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Abstract. A new adaptive algebraic multigrid scheme is developed for the solution of Markov
chains, where the hierarchy of operators is adapted on-the-fly in a setup process that is interlaced
with the solution process. The setup process feeds the solution process with improved operators,
while the solution process provides the adaptive setup process with better approximations on which
to base further-improved operators. The approach is demonstrated using Petrov-Galerkin smoothed
aggregation where only the prolongation operator is smoothed, while the restriction remains of low
order. Results show that the on-the-fly adaptive scheme can improve the performance of multigrid
solvers that require extensive setup computations, in both serial and parallel environments.
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1. Introduction. Classical algebraic multigrid (AMG) was developed and ap-
plied very successfully, mainly to the solution of linear systems [4, 28] and eigen-
problems [2, 3, 22] arising from discretization of elliptic partial differential equations
(PDEs) and some types of M-Matrices. It is known, however, that classical AMG
encounters difficulties in solving problems where the strength of connections is not
easily measured. For that reason, a variant of algebraic solvers called Smoothed
Aggregation (SA) was developed [35, 36, 38], in order to provide an alternative
to the classical AMG. A natural generalization of smoothed aggregation is the so-
called Petrov-Galerkin smoothed aggregation [12, 37] that proved useful mainly for
convection-diffusion problems [13], and other nonsymmetric problems [29]. A related
variant that recently received attention is the accelerated pure-aggregation method
[18, 23, 25, 24, 26].

Such multigrid methods feature operators that are built based on the assumption
that the constant vector locally approximates the low-energy modes (also known as
the near null-space) of the matrix, or at least it is assumed that they are known. If
this assumption is not satisfied, the efficiency of the methods may deteriorate. For
this reason, already in [4, 27, 28] an adaptive AMG approach was suggested and self-
improving AMG algorithms were outlined. The idea was to construct a prolongation
operator aimed at matching the near null-space of the matrix. A specific form of
this approach, dubbed “Exact Interpolation Scheme” (EIS), was recently suggested
in [5]. In EIS, the solution itself is approximated on the coarse grid, rather than
the error as in the classical multigrid. This requires the prolongation operator to be
consistently improved as the iterations progress until, ultimately, an accurate solution
is obtained by prolongating a coarse approximation. This adaptive approach is also
known as the multiplicative correction scheme. In this paper we adopt the name EIS
but acknowledge that the differences between the various algorithms of this type are
very small.

Notable recent developments are Adaptive AMG («AMG) [7] and adaptive SA
(aSA) [6] which were introduced as more general and robust solvers for symmetric
linear systems. Here, the multigrid components are built in a separate multilevel
setup-phase similar to EIS. The linear system is then solved using the same multigrid
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components in a separate solution phase. aSA was further developed and adapted to
nonsymmetric problems [8].

Adaptive multigrid algorithms have also been used as iterative solvers for com-
puting the principal eigenvector of stochastic matrices (Markov chains). This problem
has drawn recent attention, largely due to its relevance in web search applications,
among many others. The classical multilevel Markov chain solver of [21] is related
to adaptive multigrid. In fact, it is an example of an EIS algorithm, even though it
was developed independently. Based on this approach, a collection of recent Markov
Chain solvers was suggested in [14, 15, 16, 17, 18, 34]. Appealing as these methods
may be, they all suffer from one fundamental common drawback—they calculate the
whole multigrid hierarchy of operators in every cycle, with a computational cost that
is at best comparable to the cost of the classical AMG setup phase. Experience has
shown that, in single processor environments, the setup costs of AMG (or an exact
interpolation V-cycle) are typically comparable to those of several classical V-cycles
[9, 33]. In [34] it is noted that, empirically, more than 50% of the computation time of
each V-cycle is spent on coarse matrix construction. In parallel (distributed memory)
environments, the setup phase may require significant communication between nodes
and therefore a larger fraction of the total computing time [19].

The approach presented in this paper can be applied with various adaptive multi-
level Markov chain solvers. Here, we apply it to a generalized and improved version of
the square & stretch (S&S) adaptive multigrid algorithm of [34], while in [30] it is also
applied to the AMG-type method of [15] and the pure aggregation method of [21].
The present contribution addresses the aforementioned drawback of adaptive Markov
chain solvers—the use of the multiplicative correction approach, which requires us to
calculate the multigrid hierarchy in every cycle. We follow the adaptive framework
of [6, 7, 8] but incorporate a new scheme that interleaves the classical and EIS algo-
rithms. Like other adaptive approaches, the new scheme uses a solution phase and
updates the hierarchy of operators in a setup phase. The new feature is that the
update of the hierarchy is done on-the-fly, interlaced with the solution process. We
also suggest a parallel variant of this approach. An alternative adaptive approach
for Markov chains is presented in [1], where standard solution cycles are also used
followed by a more sophisticated setup process.

We next provide the Markov chain problem definition, together with some nota-
tion, followed by a brief outline of classical AMG and EIS. Although this work fo-
cuses on homogenous systems, the classical techniques were designed as linear system
solvers, and therefore will be introduced as such. On the other hand, EIS techniques
usually target homogeneous systems and are therefore introduced in that scope.

1.1. Definitions and notation. The following definitions and notation are used
throughout this paper.

Spectral radius: p(B) denotes the spectral radius of the matrix B. That is, p(B) =
max;{|A;(B)|}, where \;(B) are the eigenvalues of B.

Singular M-Matriz: A matrix A is called an M-Matrix if A = I — B, where B is a
non-negative matrix and p is a positive scalar that satisfies u > p(B). If u = p(B),
then A is a singular M-Matriz

1.2. Markov chains—problem definition. Let B € R™*" be an irreducible
sparse column-stochastic matrix, that is, for every column j, > | B;; = 1, and all the
elements of B are non—negative. A Matrix B is irreducible iff in its directed graph
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there exists a path from each vertex i to each vertex j. By the Perron—Frobenius
theorem [20], there exists a unique vector x with strictly positive entries that satisfies
Bx = x and ||x]|; = 1. Furthermore, p(B) = 1, where p denotes the spectral radius.
This problem is often formulated as finding the null-vector of the singular M-matriz

A=1-B. (1.1)

Our objective is to compute the principal eigenvector of B, i.e., the unique vector x
that satisfies Bx = X, so we seek the solution of the homogeneous system

Ax = 0. (1.2)

Since B is column-stochastic, 17 B = 17, where 1 is a constant vector of size n. By
(1.1), we have 17 A = 0, which means that in this Markov Chain problem the constant
vector is the (only) left null-vector of the matrix A.

