). In
MATLAB, for example, the latter can be achieved by storing
X in a sparse data structure, but the former needs to be
programmed manually.

In our multilevel algorithm, we do not perform any sig-
nificant computations besides the relaxations and lowest-level
solution. Most importantly, we do not calculate the likeli-
hood vector AT(Ax — y) for choosing C. Instead, we use
the likelihood vector that corresponds to x before the last
relaxation, which is calculated inside that relaxation as a by-
product. We assume that the slight change in the likelihood
vector as a result of the relaxations does not justify the extra
computational cost.

I'V. NUMERICAL RESULTS

In this section we compare the performance of several
known shrinkage methods to our multilevel framework. We
run the shrinkage iterations until the method-independent
condition,

I — Su(AT (y — Ax))|/lIx]| < 1077, (24)

is satisfied. This condition is taken from [54] and is related to
the size of min, e 4(x){||0F(x)||}. We do not require extreme
accuracy because our aim is only to discover the support of the
minimizer for the reason described in Section II. In practice, all
solutions achieved by all algorithms in our tests correspond to
functional values which are identical up to several significant
digits and have an essentially identical support size, which
justifies this convergence criterion. Once this convergence
criterion is satisfied, a debiasing phase is performed, where
the norm ||Ax — y||2 is minimized with respect only to the
non-zeros in the minimizer of (3).

The “one-level” methods that we show in our compar-
ison include Coordinate Descent (CD) [39], [40]; Parallel
Coordinate Descent (PCD) [30], [31], [35]; acceleration of
PCD by SESOP [31], [35] and non-linear CG as described
above (denoted by SESOP1 and CG, respectively); we also
test GPSR-Basic (GPSR) and GPSR-BB (non-monotone) [36],
TwlIST [32] and SpaRSA (monotone, BB variant)[38].

For PCD, CG, and SESOP, we used the exact linesearch
procedure of [34]. We also accelerated CD by a linesearch,
seeking a parameter > 1 as in (5). We denote this method
by CD™.

Within our multilevel framework we use CDT and CG.
These are used both as relaxations and lowest-level solvers,
and are denoted by ML-CD and ML-CG respectively. In some
cases, we show our multilevel framework with CDT as a
relaxation and CG-PCD as a low-level solver, and denote this
option by ML-CD/CG.

For the methods of GPSR, SpaRSA, and TwIST, we used
the default parameters suggested in the original papers and
adapted the authors’ MATLAB software for our tests. All
the rest of the methods are implemented in MATLAB with
certain procedures in the mex framework, including the
linesearch, CD iteration, Ax and AZy multiplications. The
matrix-vector multiplications in mex were also parallelized
using the OpenMP library, which enhanced their calculation
timings so that they are comparable to MATLAB’s internal
parallelization. Our parallel implementation of CD was not as
fruitful because CD is sequential.

We perform four synthetic experiments using dense explicit
dictionaries. In each of these we first generate a random,
normally distributed dictionary,

AeR™™ st Qi ~ N(O, 1), (25)

and normalize its columns. Following this, we uniformly
generate a support Sy from all possible supports of size [0.1n].
Then, a vector s is generated with normally distributed values
in the indices corresponding to Sy and zeros elsewhere and
a clean signal is generated by Asy, normalized such that
||[Aso|loc = 1. Next, we add random Gaussian noise obtaining
the noisy signal,

y = ASO +n, (26)

with n ~ N(0,02I). In all our experiments we set the noise
level to 0 = 0.02. Because our experiments are randomly
generated, each one is repeated 15 times, and the results are
averaged and rounded. As in [54], our aim is only to examine
the cost of computing the solution of (3), and not to measure
the relation of its minimizer to the original sparse vector sg
used to generate y.

The description above relates to our first experiment. A
similar matrix is used in [54], [35], denoted by K () In the
second experiment, taken from [55], the elements of A in (25)
are replaced by 41 according to their signs, and the columns
are normalized.

In the third experiment, we manipulate the singular values
of A in (25) to make it highly ill-conditioned, with a condition-
number of about 10'°. As before, we finalize the generation of
the dictionary by normalizing its columns. A similar example
is used in [54], [35], denoted by K 4, Figure 2 shows an
example of the singular values of a dictionary A.
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Fig. 2. The singular values of the matrix A with n = 512



In the fourth experiment we use a matrix that is similar
to the K ) matrix in [54]. The aim is to construct a matrix
that is problematic for our solvers, even though it is well-
conditioned. The construction is as follows: Let U;X VlT be
the SVD decomposition of A in (25) (after normalizing its
columns). Let A; be the sub-matrix of A comprised of its
first [0.55m ] columns. Let v be the last column of A;. Define:
Ay = [A1|v1T 4 0.05B], where 1 is a vector of all ones, and
B is a random matrix of size nx (m—[0.55m]) like (25), with
normalized columns. Let Us3o VQT be the SVD decomposition
of A, and then define the final matrix A for this experiment
as UngVzT. This matrix has the favorable spectrum of (25)
and the problematic singular vectors of As.

