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SUMMARY

This paper describes multilevel methods for the calculation of the stationary probability vector of large,
sparse, irreducible Markov chains. In particular, several recently proposed significant improvements
to the multilevel aggregation method of Horton and Leutenegger are described and compared.
Furthermore, we propose a very simple improvement of that method using an over-correction
mechanism. We also compare with more traditional iterative methods for Markov chains such as
weighted Jacobi, two-level aggregation/disaggregation, and preconditioned stabilized biconjugate
gradient and GMRES. Numerical experiments confirm that our improvements lead to significant
speedup, and result in multilevel methods that are competitive with leading iterative solvers for
Markov chains. Copyright c© 2010 John Wiley & Sons, Ltd.
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1. Introduction

This paper describes improvements to the multilevel aggregation method of Horton and
Leutenegger [1] for Markov chains. The main contribution of this paper is an automatic over-
correction mechanism that can cheaply and effectively improve the convergence of the basic
multilevel aggregation method presented in [1]. We further demonstrate how the recently
developed on-the-fly (OTF) adaptive approach [2], which uses interlaced multiplicative and
additive correction cycles to compute the stationary distribution, can significantly improve the
convergence of standalone multilevel solvers for Markov chains. In particular we accelerate the
multilevel aggregation method of [1], and the Markov chain algebraic multigrid (MCAMG)
method of [3] using the OTF approach. We also compare with more traditional iterative
methods for Markov chains such as weighted Jacobi, two-level aggregation/disaggregation, and
preconditioned stabilized biconjugate gradient (Bi-CGStab) and GMRES. Numerical results
are obtained for a variety of test problems including a tandem queueing problem [4], a random
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walk on an unstructured directed planar graph [5], and a multi-class, finite buffer priority
system [6, 7]. The parameters in the multi-class, finite buffer priority system are chosen in
such a way that we obtain a nearly completely decomposable (NCD) Markov chain.

Horton and Leutenegger were among the first to consider numerical methods for Markov
chains with more than two levels [1, 8], see also [9]. Their method is a direct extension of the
two-level iterative aggregation/disaggregation method for Markov chains due to Takahashi
[10], which makes use of the aggregated equations proposed by Simon and Ando [11]. Since
the pioneering work of Takahashi, two-level methods for Markov chains have been considered
widely in the Markov chain literature [12, 13, 14, 15, 16, 17, 18, 19]. These methods have
been shown to be particularly effective for NCD Markov chains, where the known structure
of the problem can be exploited by the aggregation process, which typically results in fast
convergence. Domain decomposition methods [20, 21], and projection methods such as Arnoldi,
GMRES, Lanczos, conjugate gradient and biconjugate gradient [6, 22, 4], have also been shown
to be effective at solving for the stationary distribution of Markov chains. These methods
constitute some of today’s leading solvers for Markov chains. Historically, multilevel methods
have been largely disregarded for Markov chain problems, however, recent work has shown
promise for such methods. While theoretical convergence results are very difficult to obtain,
especially for general problems with nonsymmetric sparsity structure, in many cases empirical
evidence has demonstrated good convergence properties and robustness of multilevel methods
for Markov chains [23, 24, 25, 3, 5, 26, 27, 2]. We note that while theoretical convergence results
do exist for certain classes of two-level methods [15, 13, 17, 18, 19], these results typically deal
with only local convergence and do not extend easily (if at all) to multilevel methods. In fact,
theoretical results for AMG solvers applied to nonsymmetric problems are quite rare, with
advances having only recently been made (see [28] and the references therein). Moreover, as
far as we know, there is no convergence theory for any type of multilevel adaptive method
related to what we present in this paper.

In this paper we consider irreducible homogeneous Markov chains with a finite state space.
For a discrete time Markov chain (DTMC) with transition probability matrix given by an n×n
column-stochastic matrix B, the problem of finding the stationary probability vector x may
be stated as follows. We seek the unique vector x such that

x = B x, xi ≥ 0 ∀i, ‖x‖1 = 1. (1.1)

In this paper we follow the notational convention, customary in the numerical linear algebra
literature on eigenvalue problems, that all vectors (including probability vectors) are column
vectors and that all transition matrices are column-oriented. We find it beneficial to work
with an equivalent formulation of (1.1) in terms of the singular M-matrix generated by B.
Mathematically, we seek the vector x ∈ Rn such that

Ax = 0, xi ≥ 0 ∀i, ‖x‖1 = 1, (1.2)

where A = I −B is an irreducible singular M-matrix.
Since B is a stochastic matrix, its spectral radius ρ(B) = 1 and λ1 = 1 is a dominant

eigenvalue of B. Given that B is nonnegative and irreducible with ρ(B) = 1, the Perron-
Frobenius theorem [29] guarantees the existence of a unique solution to (1.1). Moreover, the
solution has strictly positive components. A subdominant eigenvalue λ2 of B satisfies

|λ2| = max{|λ| : |λ| < 1, λ ∈ Λ(B)}
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where Λ(B) is the spectrum of B. We are interested in Markov chains for which |λ2| → 1
as the size of the state space increases. Traditional iterative methods for computing the
stationary probability vector may be unacceptably slow to converge for such problems due
to poor damping of the error component associated with the subdominant eigenvalue [6, 4].
Markov chains with this property are said to be slowly mixing. Multilevel iterative methods
aim to accelerate convergence for this type of problem by reducing error components with
different scales on progressively coarser levels. These methods are attractive because they
have the potential to be asymptotically optimal, i.e., they achieve approximate solutions up to
a given tolerance with a convergence factor per iteration that is bounded above by a constant
c < 1, resulting in a computational effort that grows linearly with the problem size [30].

The rest of this paper is organized as follows. In Section 2 we briefly describe the basic
multilevel aggregation framework of Horton and Leutenegger for Markov chains. In Section 3
we describe a number of different ways in which the basic multilevel aggregation framework
for Markov chains can be accelerated. These include the recently proposed Markov chain
AMG (MCAMG) method and the on-the-fly adaptive framework, and a new automatic over-
correction routine. In Section 4 we present numerical results comparing new and existing
multilevel approaches with other existing iterative methods, and in Section 5 we make our
closing remarks.

2. Multilevel aggregation for Markov chains

In this section we describe the basic two-level aggregation algorithm from which our multilevel
methods are derived. For further details we refer the reader to [1, 24, 25]. Notationally, objects
that pertain to the current level have no subscript, and those that pertain to the next coarser
level have the subscript c. The symbols representing transfer operators have neither subscripts
nor superscripts.