1.3. Concepts of classical algebraic multigrid. Classical multigrid linear
system solvers generally follow a common basic idea. Given the linear system

Ax = b, (1.3)

where A € R™*"™ is a positive definite matrix, they apply a cheap albeit slowly con-
verging point-wise iterative method, relazation, such as damped Richardson or Jacobi.
These methods are typically of the form

xF = xk — wQ 71 (AxF —b), (1.4)

where w is a scalar parameter and the matrix @ is an easily inverted simple precondi-
tioner. For example, damped-Jacobi relaxation uses the diagonal of A, Q = diag(A),
and 0 < w < 1. The slow convergence of these relaxations is usually due to only
a relatively small number of components in the error, dubbed algebraically smooth,
that approximately satisfy Q~'Ae = 0. For a simple @, in most cases, these also
approximately satisfy the homogenous system (1.2). For this reason, algebraically
smooth components are commonly said to be in the near null-space of A. To elimi-
nate these error components, multigrid methods use a coarse-grid correction (CGC),
applied by constructing and solving a ‘coarse’ system of smaller size (whose operators
are denoted here by the subscript ¢). Thus, CGC and relaxation fulfill complementary
roles. Algorithm 1 describes a typical two-level classical cycle.

A multi-level V-cycle is obtained by recursively treating the coarse-grid problem
in step 4. For the coarse-grid operator, the Galerkin or Petrov-Galerkin scheme is
usually employed:

A, = RAP, (1.5)

where P and R, the prolongation and restriction operators, are chosen to be of full
rank. It is well-known and easy to show that if the error before the CGC is in the
range of the prolongation and A is non-singular, CGC eliminates it. In this paper the
V-cycle is used as a homogenous system solver, with b = 0. Of course, on coarser
levels the system

Ace.=Rr =r, (1.6)

is usually inhomogeneous, with r. # 0.



4 ERAN TREISTER, IRAD YAVNEH

Input: Initial vector: x € R™, Right-hand-side vector: b € R™;
Operators: A € R"*" P € R"*"e R € R"*" A, € R"eX"e,

Output: Better approximation for the solution of Ax = b
Algorithm:

1. Apply pre-relaxations: x < Relax(A,x,b).
Define the residual r = b — Ax.
Restrict the residual: r. = Rr.
Define e, as the solution of the coarse-grid problem A.e. = r..
Prolong e. and apply CGC: x < x + Pe..
Apply post-relaxations: x < Relaz(A,x,b).

S Gl N

Algorithm 1: Two-level classical cycle

1.4. Concepts of EIS. As noted, the EIS technique can be used either as a
setup for the classical approach or as a solver for homogenous systems (1.2), where A
is singular.

Suppose that we could construct some prolongation operator P, such that the
solution x of (1.2) were in its range, that is, x = Px,. for some vector x. of smaller
size. Defining a suitable restriction operator R, substituting Px. for x in equation
(1.2), and multiplying through by R, we obtain,

RAPx. = Ax.=0. (1.7)

After solving (1.7), we obtain the sought solution by prolongation: x = Px.. This
motivates the EIS approach, where the prolongation P is constructed such that the
current approximation to the solution is approximately in its range. As the solution
becomes more and more accurate, so does the coarse representation of the original
problem. The EIS cycle for homogeneous systems is described in Algorithm 2. As
before, a multigrid V-cycle is obtained by treating the coarse-grid problem in step 5
recursively.

Input: Initial vector: x € R™, fine-grid operator: A € R™*".

Output: Better approximation for the solution of Ax =0, ||x|| = 1.
Coarse-grid and transfer operators: P € R"*"e R € R"*" A, € R"e*"e,

Algorithm:

Apply pre-relaxations: x + Relax(A,x).

Construct the interpolation operator P with x approximately in its range.

Construct a restriction operator R.

Calculate the coarse-grid operator: A. = RAP.

Define x. as the solution of the coarse-grid problem: A.x. = 0.

Prolong solution: x < Px..

Apply post-relaxations: x < Relaz(A,x).

Algorithm 2: Two-level EIS cycle

No otk W

When A is nonsymmetric, the restriction needs to be chosen such that the near
null-space of AT is in the range of R” [8]. In Markov chains, the left null-space is
known to be the constant vector, and so we define R with the constant vector in the
range of RT, i.e., 17 R = 1. By (1.5), the constant vector is then a left null-vector of
Ae.
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1.5. The relation between the classical and EIS algorithms. Suppose
that we solve the same homogenous problem (1.2) using the two approaches described
above. It is interesting to study the relation between the two algorithms. We next
show that a two-level version of the EIS approach is actually equivalent to the classical
approach, supplemented by adaptive updates of the prolongation and restriction. In
the classical approach of Algorithm 1, the coarse-grid problem for b = 0 is given by

RAPe. = Rr = —RAx, (1.8)

and the CGC is x + x + Pe.. Suppose that the approximation x before the CGC is
in the range of P, so there exists a vector x. that satisfies x = Px.. Adding the term
RAPx,. to both sides of (1.8), we get

RAP(x.+e.) = RA(Px. —x) = 0. (1.9)

Now, by plugging the vector w. = x. + e, in the left-hand-side of (1.9), we get
A.w. = 0, which is exactly the same coarse-grid problem as in (1.7). Moreover, by
applying the multiplicative CGC (step 6 of Algorithm 2), we get

x < Pw.= P(x. +e.) =x+ Pe,,

which is exactly the same correction as in the classical approach. Thus, the classical
two-level approach is equivalent to EIS, provided that we use the P and R of EIS
for both algorithms. This analysis can be readily extended to the multi-level case,
provided that P and R are adapted at every level.

The EIS cycle is clearly much more expensive than the classical cycle with ‘frozen’
operators, because EIS updates P and A, before each CGC, whereas they remain
constant in the classical cycle. The equivalence seen here motivates our approach of
interleaving EIS cycles and classical cycles.

1.6. Exact solution on the coarsest grid. The solution on the coarsest grid
in the EIS cycles is obtained by calculating the null-vector by an eigensolver or by
the shifted inverse power method. The situation in classical cycles, however, requires
some care. The matrix A, is singular on the coarsest grid (see remarks at the end of
section 1.4). A solution e. may contain an arbitrary proportion of the null-space of
A, which P may translate to an approximate equivalent null space of the matrix in
the upper level. Such a “correction” may be counter-productive, chiselling away at
the very null-vector we are trying to expose. Hence, in order to achieve a “null-vector
free” approximation on the coarsest grid, we use the singular value decomposition
(SVD) of the coarse-grid matrix,

A.=UxVT, (1.10)

where U and V' are orthogonal and ¥ is a diagonal non-negative matrix that has the
(sorted) singular values of A, on its diagonal. We define a diagonal matrix X whose
diagonal is given by

Yol Su>e
+ _ i1 1 =
Eii - { 0 Eii <€ ) (111)

where € is small and positive (we use 1074 - ||A.||). Note that ¥,, = 0 because A..
is singular. The coarsest-grid solution is then x. = VX+tUTr,., and is a “null-vector



6 ERAN TREISTER, IRAD YAVNEH

free” solution of (1.6). This does not quite guarantee a null-vector free correction
Pe., but the proportion of the null-vector in the correction is relatively small; see
also related discussion in [39)].