In the tables below, each test is described by two numbers:
the mean number of iterations—relaxations or V-cycles—and
(in brackets) the number of work-units. Each work-unit stands
for mn floating point multiplications. We show these work-
units in order to compare the multilevel method, that requires
only a few albeit expensive cycles, with the shrinkage methods,
that require many cheap iterations. We count all the operations
preformed in all the algorithms. We note that the two most
significant operations are

1) Multiplying AT y—costs mn operations, (a single work-

unit). Multiplying ALy costs n|C| operations.

2) Multiplying Ax—costs n[|x[jo with [x|o as in (1).

Similarly, multiplying A.x. costs n||x.||o operations.
For some of the runs (with the largest n = 2048) we also
show the average solution time measured by MATLAB’s tic
and toc mechanism. We note, however, that such timings
depend on many variables that are not algorithmic (MATLAB
compilation and parallel procedures, cache usage, memory
usage, indexing etc.). The experiments were performed using
MATLAB R2011b on a machine with an Intel core i7 quad-
core CPU with 8 GB of RAM memory, running Windows 7.

The tables contain three parts. The upper section shows
the influence of n, the middle part shows the influence of
m, and the lower part shows the influence of u. We use
multilevel V-cycles with only one relaxation applied in each
level (v = 1). The multilevel process is initialized with a single
full multilevel cycle (Algorithm 2) starting from x = 0. The
one-level methods (excluding CD™) are initially accelerated
by the warm-start (or continuation) strategy of [38] with
parameter ¢ = 0.3. The tables also show the support size
of the minimizer, ||x*||g, and improvement in signal-to-noise
ratio defined as

A _ 2
ISNRlOlogw( | Aso = yll2 >

| Aso — Ax*|3

that was achieved affer the debiasing phase. Here, Asg is the
clean signal used in (26) to generate y. The higher this value
is, the better is the denoised reconstruction. As noted above,
the ||x*||o and ISNR measures are both almost identical for
all the convergent algorithms.

A. Experiment 1: Well-conditioned random A

Table I summarizes the results for the first problem. Be-
cause A is such that every one of its sub-matrices is well-
conditioned, we find that all methods perform relatively well.

For all the one-level results, the cost in work-units is similar
to the number of iterations, implying that most of the work in
each iteration is spent on computing A”r (which costs 1 work-
unit). The second significant operation in terms of cost is the
multiplication Ax, which is performed in n||x|o operations
(approximately Ixllo work units). Most one-level methods are
comparable in their performance (iterations and timings), with
an edge to CDT (CD + linesearch). However, CD requires
each column of A separately, which is problematic in terms
of parallelization and handling composite dictionaries as in
(10). SESOP1, which does not appear in the table, performs
similarly to CG.

The multilevel acceleration for CG reduces the solution
work-units by up to 50% or so compared to CG, while with
CD™ the multilevel speedup is only about 20%. In terms
of timings, our implementation of ML has some overhead,
therefore, the timings show a slightly smaller advantage than
the work-units. In that respect, the cost per iteration of CD*
is higher than that of the others due to the lack of efficient
parallelization.

The values of the ISNR measures show that the noise level
is indeed reduced in these experiments. The ISNR values in
the lower section of the table show that if we choose p too
low, then the efficiency of the reconstruction decreases.

B. Experiment 2: Random +1 entries A

Table II summarizes the results for the second problem,
which involves a matrix with random 41 entries. Although
A is random as in the previous problem, it is clear that this
problem is more challenging, as all the methods require more
iterations to converge.

Unlike the previous case, the CD* method does not have
an advantage over the rest of the one-level methods in terms
of iterations and work-units. The PCD and SESOP1 meth-
ods (omitted from the table) exhibit performance similar to
SpaRSA and CG, respectively; GPSR-BB was outperformed
by GPSR and TwIST in this test case.

The multilevel acceleration significantly improves the per-
formance of CD*, while it only slightly accelerates CG. This
is partly a result of an increased support of x during the
course of the iterations. Applying ML-CD/CG (which uses CD
instead of CG as a relaxation) overcomes this and improves
the performance of ML. In terms of timings ML-CD/CG is
clearly the favorite. The ISNR measures for this test case are
similar to those of the previous one.