We are interested in solving the fine-level problem:

Ax = 0 (2.1)

where A = I−B. We can rewrite the exact solution, x, in terms of the current approximation,
xi, and its unknown multiplicative error, ei, as x = diag(xi) ei. Here diag(xi) is a diagonal
matrix with xi on the diagonal. Substituting into (2.1) we obtain an equivalent fine-level
problem:

Adiag(xi) ei = 0. (2.2)

Note that we have to assume here that all components of the current approximation, xi, are
strictly positive. At convergence, the multiplicative error is known, ei = 1, where 1 is the
vector of all ones.

Our goal is to obtain a coarse-level representation of (2.2). We proceed by aggregating
the n fine-level degrees of freedom into nc < n groups according to the columns of the
aggregation matrix Q ∈ Rn×nc , where qij = 1 if fine-level node i belongs to aggregate j
and qij = 0 otherwise. In a multilevel setting, the aggregation matrix Q can be determined
at successive coarse levels using topological information when the Markov chain is structured
[1]. For example, in a two-level setting, iterative aggregation/disaggregation (IAD) methods
applied to nearly completely decomposable (NCD) Markov chains [10, 15, 16, 4] exploit the
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known block structure of the transition probability matrix when building the coarse aggregated
system. Alternatively, aggregates can be chosen algebraically based on strength of connection
in the problem matrix [24, 8, 26].

Given the aggregation matrix Q, the coarse-level operator, Ac, is defined by the Galerkin
operator

Ac := QTA diag(xi)Q = RAP (2.3)

where R = QT is the restriction operator and P = diag(xi)Q is the interpolation operator. An
important property of the interpolation operator P , is that it should have the exact solution x
approximately in its range, i.e., x ≈ P tc for some coarse vector tc. By noting that xi = P1c,
we observe that as the fine-level approximation improves, i.e., as xi → x, so too does the
approximation of the exact solution in the range of P . Additionally, as the approximate solution
becomes more accurate, the coarse representation of the original problem will also improve.
Because A is typically nonsymmetric for Markov chains, following [31], we also require that
RT should have the near-nullspace of AT (i.e., vectors e such that ATe ≈ 0) in its range. Since
the left nullspace is known for Markov chains (it is the vector of all ones), this condition can
be satisfied exactly, i.e., RT1c = Q1c = 1.

Given the definition of the coarse operator in (2.3), the coarse-level problem can be stated
as

Ac ec = 0. (2.4)

Using ec one can define an improved coarse-level approximation, xc := diag(Rxi) ec, and (2.4)
can be modified to obtain the alternative coarse-level formulation:

Ac diag(Rxi)−1 xc = 0. (2.5)

In the case of direct, non-overlapping aggregation, (2.5) has a straightforward probabilistic
interpretation [10, 1, 4]. Once (2.4) has been solved for ec, we can obtain the next iterate,
xi+1, via the coarse-level correction formula:

xi+1 = P ec. (2.6)

Note that one may also solve (2.5) for xc, which leads to the equivalent coarse-level correction
formula

xi+1 = P diag(Rxi)−1 xc. (2.7)

In this paper we use the weighted Jacobi method for all relaxation operations. At each level
ν1 pre-relaxations and ν2 post-relaxations are performed, except on the coarsest level where
a direct solve is performed. One iteration of weighted Jacobi applied to the general problem
Ax = b is given by

xnew = x + ωD−1(b−Ax) = Relax(A,x,b) (2.8)

where D is the diagonal part of A and ω is the relaxation parameter. We note that given strict
positivity of the elements of x, one can show that the relaxed approximation (I − ωD−1A)x
(in the case of b = 0) also has strictly positive elements provided that ω ∈ (0, 1].

Instead of aggregating only once and solving the coarse-level problem (2.4) directly, we
can obtain a multilevel method by applying the two-level method recursively. A high-level
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description of the resulting multilevel method for Markov chains is given by Algorithm
1. Solution of the coarsest-level subproblem via the Grassmann, Taksar, Heyman (GTH)
algorithm [32, 33] can be justified by observing that A is an irreducible singular M-matrix
on all levels. Assuming that the initial fine-level approximation has strictly positive elements,
this property of the coarse-level operators further implies that the coarse-grid corrected
approximations x̃ must also be strictly positive on all levels. We note that the parameter
µ in Algorithm 1 determines the cycle type; for µ = 1 we obtain V-cycles, and for µ = 2 we
obtain W-cycles. Note finally that the approach of Algorithm 1, originally presented in [1], can
also be interpreted as a precursor of classes of methods for the solution of linear systems that
have become known as adaptive algebraic multigrid (AMG) or smoothed aggregation (SA)
[34, 35] or exact interpolation schemes [27].

Algorithm 1: Multilevel aggregation for Markov chains x← AGG(A, x,µ, ν1, ν2)

Input: Operator: A ∈ Rn×n, strictly positive vector: x ∈ Rn, cycle index: µ,
number of pre-relaxations: ν1, number of post-relaxations: ν2.

Output: New approximation to the solution of Ax = 0

if not at coarsest level then
1. x̂← Relax(A,x,0) ν1 times

2. Build Q based on A and x̂

3. Set R← QT , P ← diag(x̂)Q

4. Set xc ← R x̂, and repeat µ ≥ 1 times:

xc ← AGG(Ac(diag(R x̂))−1, xc, µ, ν1, ν2)

5. Coarse-grid correction (CGC): x̃← P (diag(R x̂))−1xc

6. x← Relax(A, x̃,0) ν2 times
else

7. Direct solve of Ax = 0, 1Tx = 1 by the GTH algorithm

end

3. Acceleration of multilevel aggregation

In this section we describe different ways in which the pure multilevel aggregation algorithm
described in Section 2 can be accelerated. Numerical results comparing the approaches will
be given in Section 4. Our main contribution is a new automatic over-correction procedure,
which as demonstrated in the section on numerical results is an inexpensive way to accelerate
basic multilevel aggregation for Markov chains. We also consider the recently developed on-the-
fly (OTF) adaptive approach [2], which uses interlaced multiplicative and additive correction
cycles to obtain the stationary distribution. The OTF approach is illustrated in conjunction
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with the Markov chain algebraic multigrid (MCAMG) algorithm from [3], which is a recently
developed improvement of Algorithm 1, and is described briefly in Section 3.1. In the interest of
space, we do not consider other recent approaches for accelerating Algorithm 1, which include
smoothed aggregation multigrid for Markov chains [25], recursively accelerated multilevel
aggregation for Markov chains [5, 26], and square and stretch multigrid for Markov chains
[27].