2. Adaptive algebraic multigrid. For the classical cycle (Algorithm 1), we
must choose P such that the algebraically smooth components are approximately in
its range. When those are unavailable, adaptive algorithms are usually required. Such
algorithms, as in [6, 7], often feature a classical solution phase, preceded by an EIS-
like setup phase where the multigrid operators are constructed. The setup phase is
targeted at solving the homogeneous system (1.2), aiming to find an approximation
(called prototype) for the near null-space of every coarse matrix at each level, and
building the transfer operators accordingly. Once the multigrid hierarchy of operators
is set, the linear system is solved using these same operators in a separate standard
solution phase using Algorithm 1.

Generally, a more expensive setup is expected to provide a faster solution process;
however, it is hard to optimize the overall cost of the setup and solution processes. In
addition, there might be problems where a fixed setup may not suffice for an effective
solution cycle. In [6, 7], the initial setup cycle is followed by a rather expensive
self-testing procedure. This involves applying several solution cycles to a random
guess and monitoring the convergence rate of the solver. If it is too poor, then more
setup cycles are performed. Setup cycles with more pre and post relaxations and
with standard cycles as relaxations were also considered. In that work, however, the
algorithm aims at solving multiple systems of the same matrix with different right
hand sides. Therefore, this effort is clearly worthy, because a single setup is used for
solving many linear systems. Also, [6] aims at developing solvers for systems with a
rich near null-space so more effort is invested in the setup. Here, we aim only to find
the unique null-vector of the matrix, so this procedure might be overly expensive in
our case. We therefore exploit the fact that the EIS and classical algorithms target
the same homogenous problem, so they can enhance each other.

We next describe three approaches for combining setup and solution cycles. All
approaches have four main steps and differ in only one or two of those steps. These
approaches will be examined and compared later in this paper.

2.1. A simple adaptive AMG scheme. The first approach is to initially
perform several setup cycles until the operators reach a certain quality and then
continue and apply classical solution cycles. We denote this approach by AFTER(e,,),
and we assume that the quality of the operators is mostly controlled by the smoothness
of the prototype x which is used for defining the prolongation P. More specifically,
we perform several relaxation sweeps on an initial guess, followed by an initial setup
cycle. Then we perform EIS cycles until the residual norm of the approximation drops
below . Finally, we perform one additional EIS cycle so that the resulting operators
will be based on the approximate solution satisfying this criterion. For the rest of the
process we use standard solution cycles. The algorithm is described in Algorithm 3,
where Vsor () denotes a solution cycle (Algorithm 1 applied with b = 0), and Vg;g(-)
denotes a setup cycle which also creates/updates the MG operators (Algorithm 2).
This notation is used for the rest of this paper.

A rule of thumb for e, is that it should be smaller than the magnitude of the
smallest non-zero eigenvalue in absolute value. For the test cases and solution method
considered in this work, e, = 107° is sufficient.
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Input: Threshold ¢,, fine-grid operator: A € R™*™  initial guess xg.
Output: Approximate solution to: Ax =0, ||x|| =1
Algorithm: Perform setup followed by solution cycles
1. Initial Setup:

Apply a few relaxations to smooth xg.

Do an initial EIS cycle: x < Vgrs(xo).

% xo after pre-relaxations is in the range of P.

if ||Axgl|]1 < €4 goto Step 4.
2. Improve solution approximation:

while ||Ax]||; > e, do x + Vgs(x).
3. Finalize setup:

% Final P based on pre-relazed X.

X VEIS (X)
4. Solution:

Apply x + Vsor(x) until convergence.

Algorithm 3: AFTER—a simple adaptive AMG scheme

2.2. On-the-fly adaptive algebraic multigrid. In the“on-the-fly” approach
we first apply a single initial setup cycle and start the solution process. Additional
setup cycles may be applied as the solution phase progresses. The underlying assump-
tion is that solution cycles are considerably cheaper, but they require the operators
supplied by the EIS setup. Again, we assume that better approximations supplied to
the EIS cycle yield better operators in return.

The goal of the on-the-fly algorithm is to reach the accuracy ||Ax||; < €, as fast
as possible, preferring solution cycles over EIS cycles. We try to save computations by
using the operators from previous setup cycles. Even though these operators may not
be very accurate, they may suffice for obtaining useful solution cycles. For example,
assuming that an EIS cycle costs like five solution cycles and achieves a convergence
factor of about 0.4 (which is quite reasonable for difficult problems), a solution cycle
that achieves an uninspiring convergence factor of about 0.75 may be more efficient,
because 0.75° < 0.4. With this motivation, we introduce the following procedure
where ¢(+) is a quality measure of the approximation, and 0 < v < 1 is a scalar
threshold for an acceptable convergence factor of the solution cycles.

Procedure try-SOL-else-EIS(v):
1. Yy = VSOL(X)-
2. if ¢(y) > ¢q(x) do x < Vgrs(x) and finish.
3. if ¢(y) < vq(x) then x =y, else x + Vgrs(y).

The choice of ¢(x) is not obvious. If A is symmetric semi-definite then the Rayleigh
quotient is a useful measure:

q(x) = —5—. (2.1)

However, for nonsymmetric problems, which are the focus of this paper, this measure
is inappropriate and we use instead

Il
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which means that we measure the convergence factor by the [; residual norm. The
residual, which emphasizes high-energy modes, may not generally be an optimal mea-
sure of performance. However, we find it quite reliable in practice when used, as here,
for choosing between two rather similar multigrid processes. With this procedure, the
(non-overlapping) on-the-fly algorithm proceeds as in Algorithm 4.

Input: Threshold ¢,, Convergence parameter v, operator: A € R™*"™ initial
guess Xg.
Output: Approximate solution to: Ax =0, ||x|| =1
Algorithm: Solution by non-overlapping setup and solution cycles
1. Initial Setup:
Apply a few relaxations to smooth xq.
Do an initial EIS cycle: x < Vgrs(xo).
% xq after pre-relazations is in the range of P.
if ||Axg||]1 < € goto Step 4.
2. Improve Solution Approximation:
while ||Ax||; > e, do try-SOL-else-EIS(7y).
3. Finalize Setup:
% Final P based on pre-relazed X.
X < VEIS (X)
4. Solution:
Apply x + Vsor(x) until convergence.