C. Experiment 3: ill-conditioned A

In this experiment we use the matrix A with the ma-
nipulated singular values. Most sub-matrices of A are also
ill-conditioned, but not necessarily with a similar condition
number.

Regarding the one-level methods, again, Table III shows that
the CD' method is more effective than the rest of the one-level
methods. The PCD and GPSR methods (not shown) did not
converge after 4000 iteration and were outperformed by the
rest of the methods. The ‘—’ sign indicates that convergence
was not reached after 3000 iterations in most of the tests.



n m o [[x*|lo ISNR cpt ML-CD PCD CG ML-CG | SpaRSA | GPSR-BB TwIST GPSR
256 4dn 4o 352 52 17.1(23) 2.5(17) 44.3(49) | 36.8(43) 2.921) 36.8(43) 41.5(48) 56.6(67) 38.8(43)
512 4in 4o 70.3 5.4 16.8(23) 2.6(17) 43.5(49) | 34.6(42) 2.921) 37.3(43) 40.7(47) 57.3(69) 39.1(44)
1024 4n 4o 139.8 5.4 16.8(25) 2.7(20) 43.5(51) | 36.7(46) 3.0(24) 37.0(45) 40.2(49) 59.4(73) 38.8(46)

16.5(29) 2.9(24) 43.3(56) | 35.7(49) 3.0(28) 37.4(50) 40.5(54) 60.7(79) 39.7(52)
2048 an 4o 279 52 0.38sec 0.32sec 0.60sec 0.50sec 0.31sec 0.50sec 0.55sec 0.79sec 0.55sec
1024 2n 4o 117.9 6.3 13.6(24) 2.8(23) 36.9(47) | 32.3(44) 3.0(26) 31.7(42) 32.9(43) 53.5(72) 33.7(43)
1024 6n 50 125.5 4.8 16.2(20) 2.3(14) 40.7(45) | 33.8(40) 3.0(18) 35.7(41) 38.7(44) 67.3(76) 37.6(42)
1024 8n 5o 144.9 4.6 18.4(22) 2.6(15) 46.9(51) | 40.3(46) 3.0(19) 41.6(47) 46.9(54) 76.7(87) 43.5(48)
1024 4n 50 118.5 52 15.1(20) 2.6(17) 39.7(45) | 32.3(39) 2.9(20) 34.3(41) 36.5(43) 57.4(68) 35.6(41)
1024 4n 3o 182.7 4.0 19.7(34) 2.9(26) 51.6(64) | 43.9(58) 3.2(32) 44.5(57) 47.7(61) 65.3(85) 46.9(58)
1024  4n 20 298.0 2.0 25.7(58) 3.1(44) 65.3(93) | 55.2(84) 3.9(56) 52.3(81) 54.9(83) 80.9(122) | 57.7(85)

TABLE 1

EXPERIMENT 1: WELL-CONDITIONED A. MEAN NUMBERS OF ITERATIONS (WORK-UNITS IN BRACKETS). THE AVERAGE TIMINGS ARE FOR n = 2048.

n m “w [[x*|lo ISNR CcDT ML-CD CG ML-CG ML-CD/CG SpaRSA TwIST GPSR
256 4n 4o 37.0 5.8 55.4(66) 3.5(29) 60.0(85) 3.7(60) 3.5(42) 101(133) 173(238) 136(156)
512 4n 4o 68.7 52 103(117) 4.6(42) 68.5(99) 4.4(90) 3.9(57) 135(193) | 234(314) 235(266)
1024 4n 4o 132.3 53 238(258) 4.8(47) 86.5(132) | 4.8(101) 3.8(57) 201(304) | 326(421) 438(493)

711(754) 5.7(86) 106(175) 5.9(150) 4.1(75) 338(557) | 519(746) | 951(1082)
2048 an 4o 268.9 32 13.7sec 1.34sec 1.70sec 1.66sec 0.82sec 5.88sec 6.91sec 12.9sec
1024 2n 4o 117.8 6.5 203(231) 4.9(57) 70.6(112) 4.3(85) 3.7(53) 152(238) | 247(401) 329(382)
1024 6n 50 126.3 5.0 214(226) 4.937) 88.2(131) 4.4(88) 3.8(47) 207(304) | 377(482) 427(473)
1024 8n 5o 143.1 43 263(275) 5.1(34) 95.4(135) 4.9(83) 3.7(40) 225(325) | 475(588) 536(585)
1024 4n 5o 113.8 4.7 187(200) 4.9(39) 73.9(110) 4.5(90) 3.7(45) 172(252) | 326(440) 374(417)
1024 4n 3o 170.5 4.5 375(416) 5.5(76) 98.9(157) | 5.9(154) 4.1(80) 243(393) | 366(514) 569(645)
1024 4n 20 268.3 2.3 684(773) | 6.0(133) 123(197) 8.1(204) 4.7(106) 308(513) | 448(732) | 983(1128)