3.1. Markov Chain Algebraic Multigrid

In this section we briefly describe the Markov chain algebraic multigrid algorithm developed
in [3]. While the MCAMG algorithm does not use aggregation to construct the coarse-level
problem, its structure is similar to that of Algorithm 1. Instead of aggregation, the MCAMG
algorithm employs an algebraic multigrid coarsening procedure to define the coarse grid and
build the transfer operators. The construction of the transfer operators proceeds in two phases.
In the first phase, the current fine-level is partitioned into sets of coarse points C and fine points
F , where the C-points determine the coarse-level degrees of freedom. This is accomplished by
a two-pass coarsening routine, which attempts to satisfy two complementary heuristics that
strive to limit the number of C-points, while at the same time produce a coarse level with
good approximation properties. Coarsening relies on the notion of strength of connection in
the scaled fine-level matrix Adiag(xi), which quantifies the relative importance of one variable
in determining the value of another, depending on the magnitude of the elements in A diag(xi).
The strength of connection for the MCAMG algorithm is defined as follows. Given a threshold
value θ ∈ [0, 1], point j strongly influences point i if

−aijxj ≥ θmax
k 6=i
{−aikxk}. (3.1)

In this paper, unless stated otherwise, we use strength threshold θ = 0.25. We note that
this definition of strength of connection is directional, i.e., when we say that j is strongly
connected to i, then j strongly influences i, or i strongly influences j, but not necessarily both.
This is in contrast to other similar definitions of strength of connection which are inherently
symmetric, e.g., see [25, 5]. For further information regarding AMG strength of connection
and the two-pass coarsening procedure we refer to [30].

Once the sets C and F are known, the interpolation operator P can be constructed.
Interpolation is accomplished by approximating the error at each F -point as a weighted sum of
the error at C-points. Without restricting generality, suppose that the current set of fine-level
points, H = {1, . . . , n}, is ordered so that

H = {1, . . . , nc︸ ︷︷ ︸
C

, nc + 1, . . . , nc + nf︸ ︷︷ ︸
F

},

where |C| = nc, |F | = nf and n = nc + nf . Then, for any point i ∈ H, we require that

(P ec)i =

{
(ec)i if i ∈ C,∑
j∈Ci

wij(ec)j if i ∈ F,
(3.2)

where ec is the coarse-level error approximation, wij are the interpolation weights, and
Ci is the set of C-points that strongly influence point i according to (3.1). For Markov
chains the weights are defined in such a way that P has nonnegative entries with unit
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row sums. The sparsity structure of P is similar to the sparsity structure of the smoothed
aggregation multigrid interpolation operator with overlapping aggregates [25], however, their
approximation properties clearly differ. For further details regarding the computation of the
interpolation weights and the properties of the interpolation operator we refer to [3].

Once P has been constructed we define the coarse level operator according to Ac = RAP̄ ,
where the restriction operator R = PT and P̄ = diag(xi)P . Due to the structure of R and P̄
the coarse-level operator may not be an irreducible singular M-matrix. Since this is essential
to our algorithm, we make use of a lumping technique, which produces a lumped coarse-level
operator Âc with the desired structure by adding symmetric perturbations to Ac. Given that
the lumped coarse-level operators are irreducible singular M-matrices on all levels, one can
show that the coarse-grid corrected iterates must be strictly positive on all levels. In particular,
the new finest-level approximation must be strictly positive (recall that positivity is preserved
by the relaxation operations). For a detailed explanation of the lumping technique we refer
to Section 4.3 in [3]. The remainder of the MCAMG algorithm is essentially the same as the
multilevel aggregation algorithm described in Section 2, with the coarse-level problem defined
in terms of the lumped coarse-level operator Âc ec = 0, and a coarse-level correction given by
xi+1 = P̄ ec. Apart from these differences, the framework of the MCAMG algorithm is the
same as that given by Algorithm 1.

3.2. On-the-fly adaptive setting

In this paper we apply the on-the-fly adaptive multigrid setting, described in detail in [2]. The
main idea of this approach is that multiplicative correction schemes such as Algorithm 1, are
equivalent to the classical multigrid additive correction scheme, provided the two algorithms
use the same adaptive multigrid operators that are updated in every step. The advantage of an
equivalent additive correction formulation of Algorithm 1 is that the adaptive operators can be
“frozen” after a few cycles, and those frozen additive cycles, for which the multigrid hierarchy
of operators is not recalculated in each cycle, are considerably cheaper, without sacrificing
much in terms of convergence speed.

Classical additive multigrid schemes for linear systems are based upon the following
fundamental idea. Given the linear system

Ax = b, (3.3)

where A ∈ Rn×n is a positive definite matrix, these methods apply a cheap, albeit slowly
converging stationary iterative method, such as the weighted Jacobi method

xnew = x + ωD−1(b−Ax) = Relax(A,x,b). (3.4)

The slow convergence of these relaxations is usually due to a relatively small number of
components in the error, referred to as algebraically smooth, which approximately satisfy the
homogeneous system (2.1). To eliminate these error components, classical multigrid methods
use an additive coarse-grid correction (CGC), applied by constructing and solving a coarse
system with fewer degrees of freedom. Unlike Algorithm 1, the additive correction schemes
approximate the error e = x − xi on the coarse-grid, and not the exact solution x (or its
multiplicative error). Algorithm 2 describes a typical two-level additive correction cycle. A
multilevel V-cycle is obtained by recursively treating the coarse-grid problem in step 4. For
Markov chains, this approach can be applied to a homogeneous system with b = 0 on the
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finest grid. Of course, on coarser levels, the system Ac ec = rc is inhomogeneous, with rc 6= 0.
We note that on the coarsest level it is necessary to solve the linear system Ac ec = rc. Since
the operator Ac may be singular, multiple solutions may exist. In this paper, as in [2], we use
the pseudoinverse of Ac (i.e., ec = A+

c rc) with a small drop tolerance to obtain a solution on
the coarsest level. This results in a solution of Ac ec = rc that does not contain any significant
contribution of nullspace components of Ac, which if present may have contaminated the
coarse-grid correction.

Algorithm 2: Two-level additive cycle

Input: Initial vector: x ∈ Rn, Right-hand-side vector: b ∈ Rn
Operators: A ∈ Rn×n, P ∈ Rn×nc , R ∈ Rnc×n, Ac ∈ Rnc×nc .

Output: New approximation to the solution of Ax = b

1. Apply pre-relaxations: x← Relax(A,x,b).

2. Define the residual r← b−Ax.

3. Restrict the residual: rc ← R r.

4. Define ec as the solution of the coarse-grid problem Ac ec = rc.

5. Prolong ec and apply CGC: x← x + P ec.

6. Apply post-relaxations: x← Relax(A,x,b).

Algorithm 2 requires the complete hierarchy of multigrid operators for all levels in advance.
To obtain effective convergence, it is crucial that we choose the prolongation operator P
such that the algebraically smooth components are approximately in its range. To achieve
this for difficult problems, a complete framework of adaptive SA and AMG algorithms was
developed for symmetric linear systems [34, 35]. These algorithms feature an additive solution
phase, preceded by a multiplicative setup phase where the multigrid operators are constructed.
The setup phase is targeted at solving the homogeneous system (2.1); it aims to find an
approximation to the near-nullspace of each coarse-level operator, and then build the transfer
operators accordingly. In practice, this is achieved by a multiplicative correction scheme
algorithm, similar to Algorithm 1. Once the multigrid hierarchy of operators is set, the linear
system is solved by the additive Algorithm 2, using the fixed operators from the setup phase.