Algorithm 4: On-the-fly adaptive AMG

2.3. Overlapping on-the-fly adaptive algebraic multigrid. The last strat-
egy we consider is mostly suitable for distributed-memory parallel computations. Pub-
lications on adaptive multigrid have not focused on parallel computation. However,
since classical and adaptive AMG have so many common ingredients, the paralleliza-
tion of adaptive AMG should probably be very similar to that of classical AMG.
With this in mind, we immediately note a potential drawback. In serial code, the
setup cycle, which is similar to EIS, typically costs like several (less than 10) solution
cycles [9, 33, 19, 11]. In parallel, however, the setup requires much shorter and more
frequent communication between computing nodes. Coarsening procedures, matrix
multiplication, construction of P and R, and other ingredients of the setup cycle, are
typically much more complicated than the simple matrix-vector multiplications of the
solution cycle. Numerical results in [40, 31] show a ratio of about 15-45, and in many
cases the setup cost exceeds the total solution cost. In addition, the algorithms are
shown to be scalable with the number of processors only when the problem size is
growing as well (weak scaling). That is, each processor handles a fixed amount of
grid points, and as the problem grows more processors are used. If we increase the
number of processors for a fixed problem size, and refine the grid-point partition-
ing between processors, then we impose more communication between processors and
hence a higher cost. This means that for a given problem size there is an optimal
amount of processors, and exceeding it will harm the performance. Also, in [31], one
clearly sees that the ratio between the setup cost and iteration cost grows with the
number of processors (or, equivalently, with the problem size). As a result, in parallel
adaptive AMG computations we should limit the amount of setup cycles performed
even more than in serial computations.
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X SETUP OP X X
Xo UPDATE VoL VeoL[ >
I (Ve X
Initial try- try-
SETUP — sol sol
X SETUP oP
{X, } Vo [+ VoL UPDATE |—»
oP X (Ve

overlapping - setup

Fia. 2.1. Owverlapping on-the-fly adaptive AMG: A scheme for combining setup improve-
ments in parallel to classical solution cycles for the solution of Markov chains. Solution cycles are
denoted by “Vsor”, and “OP” denotes the hierarchy of multigrid operators.

The above discussion highlights even more the advantage of Algorithm 4 over
Algorithm 3 in parallel computations. However, the overlapping on-the-fly algorithm
that we propose next aims at improving Algorithm 4 even further by using dou-
ble computing resources. The new algorithm uses high-level parallelism between two
computing clusters that does not require frequent communication between them. One
cluster applies solution cycles while the other performs a setup update. It is impor-
tant to note that if doubling the resources for an internally parallelized Algorithm
4 significantly improves its runtime, then it might be better than the overlapping
approach we propose (ideally, the runtime would drop by a factor of 2). However, if
adding more computing resources does not improve the performance of Algorithm 4
for a given problem size, then the overlapping version is worthy of consideration.

Input: Threshold ¢,, Convergence parameter -, operator: A € R®*™,
Output: Approximate solution to: Ax =0, ||x|| =1
Algorithm: Solve by overlapping setup and solution cycles
1. Initial Setup:
Apply a few relaxations to smooth xq.
Do an initial EIS cycle: x < Vgrs(xo).
% xq after pre-relazations is in the range of P.
if ||Axg||]1 < € goto Step 4.
2. Improve Solution Approximation:
while ||Ax]||; > &, do
% The next two lines are marked by the ‘try-sol’ block on Fig. 2.1.
oy < Vsor (X)
e if ¢(y) < 7¢(x) then x + y;
else x < overlapping-setup(better(x,y)).
3. Finalize Setup:
x < overlapping-setup(x)
4. Solution:
Apply solution cycles until convergence.
Algorithm 5: Overlapping on-the-fly adaptive AMG




10 ERAN TREISTER, IRAD YAVNEH

The overlapping on-the-fly adaptive algorithm is exhibited in a block diagram in
Figure 2.1. The first EIS cycle is an essential setup phase. Once an initial hierarchy
of operators is set, the solution process is good to go. As in the non-overlapping
version in Algorithm 4, we apply solution cycles so long as they are efficient (marked
by the ‘try-sol’ block), until either their performance deteriorates or the condition
||[Ax||1 < &4 is satisfied. Then, the hierarchy update evolves via EIS in its slow pace
while the solution cycles are applied in parallel. Once a new hierarchy is computed,
a cross-over of information may occur, whereby the solution process provides the
setup process with a more accurate approximation, while the setup process provides
the solution process with a new hierarchy of operators. At each cross-over, the two
computing units switch roles of applying solution and setup phases, so as not to require
transferring of the operators (a large amount of data) between the computing nodes.
Since the two processes join only at cross-over points, this scheme does not require
recurrent and frequent communication between the setup and solution clusters.

The function better that appears in the cross-over in Figure 2.1 is optional. Be-
cause there is no guarantee that a single setup cycle yields a convergent solution
process, we may use this safety procedure that aims to limit unnecessary computa-
tions. In practice, one may use

better(xy1,x2) =x1 if q(x1) < q(x2); else xa,

where ¢(x) is the quality measure mentioned earlier in Equations (2.1)-(2.2). We note
that at least in the experiments considered in this paper, the vector x’ from the setup
cycle is almost never preferred by the function ‘better’.

The overlapping on-the-fly adaptive MG algorithm appears in Algorithm 5, where
the following procedure is used for overlapping solution and setup cycles:

Procedure overlapping-setup(x):
e Do setup update on cluster A:
x' VEIS (X)
e Do solution cycles on cluster B:
repeat x < Vsor(x) until cluster A finishes or iterations diverge.
o x + better(x,x’)

2.4. A qualitative analysis. To provide some insight into the properties of
the different strategies, we resort to a simplified qualitative analysis. Given current
multigrid operators and an approximation x, we consider three scenarios:

1. Applying solution cycles with the existing operators until convergence;

2. Applying an EIS cycle and then solution cycles until convergence;

3. Applying r solution cycles, followed by an EIS cycle with the new approxi-

mation, and then solution cycles until convergence;

We examine the total time of solution for a fixed problem size in the three scenarios.
We measure the approximate time for convergence in work units, each equal to the
cost of one solution cycle. The convergence criterion is an error reduction by a factor
€ < 1. For this discussion we use the notation given in Table 2.1. We expect, and
indeed typically observe, 0 < vg < 72 <71 <79 < 1.

2.4.1. Serial environment. Table 2.2 summarizes the costs for the total solu-
tion processes, where n denotes the number of solution cycles until convergence after
the operators are finalized. To select the preferred strategy we need to know all the
quantities in the equations, and, since those are problem and solver dependent, it is
hard to choose the best option in advance. For example, in the unlikely case that EIS
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Symbol Description
The average convergence factor when applying solution cycles with the
0 existing operators, as in scenario 1.
The convergence factor of an EIS cycle. For simplicity, we assume
VE that it does not depend on the input x.
R The ratio between the computational costs of EIS and a solution
cycle. An EIS cycle costs the same as R solution cycles.
The average convergence factor of the solution cycles using
m operators after an additional EIS cycle, as in scenario 2.
The average conv. factor of solution cycles using operators produced
2 by an EIS cycle that followed r solution cycles, as in scenario 3.