TABLE II

EXPERIMENT 2: RANDOM +1 ENTRIES A. MEAN NUMBERS OF ITERATIONS (WORK-UNITS IN BRACKETS). THE AVERAGE TIMINGS ARE FOR n = 2048.

n m o [Ix*[lo ISNR CDT ML-CD CG ML-CG ML-CD/CG SESOPI SpaRSA TwIST
256 in lo 39.7 3.8 573(630) | 7.6(101) 710(850) 6.7(184) 5.5(154) 713(900) 1941(2279) | 2980(3348)
512 4an lo 78.1 3.7 591(646) | 7.2(115) 936(1103) 8.0(240) 5.4(175) 901(1096) 2416(2813) | 3643(4122)
1024  4n lo 153.3 4.0 569(624) | 7.7(107) 1049(1218) 7.6(222) 6.0(185) 1012(1168) | 2542(2886) —

635(701) | 7.5(111) 1276(1431) 8.6(252) 6.1(202) 1251(1428) | 2995(3373) —
2048 n lo 293 4.4 12.5sec 1.7sec 16.0sec 2.4sec 1.6sec 17.3sec 37.5sec —
1024 2n lo 169.3 3.8 406(491) | 5.7(143) 779(986) 10.0(298) 6.9(221) 761(968) 1701(2116) 1383(1788)
1024  6n lo 142.6 4.3 659(700) 5.7(76) 1164(1292) 6.6(177) 5.1(154) 1136(1279) | 2897(3193) —
1024 8n lo 139.1 4.5 774(809) 6.1(68) 1347(1496) 5.9(164) 5.3(144) 1316(1457) | 3340(3633) —
1024  4n 4o 107.3 -0.4 213(228) 4.8(34) 398(446) 5.2(76) 4.7(66) 385(432) 784(857) 1267(1388)
1024 4n 30 118.9 0.7 276(297) 5.2(43) 482(542) 5.2(101) 4.9(89) 485(551) 931(1027) 1906(2092)
1024 4n 20 132.1 1.7 363(395) 6.2(63) 692(796) 5.6(145) 5.3(134) 696(797) 1427(1589) | 3039(3359)

TABLE III

EXPERIMENT 3: ILL-CONDITIONED A. MEAN NUMBERS OF ITERATIONS (WORK-UNITS IN BRACKETS). THE AVERAGE TIMINGS ARE FOR n = 2048.

Table III also shows that now the multilevel algorithm
significantly reduces the cost of the solution, compared to the
one-level methods. In most cases, the cost of the ML method
is about 15%-25% of the cost of the 1L methods in terms
of work-units and timings. The Results of ML-CD/CG are
slightly better than those of ML-CG.

In the upper section (growing n), all methods show quite
scalable performance in the work-unit measure. In the second
section (growing m), it is seen that the problem becomes
harder as m grows, since there are more possible supports
and more room for error. The ML versions, however, appear
quite scalable in their work-unit cost with respect to the
growing redundancy (m) of the dictionary. In the third section,
where different values of u are used, one can see the loss of
scalability of the methods with respect to the support size.
Asymptotically, bigger supports yield bigger effective matrices
and also a bigger condition number. Furthermore, finding the
true support becomes a much harder task.

The values of ISNR for this test case are lower than those
in the previous two cases, indicating that the noise reduction
using the [; regularization is somewhat less effective for this

ill-conditioned dictionary.

D. Experiment 4: well-conditioned A with similar columns

Our last experiment involves a matrix A that consists of
two types of columns: those that belong to the random part
(A1), and those that belong to the other, replicated part. If
the support of the true solution has only columns from A,
the effective matrix Ag is well-conditioned and the solvers
handle it well. However, if the support has columns from both
sections, then Ag is most likely ill-conditioned even though
A is not.