It can easily be seen that multiplicative Algorithm 1 can equivalently be written in the form
of additive Algorithm 2 as follows. For Algorithm 1, let the current approximation xi be in
the range of P , and let ec,i be the coarse multiplicative error that satisfies xi = P ec,i. The
coarse-grid equation of the multiplicative scheme is given by RAP ec = 0, with ec the unknown
multiplicative coarse-grid error, and the coarse-grid correction formula is xi+1 = P ec. Now
define the equivalent unknown additive coarse-grid error, êc, by êc = ec − ec,i. It is now easy
to see that the coarse-grid correction formula can be written in additive form:

xi+1 = P ec = P êc + P ec,i = xi + P êc,

and the coarse-grid equation of the equivalent additive formulation becomes

RAP êc = RAP (ec − ec,i) = −RAP ec,i = −RAxi = R ri,
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with the residual given by ri = −Axi. This shows that the multiplicative formulation of
Algorithm 1 is equivalent to an additive formulation as in Algorithm 2, provided that the
same operators are used for the two formulations, with P updated in every additive cycle such
that the current approximation xi is always in the range of P , and with Ac = RAP updated
in every cycle accordingly.

In the “on-the-fly” approach for Markov chains, we first perform a few multiplicative cycles
(Algorithm 1), which from this point onward we also refer to as setup cycles. We then freeze the
operators and perform additive cycles (Algorithm 2), which we also refer to as solution cycles.
If the convergence speed of the additive cycles (which we measure by residual reduction) is not
satisfactory, we switch back, on-the-fly, to one or more additional multiplicative cycles, which
improves the operators. The underlying motivation for this approach is that solution cycles
(with frozen operators) are considerably cheaper, but they require the operators supplied by
the setup cycles, and better approximations supplied to the setup cycles normally yield better
operators in return.

The goal of the on-the-fly algorithm is to first quickly and efficiently reach an initial tolerance
||Ax||1 < εα, using solution cycles over setup cycles when possible. We try to minimize the
number of expensive setup cycles by first performing just one setup cycle. Even though the
operators produced by this single setup cycle may not be very accurate, they may suffice for
obtaining useful solution cycles. As in [2], we then repeatedly apply the following procedure,
where VSOL(·) denotes a solution cycle, VSET denotes a setup cycle, q(·) is some measure of
the approximation error, and 0 < C ≤ 1 is a scalar threshold for an acceptable convergence
factor of the solution cycles.

Procedure: try-SOL-else-SET(C)

1. y = VSOL(x) (try a solution cycle)

2. If q(y) > q(x) do x← VSET (x) and return
(if the solution cycle increases the error, do a setup cycle instead)

3. If q(y) < Cq(x) then x = y, else x← VSET (y)
(if the error reduction is better than the convergence factor threshold, accept y; if not, do
an extra setup cycle)

For q(x) we use

q(x) =
‖Ax‖1
‖x‖1

, (3.5)

which is the L1-norm of the residual. The residual, which emphasizes the high-energy modes,
in general may not be an optimal measure of performance. However, we find it quite reliable
in practice. Given the try-SOL-else-SET(C) procedure, the on-the-fly algorithm may now be
stated as follows in Algorithm 3 below. We require that iterates produced by the try-SOL-
else-SET(C) procedure, and in particular by the additive solution cycles be nonnegative. This
is especially important when an iterate is used as input to a setup cycle. While the setup
cycles have guaranteed positive solution components on all levels (see Sections 2 and 3.1),
the solution cycles may admit negative values after the coarse-grid correction (with or without
over-correction). Therefore, after each solution cycle we check that the updated approximation
on the finest level has nonnegative elements, and if not, we take the absolute value and
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FAST MULTILEVEL METHODS FOR MARKOV CHAINS 9

renormalize. We note that negative values typically only arise for very small components,
in which case taking the absolute value and renormalizing does not influence the overall
accuracy in any significant way. Effectively, we make a trade-off between the accuracy of
small components and robustness.

Algorithm 3: On-the-fly adaptive MG
Input: Initial tolerance: εα, convergence threshold: C, operator: A ∈ Rn×n.

1. Initial Setup:
Apply several relaxations on a strictly positive random initial guess x0 ∈ Rn, 1Tx0 = 1,
followed by a setup cycle to obtain x1.

2. Improve Solution Approximation:
Repeat try-SOL-else-SET(C), until ||Axi||1 < εα.

3. Finalize Setup:
Do another setup cycle so that xi is in the range of P .

4. Solution:
Apply solution cycles until the stopping criteria (see Section 4) are satisfied.

3.3. Multilevel aggregation with over-correction

The idea of applying over-correction is a simple one, its goal being to enhance the convergence
of multigrid cycles based on aggregation [36, 37]. For additive cycles, instead of applying a
standard CGC in step 5 of Algorithm 2, one may introduce an over-correction parameter α
into the coarse-grid correction:

xi+1 = xi + αPec , (3.6)

where α is typically a scalar larger than 1. This is motivated by the observation that while the
correction typically approximates the error very well in the sense of its “progress”, it may not
provide a good approximation in the sense of its “size” [37]. Typically, a fixed value for α is
used, which is chosen based on a trial-and-error strategy. The main challenge, however, is to
determine an appropriate value for α automatically. In [37, 38, 39] a method for determining
α was suggested by minimizing the A-norm of the error after the coarse-grid correction

||ei+1||2A = 〈ei+1, Aei+1〉 = ||ei + αPec||2A , (3.7)

where ei and ei+1 denote the unknown errors at iterations i and i+1, respectively. In practice,
one needs to smooth the correction by applying a relaxation prior to computing α

ê = Relax(A,Pec,0). (3.8)

The optimal α can then be calculated by

αopt =
êT (Axi − b)

êTAê
(3.9)