TABLE 2.1
Qualitative analysis notation

Scenario | Derivation Approximate Cost
Tog e
1 n—
o oeteriz)
og(e
2 YEVT = € 4 28E
1lo% gl )
og(e
3 YOYEYS =€ r+ R+ —S0TE)
log 7o
TABLE 2.2

Qualitative analysis: solution costs

does not improve the performance of the solver significantly, i.e., y9 &~ 71 & 2, then
the simple first strategy is best. On the other hand, if the EIS cycle is equally effective
regardless of the stage in which we carry it out, i.e., y9 >> 1 & 79, then, unless R
is extremely large, the second strategy will be best. In this case, the third strategy is
second-best because the initial r cycles of factor g are relatively less effective.

In this work we focus on hard problems, that require high-quality MG operators.
In such cases we typically find vo << 71 << 79 or 72 << 71 = 9. Then, the third
strategy, which corresponds to the on-the-fly approach, will have the best asymptotic
convergence factor, and will likely have the best performance.

2.4.2. Parallel environment. In scenarios 2 and 3, we also consider the case
where solution cycles are applied in parallel to the setup cycle. As mentioned before,
we double the resources by engaging a second computing cluster but assume that
doubling the resources in one cluster does not lead to significant speedup. Table 2.3
summarizes the solution process costs of both scenarios using overlapping setup and
solution cycles.

(From this analysis one can see that the overlapping scheme best suits situations
where the EIS cycles are very expensive compared to the solution cycles, i.e., R is
rather big as is indeed expected in parallel-AMG computations. If vy is not very
close to 1, then the solution cycles run in parallel to the EIS cycle are still effective.
Then, the overlapping approach gains from the R solution cycles, and in addition
we obtain good asymptotic behavior. This approach is also good for v ~ v1 = 7o,
where the first strategy is best, though it requires more computing units. In the non-
overlapping approaches (Table 2.2), an excessively large R might render the second
and third scenarios ineffective due to the large cost of EIS. However, if R is moderately
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Scenario Derivation Approximate Cost
; log(e/ min A
2 min {vg, v =€ R+ g(e/ e ')
log 1 -
: log(e/~4 min ,
3 g min {vg, e =€ | r+ R+ g(€/7% {7e,7%'})
log o
TABLE 2.3

Qualitative analysis: solution costs in parallel environment using overlapping setup

high, and 7 is not sufficiently small, the second and third strategies come out ahead.
In any case, the overlapping strategy is optimal in both situations, and therefore it is
very useful if R is big and the additional hardware cost is acceptable.

3. Adaptive Petrov-Galerkin smoothed aggregation for Markov chains.
In this section we describe the method of Petrov-Galerkin smoothed aggregation that
we use together with the on-the-fly approach for the solution of Markov chains. This
method is related to the Square & Stretch algorithm of [34].

3.1. Tentative aggregation/disaggregation operators. Recall that A is a
singular M-Matrix and the solution is positive. Assume we have a partitioning of
the variables in N = {1, ...,n} into disjoint subsets {C;}jc; called aggregates (their
construction appears later). Using these aggregates we first define tentative prolonga-
tion and restriction Py and Ry that are simple aggregation/disaggregation operators.
Also, let x be a positive approximate solution for (1.2).

Given the aggregates {C;}"<; and the approximation x, we define a tentative
aggregation-based prolongation matrix Py with x in its range. As noted earlier, the left
null space of the matrix A is the constant vector. Therefore, we choose all restriction
matrices to be piece-wise constant, so that the matrices on all the levels have a
constant left null-vector. Specifically, given x and the aggregates {C;}"j<,, we use the
matrices originally suggested in [21]

1 ifiedy I xi/(xe),; ifieCy
Ryi= { 0 otherwise Fig = { 0 otherwise ’ (3.1)

with (x.); = ﬁ ZC: x,, where |C;| denotes the number of nodes in the aggregate
reCy

C;. Note that there is a single non-zero value in each row of Py and Rg , and their
sparsity structure is identical.

3.2. Smoothing the tentative operators. In order to improve the tentative
operators, fixed and adaptive SA techniques were introduced for symmetric problems
[6, 35, 36, 38|, and Petrov-Galerkin SA [8, 12, 13, 29, 37] for nonsymmetric problems,
including Markov chains [14]. The main concept of smoothed aggregation is that the
transfer operators are smoothed with a simple smoothing operator, generally of the
form

Su(A)=T—-wQ *A, (3.2)

where @ is a preconditioner of A and w a positive scalar parameter, usually a damping
parameter. These are similar, though not necessarily identical, to the preconditioner
and damping parameter employed in the relaxation. The prolongation is thus given
by

P, =5,(A)F. (3.3)
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For symmetric problems, the standard SA algorithm uses RL = P,. For nonsym-
metric problems, a Petrov-Galerkin approach is often applied, whereby RT # P. A
reasonable choice for smoothing the restriction may be [14]

RT = S, (AT)RT. (3.4)

The w’s for R and P may differ [29].

In this work, we focus on the case where the prolongation is smoothed as in (3.3),
but the restriction remains Ry. In this case, the prolongation smoother in (3.2) is
usually chosen to be [12, 13, 29, 37]

1 -1
Sp-1(A) =1 p(Q*lA)Q A. (3.5)
The spectral radius is usually approximated using an Arnoldi-type method, and
this works well for symmetric matrices. Since the eigenvectors of the matrix are or-
thogonal in the symmetric case, the Rayleigh Quotient as in (2.1) is guaranteed to
be bounded by the spectral radius. However, finding the spectral radius of a non-
symmetric matrix may be costly, because the simple Rayleigh Quotient may provide
a value far larger then the spectral radius. Nevertheless, we do estimate the spectral
radii, but only once in the first setup cycle and with low accuracy. Specifically, in
this work we apply 25 power-method iterations and use the Rayleigh Quotient (2.1)
as an approximation to the spectral radius. This calculation is relatively expensive,
and alternatives are worthy of investigation. Simpler options such as using constant
smoothing parameters or using matrix norms (upper bound to the radii) were found
to be significantly less effective than using the true spectral radius.
In [13], an overcorrection technique was used to improve the performance of
smoothed aggregation. Similarly, we apply over-correction,

X ¢ X+ aPe,, (3.6)

instead of the regular CGC in Step 5 of Algorithm 1, where av > 1 is the over-correction
parameter. Correspondingly,

X+ (1 —a)x+ aPx, (3.7

is used in step 6 of Algorithm 2. In all our tests we fix a = 1.1.