Table IV shows the results for this problem. Again, as in
the second test case, CDT has no advantage over the rest of
the one-level methods. Because the support sub-matrix Ag
is ill-conditioned, the CG and SESOP methods outperform
the rest of the one-level methods. This corresponds to CG
outperforming all one-point iterations for quadratic problems.
The results of PCD (omitted) are similar to those of GPSR.
GPSR-BB and TwIST were outperformed by all the other
methods.



n m " [Ix*lo ISNR cpt ML-CD CG ML-CG ML-CD/CG SESOP1 SpaRSA GPSR
256 in 4o 26.8 2.5 1323(1392) 8.5(123) 462(575) 7.3(117) 4.1(47) 426(556) 1552(2097) | 2025(2222)
512 in 4o 44.9 3.6 2411(2497) 10.9(202) | 635(768) 9.7(167) 5.0(50) 586(731) 2382(3144) | 2653(2913)
1024 4n 4o 76.0 3.6 2460(2526) 12.0(204) | 695(839) 9.1(154) 4.9(48) 719(903) 3029(4057) | 2921(3320)

2738(2800) 13.9(263) | 817(969) 11.6(206) 5.3(49) 944(1177) | 3268(4528) | 3412(3974)
2048 an 4o 148 37 51.6sec 4.4sec 11.3sec 2.4sec 0.58sec 14.2sec 48.4sec 48.9
1024 2n 4o 66.7 2.4 1651(1727) 14.5(221) | 353(437) 6.7(101) 4.2(38) 345(436) 1441(1980) 1918(2134)
1024 6n 4o 84.5 34 2216(2263) 15.7(166) | 765(906) 9.4(160) 5.3(39) 827(1023) | 3066(4140) | 3226(3652)
1024 8n 4o 88.9 3.1 2210(2248) 11.3(98) 692(804) 8.6(127) 4.7(35) 776(963) 3098(4298) | 3032(3491)
1024 4n 5o 67.6 2.8 2320(2377) 8.3(123) 623(739) 7.9(124) 4.8(37) 645(797) 2621(3443) | 2731(3058)
1024 4n 30 106.5 2.5 2154(2227) 15.0(293) | 787(955) 10.1(182) 5.5(61) 823(1034) | 3125(4341) | 3345(3840)
1024 4n 20 210.3 1.3 1886(2006) | 22.1(389) | 801(997) 12.4(274) 5.6(91) 832(1068) | 2889(4292) | 3352(4011)

TABLE IV

EXPERIMENT 4: WELL-CONDITIONED A WITH SIMILAR COLUMNS. MEAN NUMBERS OF ITERATIONS (WORK-UNITS IN BRACKETS). THE AVERAGE
TIMINGS ARE FOR n = 2048.

Here we have an interesting case for the multilevel ap-
proach. As the CD™ iteration is not very efficient, neither is the
lowest-level solution of ML-CD. Because we limit the number
of iterations on the lowest levels, the ML-CD method requires
a few more cycles to converge. Compared to that, we see that
ML-CD/CG outperforms the other ML options, showing that
the CD iteration is better than CG as a relaxation even though
it is far inferior as a solver.

Again, the values of ISNR for this test case are relatively
low, but other choices of p lead to lower values of ISNR.
Thats is, the noise is reduced as effectively as possible via the
solution of (3).

E. Discussion

The multilevel approach enhances the performance of one-
level shrinkage iterations in almost all our tests. We note that
any iterated shrinkage method can be incorporated in our ML
framework. Generally, the best option that we found is ML-
CD/CG (ML with CDT as relaxation and CG as lowest-level
solver). That is because the CD iteration updates the entries
x; one by one and updates the residual accordingly, so it does
not have a tendency to fill x with a large number of non-zeros
which would harm the efficiency of ML. CG, on the other
hand, is generally better at handling ill-conditioned matrices
and therefore it is a more robust lowest-level solver.

The one-level methods that we tested behaved differently in
the different problems. Overall, the best results were obtained
by CD*, CG, SESOP1 and SpaRSA. On top of the disadvan-
tages of CD mentioned earlier (evident in its timings), it may
struggle when the effective sub-matrix Ag is ill-conditioned.

V. CONCLUSIONS AND FUTURE RESEARCH

A multilevel approach is introduced for the solution of (3)
when the matrix A is given explicitly. The new method takes
advantage of the typically sparse representation of the signal
by gradually ignoring ostensibly irrelevant data from the over-
complete dictionary. This approach significantly accelerates
the performance of existing iterated shrinkage methods as well
as their accelerated versions. The biggest advantage is gained
when the solution is indeed sparse and the problem is effec-
tively ill-conditioned (Ag ill-conditioned). Also, in most of our
numerical tests, the multilevel approach reduced the required
number of iterations dramatically. We expect significant further

gains as more efficient methods are developed for the dense
lowest-level problem.

A challenging future research direction may target a mul-
tilevel approach for fast operator dictionaries, where the low-
level dictionary is chosen as a smaller version of the upper-
level fast operator. Such an approach is used in the so-called
geometric multigrid [43]. The key question in this research
is how to define the transfer operators so that the solution
updates significantly enhance the convergence of the relaxation
methods.
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