Unfortunately, the A-norm is only suitable for SPD problems.
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For a nonsymmetric operator A, expression (3.7) is no longer meaningful. As far as we
can tell, only a fixed over-correction has been considered for nonsymmetric problems in the
literature [40, 41, 42, 43]. Horton and Leutenegger also considered a fixed over-correction for
Markov chains in [1], by taking a convex combination of two different coarse approximations
to the correction. In order to automatically determine α, one may instead consider the residual
L2-norm as an alternative to the A-norm. In [44], the residual norm was used to accelerate the
convergence of multilevel processes, but only as a top-level acceleration. Unfortunately, the
residual norm may be a poor measure of performance, since it is much more sensitive to rough
error modes introduced by multilevel over-correction than the A-norm. This is due to the fact
that the residual norm is equivalent to the ATA-norm. However, the residual norm is currently
the best we have at our disposal. We attempt to make the residual norm less sensitive to rough
modes by projecting the residual to the coarse level via the restriction operator. Restricting
to the coarse level has a similar effect as smoothing, but is much cheaper than applying a
relaxation. Following this line of reasoning we minimize the following functional with respect
to α

||RAei+1||22 = ||RA(ei + αê)||22, (3.10)

where ê is described above in (3.8). It is easy to see that the global minimizer of (3.10) is given
by

αopt =
(RAê)T (R(Axi − b))

||RAê||22
. (3.11)

So far we have described the over-correction procedure used in the (additive) solution cycles,
i.e., Algorithm 2. In the case of the multiplicative correction scheme, as in Algorithm 1, the
CGC is given by

x̃ = P (diag(R x̂))−1xc, (3.12)

where xc is the solution of the coarse-grid problem and P is a prolongation that has the
previous solution xi, exactly in its range (i.e., xi = P tc for some coarse vector tc.) One way
in which we can apply the over-correction technique to the multiplicative correction scheme,
is to use a multiplicative over-correction of the form

xi+1 ← X(X−1x̃)α, (3.13)

where α > 1, X = diag(xi), and the αth power is applied componentwise. However,
minimization of

||RAX(X−1x̃)α||22
with respect to α may be computationally expensive. As a workaround we use the fact that the
correction achieved by our aggregation cycle is typically quite small, i.e., x̃ = Pec = xi +Xε,
where ‖ε‖∞ � 1. Thus, it follows by Taylor expansion that

(X−1x̃)α = (1 + ε)α ≈ (1 + αε) (3.14)

and therefore, a linearized over-correction formula is given by

xi+1 ← xi +Xαε = (1− α)xi + αx̃. (3.15)

We note that this formula is equivalent to Equation (3.6) with Pec = x̃− xi.
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FAST MULTILEVEL METHODS FOR MARKOV CHAINS 11

Similar to the additive correction scheme, in order to find the optimal parameter α, the
corrected vector must first be smoothed:

x̂ = Relax(A, x̃,0). (3.16)

Then, the optimal parameter α is obtained by minimizing

||RA((1− α)xi + αx̂)||22, (3.17)

where the minimizer is given by

αopt =
(RAxi)TRA(xi − x̂)
||RA(x̂− xi)||22

. (3.18)

In practice, αopt is restricted to a predefined interval (in our test cases we use [1.1, 2]),
since this results in a more stable algorithm, e.g., it is possible that Equation (3.18) can yield
a negative value for αopt, which may lead to numerical instability. If αopt falls outside this
interval, then it is set to either 1.1 or 2, depending on which boundary point it is nearest.
Furthermore, it may be necessary to use a smoothing parameter in Equations (3.8) and (3.16)
that is smaller than the parameter used in the pre- and post-relaxations, or, it may even be
necessary to use more than one relaxation to smooth the coarse-grid correction. Insufficient
smoothing of the coarse-grid correction may result in a poor determination of αopt. Again, we
note that if A were symmetric, then the optimal over-correction parameter should be based
on a minimization of the A-norm instead of the restricted residual norm.

The over-correction procedure may be problematic for certain test cases when applied in
conjunction with the on-the-fly framework, since amplifying the coarse-grid correction in (3.6)
has a tendency to ruin strict positivity of the solution. This is most prevalent at the beginning
of the solution process before the operators have been finalized. Hence, when using over-
corrected pure aggregation in the on-the-fly framework, we accept the additive iterate in the
try-SOL-else-SET(C) procedure only if its residual is considerably smaller than the residual
of the previous iterate, otherwise we perform a setup cycle using the previous iterate as input.
More precisely, we modify step 3 of the try-SOL-else-SET(C) procedure according to

If q(y) < Cq(x) then x = y, else x← VSET (x)

with a C value that is bounded away from 1. We note that alternatively one could use solution
cycles with less aggressive over-correction (or even without it) in the try-SOL-else-SET(C)
procedure, and then only once the operators are finalized apply aggressive over-correction.

In the automatic approach, the over-correction parameter α is recalculated on each level.
For comparison, we also include tests in which α is fixed for all levels and cycles to a nearly-
optimal value obtained by trial and error. For the fixed α tests we use over-correction formulas
(3.13) and (3.6) for the multiplicative and additive cycles, respectively.

4. Numerical results

In this section we present the results of our numerical tests for a variety of test problems.
These include a tandem queueing problem, a multiclass, finite buffer priority system, and
a random walk on an unstructured directed planar graph. Results were obtained for the
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12 HANS DE STERCK ET AL.

weighted Jacobi method, two-level aggregation (the two-level version of Algorithm 1, similar to
IAD), preconditioned stabilized biconjugate gradient (Bi-CGStab) [6], preconditioned GMRES
[6], pure multilevel aggregation (AGG) (Algorithm 1, [1]), MCAMG [3], and pure multilevel
aggregation with over-correction (OC-AGG). When referring to OC-AGG we are implicitly
considering both the fixed and automatic approaches, unless a particular approach is specified.
A prefix of OTF- before the name of a method indicates that it was executed using the on-the-
fly framework described in Section 3.2. All methods were implemented in Matlab, making use
of sparse and vectorized Matlab procedures as much as possible, and using external C routines
for some of the bottleneck operations in the multilevel methods.

In this paper we propose stopping criteria based on the residual, however, other stopping
criteria can be applied as well [45, 4]. We use the following stopping criterion for all methods
except GMRES

stop if k > maxit or
‖Axk‖1
‖xk‖1

< τ‖Ax0‖1,

where τ > 0 is the convergence tolerance, k is the iteration count and maxit is the maximum
number of iterations the algorithm will be allowed to perform. For GMRES we use

stop if k > maxit or
(
‖Axk‖2 < τ‖Ax0‖1 and

‖Axk‖1
‖xk‖1

< τ‖Ax0‖1
)
, (4.1)

where “and” represents a logical AND operation with short-circuiting. The initial guess x0 is
randomly generated with strictly positive elements and unit 1-norm, and the convergence
tolerance is τ = 10−8. In order to check the one-norm criterion in (4.1) at each inner
iteration of GMRES it is necessary to compute the current approximation xk. (In our efficient
implementation xk is not computed in the inner iterations, see [22].) However, this practice may
incur unnecessary extra computations, especially when GMRES is still far from converging.
Therefore, we use a condition based on the two-norm of the residual, which we get for free (see
[22]), to gauge whether GMRES is near convergence, and only when this condition is satisfied
do we compute xk and check the one-norm criterion in (4.1). We note that although the iterates
xk are not normalized in the inner iterations, we have confirmed through empirical observation
that their one-norms tend to remain close to one, and so the two-norm test is meaningful.