Finally, in [12, 37] it was advised to perform an additional pre-relaxation with
the same operator (3.5) used for smoothing P. Motivated by this, we modify x after
computing the residual that is transferred to the coarser level. That is, we add

X X+ oot Q' (3.8)

to step 2 of Algorithm 1, where @ is as in (3.5). Such use of the residual was suggested
already in [10]. Note that this modification is very cheap as it does not require a
matrix-vector multiplication. Using this procedure, the smoother (3.5) acts on both
x and the correction Pye., instead of Pye. alone. From linearity considerations, the
CGC operator of our SA version of Algorithm 1 is then given by

Sp—l(I — OzPo(AC)JrRoA) (39)

instead of
(I —aS,~1Py(A:)TRoA), (3.10)

as it would be without this modification. This small and cheap change has a significant
effect, almost the same as a post-relaxation.
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3.3. Defining aggregation. SA with no R smoothing is generally considered
inferior to smoothing both R and P [29]. However, the comparisons that led to this
conclusion employed the same aggregates for both methods. When smoothing both R
and P, the eventual coarse-grid operator in (1.5) has the form of a cubic polynomial in
A, coarsened by the tentative operators. Unless the coarsening is aggressive enough, a
significant stencil growth might occur on coarser grids. On the other hand, smoothing
only P results in a coarsened quadratic polynomial in A, which allows less aggressive
coarsening. For a discretization of a d-dimensional second-order PDE on a rectangular
grid, for example, smoothing both operators requires aggregates of width 3 in each
spatial direction (aggregates of size 3¢), while smoothing only P requires aggregates
of width 2 [13]. The use of smaller aggregates is the key to the potential advantage of
smoothing only P, since less aggressive coarsening (more coarse-grid DOF's) generally

leads to a better coarse representation of the fine-grid problem, and therefore to a
better CGC.

Input: s—typical aggregate size, W € R™"*"™—strong connections matrix
Output: Aggregates: {Cs}7°,.
Algorithm:
Let U =1,...,n be a set of unassigned elements
repeat
Among the elements in U, find the element ¢ with the least remaining
neighbors in U.
Initialize a new aggregate C = {i}.
if ¢ has more than one neighbor then
Define U,,cqr € U to contain all elements whose distance from i is at
most | 5].
Find all circles within U4, of length s or less that contain 1.
% At least one circle will always be found.
Choose the circles of maximal length, and amongst those choose the
circle of maximal sum of inner connections in W.

Add the members of the chosen circle to C.
else

Let p be the only neighbor of 7 in U.
Add ptoC
if other meighbors of p with only one neighbor besides p exist then
Add up to (s — 2) of them to C.
end
end
Remove the chosen aggregate’s members from U.
if After removing the chosen aggregate there are elements with no
neighbors then
Add the elements with no neighbors to C.
end

until all elements are assigned to aggregates;

Algorithm 6: Bottom-up aggregation technique

For unstructured grids, the classical neighborhood aggregation of [38] is appro-
priate in the case where both R and P are smoothed, but it is too aggressive when
only P is smoothed [29]. Therefore, we use the Bottom-Up method of [34], which
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aggregates nodes that satisfy a circular dependency, cf., Algorithm 6. The weight
matrix W is defined as in [34], based on the elements of the matrix A and the current
approximation x to its near null-space. Specifically, we use a connectivity matrix W
with

i —Ainj if 4 75_] and — Ainj 2 Hmaxl# —Aile N
Wij = { 0 otherwise, (3.11)
where we use § = 0.1. Then, we symmetrize our connectivity matrix as follows:
L /s T
W:§(W+W). (3.12)

Since W is symmetric, each pair of neighbors is a circle of length 2.

For structured grids, this technique yields aggregates of width 2 in each spatial
direction in many scenarios we have studied, in 1D, 2D and 3D. Investigating and
improving this aggregation method remains the subject of ongoing research. Another
efficient alternative aggregation method which is appropriate to smoothing only P
appears in [25, 24].

4. Numerical Results. In this section, we demonstrate and compare between
the three algorithms discussed in Section 2 for integrating solution and setup cycles.
The algorithms are applied to adaptive Petrov-Galerkin SA, where only the prolonga-
tion is smoothed by the Jacobi operator (Q is the diagonal part of the matrix A) with
damping parameter as in (3.5). We show results for three Markov chain problems
that were found to be difficult enough to require more than one setup cycle.

In all the results shown, we start with an initial random guess and reduce its
l1 residual norm ||Ax||; by a factor of 101%. We employ V(2,1) solution cycles with
Jacobi relaxations. Exact solution is performed once the problem size is below 16.
Similarly to [6, 7], when we perform setup cycles followed by solution cycles in the
AFTER and OnTheFly algorithms, we do more pre-relaxations in the EIS cycles
than in the solution cycles: 4 pre-relaxations and 1 post-relaxation. We do that in
all setup cycles of OTF and in the last EIS cycle of AFTER (Step 3). All other EIS
cycles are V(2,1). Note, that a Vgrs(4,1) cycle is not significantly more costly than
VErs(2,1), because most of the computation is spent on operator construction and
matrix multiplication (RAP calculations) [6, 7, 34]. The relaxations are damped with

4
w= 3(DTA) (4.1)

where the value 4/3 minimizes the expression

min max |1 —wz],
w 0.5<5z<L1
that corresponds to the Jacobi relaxation we are using.

In the following tables and figures we show computation times as well as work
units. The latter is defined as the cost of a single Vsor(2,1) solution cycle. The
experiments were performed using MATLAB R2010b on a machine with an Intel core
i7 CPU with 8 GB of RAM memory, running Linux Ubuntu.

For the first approximation to the null-space on which we base the initial opera-
tors, we do 20 relaxation sweeps on the initial random guess, counting these as 3 work
units (which assumes that about 7 relaxations cost the same as a V(2,1) solution
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size lev  Cop  User(tset) algorithm Vers,Vsor 7Y Usol (tsol)
EIS 15,0  0.34 63 (0.91s)

AFTER(1072) 0,32 0.64 35 (0.44s)

AFTER(1073) 2,16 0.45 27 (0.35s)

65536 7 164 23 (0358) ) prppi0-a) 3,12 0.36 28 (0.37s)
AFTER(1079) 5,10 0.34 33 (0.44s)

OnTheFly(10~4) 2,13 0.34 25 (0.33s)

EIS 16,0  0.36 85 (3.97s)

AFTER(1072) 0,61 0.77 64 (2.92s)

AFTER(1073) 2,22 0.54 35 (1.60s)

262144 8  1.65 22 (1.00s) AFTER(10-4) 5715 043 33 (1.508)
AFTER(10~%) 5,11 0.35 39 (1.80s)

OnTheFly(10~?) 2,15 0.35 30 (1.44s)

TABLE 4.1

Tandem Queue results

cycle). Then we perform the first setup cycle, which also includes the aggregation
construction and estimation of the spectral radii. This cycle is identical in all settings
and the aggregates, as well as the spectral radii, are calculated only once in that
cycle and kept fixed for the rest of the solution process. ugse; and tse; represent the
work-units and time (in seconds) of the first setup cycle, while ug,; and ts, are the
work-units and timings of the solution without the initial setup cycle. Vgrg, Vsor are
the number of EIS cycles (excluding the initial one) and solution cycles, respectively.
The operator complexity denoted by C,, is the total number of non-zeros in the ma-
trix A and all its coarse-grid approximations, divided by the number of non-zeros
of the fine-grid A. The operator complexity and number of levels are similar in all
settings since all use the same Bottom-Up algorithm with a preferred aggregate size
of s = 4. The asymptotic convergence factor is denoted by v and is defined as the
geometric mean of the residual drop factor of the last 5 solution cycles.