Weighted Jacobi results were obtained using an empirically determined optimal weight
ω ∈ (0, 1] (maxit = 20,000). Two-level aggregation results were obtained using two pre-
relaxations and one post-relaxation on the fine level (ω = 0.7), and two relaxations on the
coarse level (maxit = 4,000). The coarse-level aggregates were determined by the neighborhood
aggregation method described in [5] using strength of connection in Adiag(xi), with strength
of connection parameter θ = 0.25. We note that the aggregation transfer operator was frozen
after the first iteration, and was used for all subsequent iterations.

The Bi-CGStab and GMRES algorithms were implemented according to the templates
in [46]. Experiments with GMRES were run for subspaces of size m = 10, 20, 25. We also
considered the following preconditioners: ILU0, and ILUTP (ILU with thresholding and
pivoting [6]) with drop tolerances {0.01, 0.001, 0.0001}. The preconditioners were constructed
by Matlab’s built-in sparse incomplete LU factorization method ilu. For each test problem we
chose the Bi-CGStab and GMRES parameters that gave fastest execution time for the largest
problem size (maxit = 500), and used that combination for all problem sizes. We note that
in some instances the solution had very small nonpositive elements, in which case we took the
absolute value and renormalized.
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FAST MULTILEVEL METHODS FOR MARKOV CHAINS 13

For the multilevel methods we performed at most 1,000 iterations, and used weighted Jacobi
relaxation parameter ω = 0.7, with at most ncoarse = 12 points on the coarsest level. For the
OC-AGG methods (fixed and automatic) we used V(1,2) cycles (µ = 1, ν1 = 1, ν2 = 2), and
for MCAMG and AGG we used V(2,1) cycles. For tests involving the AGG method, the coarse
degrees of freedom were determined by the Bottom-up aggregation technique described in [27],
with aggregates frozen on all levels after the first cycle.

In the on-the-fly framework we used different parameters for the MCAMG and AGG
algorithms, since the AGG setup is much cheaper than the MCAMG setup with respect
to the cost of their corresponding additive cycles. For OTF-MCAMG we used convergence
parameter C = 1 and threshold parameter εα = 10−4, with V(4,2) setup cycles and V(1,1)
solution cycles. For all OTF-OC-AGG methods, we used convergence parameter C = 0.7 and
threshold parameter εα = 10−5, with V(4,2) setup cycles and V(1,2) solution cycles. For the
automatic over-correction, the relaxations in Equations (3.8) and (3.16) are not counted as
post-relaxations, and therefore, these cycles are equivalent to V(1,3) cycles in terms of cost.
These extra relaxations were performed with ω = 0.7, unless stated otherwise. For OTF-AGG
we used V(4,2) setup cycles, V(1,2) solution cycles, and εα = 10−4. We also used C = 1, since
both the solution and setup cycles are less effective, and it is best to limit the number of setup
cycles.

The various combinations of ν1 and ν2 described above were chosen to strike a balance
between the convergence properties of the multilevel methods in question, and the work
incurred by additional relaxation operations. In particular, for the automatic over-correction
it was necessary to use ν1 = 1 and ν2 = 2 with the (OTF-)OC-AGG methods. This aids the
minimization process (3.17) in choosing a better α since xi is not significantly smoother than x̂
(otherwise, the minimizer might be α < 1). Also, over-correction tends to introduce “noise” into
the smooth approximation, which then needs to be smoothed away, so more post-relaxations
are needed. As such, using a V(1,1) cycle with over-correction, for example, would be less
appropriate. In the case of fixed over-correction, we note that there is no significant difference
between applying V(1,2) or V(2,1) cycles. We mention that the initial guess was smoothed by
10 weighted Jacobi relaxations prior to iterating, which we counted as one multilevel iteration
in the tables. Furthermore, when using the OTF framework, the iteration count included both
setup cycles and solution cycles.

In the tables below we report the number of iterations to converge, it, the operator
complexity, Cop, and the number of work units, WU. The operator complexity is defined
as the sum of the number of nonzero elements in all operators, on all levels, divided by the
number of nonzero elements in the fine-level operator A. This number gives a good indication
of the amount of work required for a cycle and, for an optimal method, it should be bounded
by a constant not too much larger than one as the problem size n increases. One work unit
represents the amount of work needed to perform a single relaxation for the given problem
size. As such, we can use work units as a measure of performance. Ideally, the number of
work units should be small, and for a scalable method, we should observe a nearly constant
number of work units as the problem size grows. The number of work units is obtained by
dividing the total execution time by the time of one relaxation on the finest level. The main
purpose of providing work units is to give insight into the scalability of each method as problem
sizes increase. Work units also allow us to compare, for every test problem, the efficiency of
the different methods as we have implemented them. However, absolute comparisons may not
be as meaningful since they may depend significantly on the implementation details of each
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14 HANS DE STERCK ET AL.

method. Additionally, the work-units measure is more accurate for larger problems since it is
then less influenced by Matlab’s compilation time and other system activities. We note that
any blank entries in the tables below indicate that the method did not converge within the
prescribed number of iterations. Furthermore, a dashed entry “–” indicates that the method
diverged.

4.1. Tandem queue

The first test problem we consider is the tandem queueing network from [4], where two finite
queues with single servers are placed in tandem. Customers arrive according to a Poisson
distribution with rate µ, and the service time distribution at the two single-server stations is
Poisson with rates µ1 and µ2. This is illustrated in Figure 1. The states of the system can be
represented by tuples (n1, n2), where ni is the number of customers waiting in the ith queue.
We choose (µ, µ1, µ2) = (10, 11, 10) for the weights, which leads to a case of slow mixing. This
is a periodic, nonsymmetric problem whose subdominant eigenvalue asymptotically approaches
1 at a rate inversely proportional to the problem size [3].

µ2µ µ1

Figure 1. Tandem queueing network.