For the smaller-sized problems with about 65,000 unknowns, we use €, = 1074
as a default safe accuracy threshold for the algorithms considered. For the larger
problems of about 262,000 unknowns, we use £, = 107°.

4.1. Serial environment experiments. We compare the AFTER algorithm
with various values of €, to the on-the-fly algorithm with the safe pre-chosen ¢, and
a convergence parameter of v = 0.75 (detailed in Algorithm 4).

4.1.1. Tandem Queue Markov Chain. The first problem considered is the
tandem queueing network problem appearing in [1, 14, 15, 21, 34]. This problem is
nonsymmetric and has a significantly complex spectrum, which lies in the triangle
whose vertices are —0.5 £ ‘[z and 1. The stencil of the matrix A is given by

—H1
—H 1 )
—H2

where p = 10/31, up = 11/31 and pe = 10/31.
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Fia. 4.1. Left: Nonsymmetric random planar graph—directed edges are marked with dotted
lines while undirected edges are marked with a solid line. Right—the spectrum of the Markov chain
bounded by the unit circle.

Table 4.1 shows the results for the Tandem Queue problem using the EIS algo-
rithm as a solver (Algorithm 2), AFTER algorithm (Algorithm 3) with various choices
of €4, and results for the non-overlapping on-the-fly algorithm (Algorithm 4).

The results show that a high accuracy of the prototype is required for this test-
case. More setup cycles in the AFTER algorithm, or equivalently using a smaller
€q, produced better asymptotic convergence factors. The AFTER and OnTheFly
algorithms, with sufficiently small ¢, achieved asymptotic convergence rates similar
to EIS. The cost of the EIS iterations, however, is significantly higher. The timings
of AFTER clearly show the tradeoff: more setup cycles gain better asymptotic con-
vergence, but require more computational time. Cost-wise, £, = 1072 or 1074 is the
best compromise for this test case, even though the resulting convergence factors are
not optimal. The on-the-fly algorithm achieved the best performance, using several
solution cycles to reach the required accuracy instead of some of the setup cycles in
AFTER.

4.1.2. Random walk on a nonsymmetric random planar graph. The
next test problem is a random walk on a nonsymmetric unstructured planar graph
demonstrated in Figure 4.1. A similar problem with a symmetric graph appears in
[14, 15, 34], and a slightly different nonsymmetric version is considered in [17, 18].
The graph is generated by choosing n random points in a unit square and applying
Delaunay triangulation. Then, a spanning tree of the graph is generated by a DFS
algorithm and its edges are kept undirected. For the remaining edges, a direction is
chosen at random. The spanning tree edges are kept undirected in order to ensure
that the graph is strongly connected and hence the associated matrix is irreducible.
The weight of an edge (7, j) is determined by the reciprocal of the outgoing degree of
node ¢, that is, we normalize the columns of the binary matrix representing the graph
to make it column-stochastic.

Table 4.2 shows the results for this problem. Here, the accuracy required for the
prototype vector was lower than in the previous problem. In the case of AFTER,
requiring excessive accuracy from the prototype increases the solution time due to
the expensive setups. However, such a large default choice of ¢, = 1072 is too risky
in general, and may result in very poor behavior in many other problems. Also, this
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size lev  Cop  User(tset) algorithm Vers,Vsor 7Y Usol (tsol)
EIS 15,0 031 66 (1.629)

AFTER(1072) 0,20 0.46 23 (0.42s)

AFTER(1073) 3,11 0.29 29 (0.57s)

65536 7 2.03 20 (0.46s) AFTER(10%) 4,10 028 32 (0.65s)
AFTER(1079) 6,8 0.28 37 (0.82s)

OnTheFly(10~%) 1,14 0.28 22 (0.42s)

EIS 16,0  0.36 86 (7.79s)

AFTER(1072) 0,25 0.50 28 (1.95s)

AFTER(1073) 3,13 0.38 32 (2.56s)

262144 8  2.04 25 (1.92s) AFTER(10-4) 112 037 35 (291s)
AFTER(10~%) 6,10 0.36 43 (3.89s)

OnTheFly(10~?) 1,15 0.36 26 (1.91s)

TABLE 4.2

Result Summary: Random walk on a nonsymmetric random planar graph

Fia. 4.2. Triangular lattice of 28 states

choice has the worst asymptotic convergence (v & 0.5). The on-the-fly approach does
not suffer from this drawback and performs essentially as well as the best choice of
AFTER in terms of solution cost, and with a better asymptotic convergence rate
(v &~ 0.36). The pure EIS solver is again the most expensive method by far. Its
asymptotic convergence is similar to the other methods when ¢, is small enough.

4.1.3. Random walk on a Triangular Lattice. The last test problem appears
in [34], and is taken from [32]. It considers a random walk on an (m + 1) x (m + 1)
triangular grid, as shown in Figure (4.2) for m = 6. The points of the grid are labeled
(4,1),(¢=0,....,m;7 =0,...,m — i). From the point (j,), a transition may take place
to one of the four adjacent points (j + 1,7+ 1). The probability of jumping to either
of the nodes (j — 1,4) or (j,i—1) is (J“) with the probability split equally between
the two nodes when both are on the grid. The probability of jumping to either of
the nodes (j + 1,¢) or (j,i+ 1) is (1 — J:”) with the probability again split equally
when both nodes are on the grid. The spectrum of this matrix is real except for a
few complex eigenvalues. This is one of the most difficult cases we tested with our
smoothed aggregation solver.
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size lev  Cop  User(tset) algorithm Vers,Vsor 7Y Usol (tsol)
EIS 34,0 0.60 173(2.72s
AFTER(1072) 1,38 0.63 0.71s

46 (
AFTER(1073) 4,27 0.58 50 (0.75s
65536 7 1.95 23 (0.37) AFTER(10~4) 7,23 059 63 (0.96s
AFTER(105) 11,21 0.58 81 (1.24s
41 (

OnTheFly(10~4) 2,27 0.58 0.63s

EIS 39,0 0.65 215(12.3s
AFTER(102) 1,63 0.82 72 (3.90s
AFTER(1073) 4,53 0.76 80 (4.23s
262144 8 1.96 22 (1.21s) AFTER(10~4) 7,30 0.65 70 (4.01s
AFTER(10~%) 12,25 0.64 91 (5.05s
52 (

)
)
)
)
)
)
)
)
)
|
OnTheFly(105) 2,36 0.64 2.82s)

TABLE 4.3
Result Summary: Random walk on a Triangular Lattice

Table 4.3 shows the results for this problem. For the bigger problem, using
the AFTER algorithm requires several setup cycles in order to reach the optimal
asymptotic converge. Again, we see the tradeoff of the AFTER algorithm, as more
setup cycles lead to a better convergence but require expensive computations. In the
smaller problem, one additional setup is optimal for AFTER. As expected, using the
EIS method by itself has the highest cost. The on-the-fly approach again achieves the
best timings.

4.1.4. Discussion. We observe a high variability in the behavior of the SA
solver with different strategies in different problems. In cases where the initial setup
suffices for a reasonable convergence (even if not optimal), additional setup may not
be cost-effective. This depends on the gain in performance that the additional setup
provides compared to its cost. However, if additional setup cycles are needed, it is
likely that the non-overlapping on-the-fly method is a better choice than AFTER.

4.2. Parallel environment simulation. In this section, we simulate a parallel
environment using our serial implementation. We thus estimate the expected results
of a comparison between the non-overlapping on-the-fly algorithm and the overlapping
algorithm in a parallel environment when the computing resources are doubled. We
again measure the expected performance in work-units, each equivalent to the cost of a
single parallelized Vgor, cycle. As mentioned before, the more extensive parallelization
results in a higher cost ratio between setup cycles and solution cycles. Therefore, the
relative efficiency of parallel adaptive AMG algorithms deteriorates as the repeated
setup cycles become more expensive (in work-units). In this section, we assume that
we are already in a regime where adding more computing resources does not improve
the cost of the multigrid cycles for a problem of fixed size.

We denote the run times of EIS and solution cycles in a serial environment by

time(Vgsdal) and time(VEg ). These timings are measured in our serial code.

time(VESLMy and time(VEL ) denote the corresponding timings in a parallel



20 ERAN TREISTER, IRAD YAVNEH

Tandem Queue - size 65536 Tandem Queue - size 262144

50

60
¥ =——t— OnTheFly
55[ | —@=— Overlapp OTF
+r % OnTheFly/2

=——#— OnTheFly
45| | =—©— Overlapp OTF
+r % OnTheFly/2

501

Solution cost in work—units
Solution cost in work—units

Fic. 4.3. Tandem Queue: Parallel environment results

environment. Next, we define

_ time (V™) ftime(VEGE")
T time(VET time (VgL

(4.2)

which is the increase in the cost ratio between a setup and solution cycle as a result
of the parallelization. The ratio R, is expected to grow as we use more computing
resources for a fixed problem size, because each computing node gets less grid points
and hence communication is relatively more expensive.

We compare the non-overlapping and overlapping on-the-fly algorithms (Algo-
rithms 4 and 5 respectively), considering again only the solution time beyond the
first setup cycle, as this cycle is the same in both algorithms. The simulation of the
non-overlapping on-the-fly algorithm is performed simply by multiplying the cost of
Vers by R, while keeping the cost of Vsoy, fixed. For Algorithm 5 we need to sim-
ulate the procedure overlapping-setup in Section 2.3. We do this by multiplying the
time it takes to perform an EIS cycle by R,. This time (measured in work units)
gives us the number of solution cycles carried out in parallel with the EIS cycle. We
further assume that the communication required at each crossover costs the same as
one solution cycle, so we add one work-unit to the cost of overlapping-setup. In the
non-overlapping on-the-fly algorithm we use v = 0.75 as before. In overlapping OTF
we use a lower value of v = 0.5, allowing more setup updates. The reason for this is
that setup cycles constitute a smaller burden in this case because solution cycles are
performed simultaneously.

In the following graphs we compare the estimated costs of the overlapping and
non-overlapping OTF algorithms as a function of R, in a parallel environment. Since
we double the resources in overlapping OTF, the performance gain factor that can
be achieved is bounded by 2. This is true also if we use double computing resources
for the non-overlapping OTF. Therefore, as a reference, we also plot half the time of
non-overlapping OTF (denoted by ‘OTF/2’).

4.2.1. Tandem Queue Markov Chain. Figure 4.3 shows the amount of work-
units required for the solution as a function of R, defined in Equation (4.2). The
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results indicate that the overlapping on-the-fly method has better performance as R,
increases. Indeed, the asymptotic slope of the overlapping OTF curve seems similar
to that of the ideal OTF/2.

4.2.2. Random walk on a nonsymmetric random planar graph. Figure
4.4 shows the relevant results in work-units. Here, as in the results for AFTER(1072)
shown in Table 4.2, one can see that the initial setup cycle suffices for achieving an
adequate convergence factor. The overlapping on-the-fly algorithm takes full advan-
tage of that, because the overlapping solution cycles are quite effective even though
the operators are not very accurate yet. In both problem sizes we see that the solution
cost increases very little with R,.

Technically, the best option for this problem is to simply apply the initial setup
and then continue with solution cycles with no additional EIS cycles. This approach
is not influenced by the increasing I,. However, as in the serial environment case, we
cannot know this in advance so it is not a useful default choice for a general algorithm.

4.2.3. Random walk on a Triangular Lattice. The results are shown in
Figure 4.5. Again, the overlapping on-the-fly algorithm achieves better performance
than the non-overlapping version, although the performance gain is less significant
than before. The asymptotic slope of the overlapping OTF is again similar to that of
OTF/2.

4.2.4. Discussion. In a parallel computing environment the overlapping on-the-
fly method has an advantage over its non-overlapping version, at the expense of the
additional hardware that is required. We note again that if doubling the resources for
an internally parallelized non-overlapping OTF significantly improves its performance,
then that option would probably be a better choice than overlapping OTF. It would
create curves that lie somewhere in between the OTF and OTF /2 curves, and that is
also where the overlapping OTF curve lies. Once the resources are such that further
internal parallelization is ineffective, the overlapping OTF approach can be employed
to advantage.
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5. Conclusions and Future Work. This paper introduces an on-the-fly adap-
tive multigrid approach of interleaving adaptive EIS and classical multigrid cycles
for Markov chain problems. The new idea is demonstrated using adaptive Petrov-
Galerkin smoothed aggregation, where only the prolongation is smoothed. For the
problems considered, using classical solution cycles instead of EIS cycles significantly
reduced the costs of the solution process. The on-the-fly approach was generally found
to be superior to applying solution cycles after a fixed number of EIS setup cycles.

A strategy more suitable to a parallel environment was also suggested, applying
overlapping setup and solution cycles. This strategy seems to have potential in parallel
computation, in regimes where the effectiveness of traditional parallelization has been
exhausted, and yet additional resources are available.

Both on-the-fly approaches, with some modifications, may potentially be useful
for enhancing the setup process of adaptive AMG methods for solving inhomogeneous
linear systems, since their setup usually targets a homogenous system.
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