For GMRES and Bi-CGStab we used the ILUTP preconditioner with drop tolerances 0.0001
and 0.001, respectively. Their performance for the tandem queueing problem is given in Table
I. In Table II we observe excellent results for the OTF-MCAMG method, with an essentially
constant number of work units as the problem size grows. Furthermore, it is clear that OTF-
MCAMG is competitive with Bi-CGStab and GMRES for sufficiently large problem sizes.
Table III demonstrates the effectiveness of our over-correction approach. Comparing between
AGG and OC-AGG we observe a large decrease in the number of iterations and works units,
where OC-AGG is approximately 19 times faster than AGG for n = 65536. Similar behavior
is witnessed for both fixed and automatic over-correction, in both OC-AGG and OTF-OC-
AGG settings. We observe that the cost of OTF-OC-AGG is approximately 50% to 80% the
cost of OC-AGG. Also, the (OTF-)OC-AGG methods performed slightly better with the fixed
over-correction than with the automatic one.

Figure 2 shows a log-log plot of execution times for OTF-MCAMG, OTF-OC-AGG
(automatic), Bi-CGStab and GMRES methods as a function of the problem size. We note that
for Bi-CGStab and GMRES we have included the time required to construct the preconditioner,
which is also reflected in the number of work units. For each method we observe a nearly linear
relationship, where the slopes of the least-squares best fit lines are given by the bracketed
numbers in the legend. OTF-MCAMG appears to scale better than all the methods presented,
with a complexity that is nearly linear in the problem size. In the current implementation, it
is clear that OTF-OC-AGG achieves better performance than the other methods presented,
which is mainly attributable to its attractive operator complexity and simplicity. For example,
each OTF-OC-AGG solution/setup cycle is much cheaper than a corresponding OTF-MCAMG
solution/setup cycle.
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Table I. Tandem queueing network. Results for weighted Jacobi, two-level aggregation, Bi-CGStab
and GMRES(25). WU is the number of work units and it is the number of iterations to reduce the

1-norm of the initial residual by a factor of 108.

one-level two-level Bi-CGStab GMRES(25)
(ω = 0.99)

n it it it WU it WU
4096 12005 3383 9 339 7 590

16384 15 629 11 1033
65536 31 889 17 1232

262144 62 1532 41 2051

Table II. Tandem queueing network. Results for multilevel aggregation (AGG), on-the-fly AGG,
MCAMG and on-the-fly MCAMG. WU is the number of work units, Cop is the operator complexity,

and it is the number of iterations to reduce the 1-norm of the initial residual by a factor of 108.

AGG OTF-AGG MCAMG OTF-MCAMG
n it (Cop) WU it (Cop) WU it (Cop) WU it (Cop) WU

4096 159 (1.48) 5493 167 (1.48) 2691 11 (4.52) 2564 13 (4.53) 740
16384 268 (1.49) 8419 308 (1.49) 3068 13 (4.56) 3254 15 (4.57) 887
65536 456 (1.50) 12748 692 (1.50) 4771 13 (4.61) 2877 20 (4.65) 854

262144 14 (4.65) 2872 24 (4.67) 863

Table III. Tandem queueing network. Results for multilevel aggregation (AGG) and on-the-fly AGG
each with automatic and fixed over-correction. WU is the number of work units, Cop is the operator
complexity, and it is the number of iterations to reduce the 1-norm of the initial residual by a factor

of 108.
OC-AGG OC-AGG OTF-OC-AGG OTF-OC-AGG

(automatic) (fixed - 1.9) (automatic) (fixed - 1.9)
n it (Cop) WU it (Cop) WU it (Cop) WU it (Cop) WU

4096 16 (1.48) 944 18 (1.48) 955 18 (1.48) 742 17 (1.48) 534
16384 18 (1.49) 744 19 (1.49) 868 18 (1.49) 601 18 (1.49) 487
65536 17 (1.50) 652 19 (1.50) 668 19 (1.50) 495 17 (1.50) 358

262144 18 (1.50) 682 18 (1.50) 614 23 (1.50) 564 17 (1.50) 339

4.2. MARCA ATM queue

The next test problem we consider is a multi-class, finite buffer, priority system. This model
can be applied to telecommunications modeling, and has been used to model ATM queueing
networks as discussed in [6]. For a complete description including all of the model parameters
we refer to [4, 7]. We note that the model parameters were selected so that the resulting
Markov chain is nearly completely decomposable, with the particular set of parameters given
in [6]. The code and data files used to build the transition rate matrix corresponding to this
Markov chain model are provided freely on the web [7].

Results for GMRES and Bi-CGStab were obtained using the ILUTP preconditioner with
drop tolerances 0.001 and 0.01, respectively. We note that weighted Jacobi failed to converge
within 20,000 iterations for any value of ω ∈ (0, 1]. Similarly, the two-level aggregation method
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OTF−MCAMG (1.11)

OTF−OC−AGG (1.20)

Bi−CGStab (1.49)

GMRES (1.41)

Figure 2. Tandem queueing network. Total execution times of preconditioned Bi-CGStab, precondi-
tioned GMRES, OTF-MCAMG and OTF-OC-AGG (automatic) for n = 16384, 65536, 262144. The
numbers in brackets are the slopes of the least-squares best fit lines, fitted through the data points.

also failed to converge within 4,000 iterations. As such they are not shown in Table IV below.
In order to obtain satisfactory convergence for MCAMG and OTF-MCAMG it was necessary
to use strength of connection parameter θ = 0.5. Table IV gives the results for Bi-CGStab and

Table IV. MARCA ATM queueing network. Results for Bi-CGStab and GMRES(10). WU is the
number of work units and it is the number of iterations to reduce the 1-norm of the initial residual

by a factor of 108.

Bi-CGStab GMRES(10)
n it WU it WU

1940 5 270 6 403
7956 8 165 7 201

32276 12 258 9 325
130068 22 322 14 386

GMRES, which perform quite well for this test problem. In Table V we observe that (OTF-
)AGG performs surprisingly well for the MARCA ATM queue problem, and actually manages
to compete with (OTF-)MCAMG in terms of work units. However, these results are somewhat
misleading, since it was shown in [27] that the basic multilevel aggregation performs poorly for
all other test cases tried, and really only performs well for the MARCA ATM queue problem.
In general we expect (OTF-)MCAMG to be the superior method in terms of robustness and
convergence, as demonstrated by the other test problems. The work units for OTF-AGG are
approximately one third of those for AGG, and they appear to be constant as the problem
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Table V. MARCA ATM queueing network. Results for multilevel aggregation (AGG), on-the-fly AGG,
MCAMG and on-the-fly MCAMG. WU is the number of work units, Cop is the operator complexity,

and it is the number of iterations to reduce the 1-norm of the initial residual by a factor of 108.

AGG OTF-AGG MCAMG OTF-MCAMG
n it (Cop) WU it (Cop) WU it (Cop) WU it (Cop) WU

1940 34 (1.64) 1608 33 (1.64) 802 9 (4.69) 1783 8 (3.54) 751
7956 39 (1.55) 1379 51 (1.55) 613 10 (4.24) 1532 10 (3.86) 700

32276 61 (1.47) 1946 48 (1.47) 532 10 (4.43) 1876 12 (4.52) 840
130068 57 (1.44) 1836 58 (1.44) 571 10 (4.74) 1805 15 (5.32) 711

Table VI. MARCA ATM queueing network. Results for multilevel aggregation (AGG) and on-the-fly
AGG each with automatic and fixed over-correction. WU is the number of work units, Cop is the
operator complexity, and it is the number of iterations to reduce the 1-norm of the initial residual by

a factor of 108.
OC-AGG OC-AGG OTF-OC-AGG OTF-OC-AGG

(automatic) (fixed - 1.4) (automatic) (fixed - 1.4)
n it (Cop) WU it (Cop) WU it (Cop) WU it (Cop) WU

1940 16 (1.64) 1035 17 (1.64) 1013 16 (1.64) 711 16 (1.64) 590
7956 19 (1.55) 907 22 (1.55) 906 19 (1.55) 472 22 (1.55) 417

32276 18 (1.47) 847 20 (1.47) 793 20 (1.47) 511 24 (1.47) 411
130068 20 (1.44) 893 22 (1.44) 864 22 (1.44) 562 24 (1.44) 427

size grows, which indicates mesh independent convergence (Table V).
In both the OC-AGG and OTF-OC-AGG settings, the fixed and automatic over-correction

approaches again have similar iteration counts (Table VI). Clearly, the fixed over-correction has
a slightly lower work unit count, since it does not calculate the parameter α on each level. For
this test problem we observe a more moderate speedup of (OTF-)AGG using over-correction;
both the fixed and automatic OC-AGG methods converge in about half the time it takes AGG
to converge. As shown in Tables V and VI, the on-the-fly setting improves all multiplicative
methods. However, whereas the cost of OC-AGG is half that of AGG, we observe that the
cost of OTF-AGG is similar to the cost of OTF-OC-AGG in terms of their work units, while
the latter requires about half the iterations to converge. This is mainly because both the fixed
and automatic OTF-OC-AGG methods required more setup cycles than OTF-AGG.

Figure 3 shows the log-log plots of execution times for OTF-MCAMG, OTF-OC-AGG
(automatic), Bi-CGStab and GMRES. While Bi-CGStab, GMRES and OTF-OC-AGG are
faster than OTF-MCAMG, they do not scale as well as OTF-MCAMG. Thus, for sufficiently
large problem sizes we expect that OTF-MCAMG will be superior to the other methods. In
the current implementation, OTF-OC-AGG outperforms OTF-MCAMG in terms of solution
time, however, it does not scale as well.

4.3. Directed random planar graph

The last test problem we consider is a random walk on an unstructured, directed planar graph.
To construct the directed planar graph D we begin by randomly distributing n points in the
unit square (0, 1)× (0, 1). These points are then connected via Delaunay triangulation, which
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Figure 3. MARCA ATM queue. Total execution times of preconditioned Bi-CGStab, preconditioned
GMRES, OTF-MCAMG and OTF-OC-AGG (automatic) for n = 7956, 32276, 130068. The numbers

in brackets are the slopes of the least-squares best fit lines, fitted through the data points.

yields an undirected planar graph G. To obtain a directed graph D, we randomly select a set
of edges from G and make them unidirectional. This is done in such a way that irreducibility is
preserved (see [5] for further details regarding the construction of D). A Markov chain is then
obtained by performing a random walk on D, where the probability of transitioning from node
i to node j is given by the reciprocal of the number of outward arcs from node i. It is clear
from the construction that the resulting Markov chain has a nonsymmetric sparsity structure.
Furthermore, numerical computations of the transition matrices’ spectra as the problem size
grows confirms that this is a slowly mixing problem, and thus it is a prime candidate to test
our multilevel approach.

Table VII. Directed random planar graph. Results for weighted Jacobi, two-level aggregation, Bi-
CGStab and GMRES(25). WU is the number of work units and it is the number of iterations to

reduce the 1-norm of the initial residual by a factor of 108.

one-level two-level Bi-CGStab GMRES(25)
(ω = 1)

n it it it WU it WU
4096 9291 1625 8 307 12 305

16384 13 473 22 468
65536 23 560 45 679

262144 44 738 74 903

Results for Bi-CGStab and GMRES (see Table VII) were obtained using the ILUTP
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Table VIII. Directed random planar graph. Results for multilevel aggregation (AGG), on-the-fly AGG,
MCAMG and on-the-fly MCAMG. WU is the number of work units, Cop is the operator complexity,

and it is the number of iterations to reduce the 1-norm of the initial residual by a factor of 108.

AGG OTF-AGG MCAMG OTF-MCAMG
n it (Cop) WU it (Cop) WU it (Cop) WU it (Cop) WU

4096 151 (1.40) 5125 156 (1.40) 2137 12 (2.65) 1874 10 (2.65) 547
16384 305 (1.41) 8960 304 (1.41) 2418 13 (2.78) 2218 11 (2.78) 646
65536 594 (1.41) 16542 613 (1.41) 3695 14 (2.79) 2278 13 (2.79) 624

262144 15 (2.81) 2241 12 (2.81) 542

Table IX. Directed random planar graph. Results for multilevel aggregation (AGG) and on-the-fly
AGG each with automatic and fixed over-correction. WU is the number of work units, Cop is the
operator complexity, and it is the number of iterations to reduce the 1-norm of the initial residual by

a factor of 108.
OC-AGG OC-AGG OTF-OC-AGG OTF-OC-AGG

(automatic) (fixed - 1.7) (automatic) (fixed - 1.8)
n it (Cop) WU it (Cop) WU it (Cop) WU it (Cop) WU

4096 18 (1.40) 846 20 (1.40) 893 17 (1.40) 468 20 (1.40) 409
16384 24 (1.41) 1026 24 (1.41) 904 20 (1.41) 345 23 (1.41) 333
65536 29 (1.41) 1090 30 (1.41) 1062 25 (1.41) 342 29 (1.41) 357

262144 40 (1.41) 1416 34 (1.41) 1150 29 (1.41) 384 33 (1.41) 351

preconditioner with drop tolerance 0.001. We note that it was necessary to use ω = 0.5 for
smoothing the CGC when determining αopt for the automatic over-correction. Table IX shows
substantial improvements using over-correction compared to basic multilevel aggregation,
especially via the on-the-fly framework, where unlike in the previous cases, OTF-OC-AGG
performed significantly better than OC-AGG. Again, the fixed and automatic over-correction
approaches have comparable performance. Table VIII demonstrates good performance of the
OTF-MCAMG method, which is further reflected in Figure 4, where nearly linear scaling is
observed. As before, OTF-OC-AGG is faster due to its attractive operator complexity, while
OTF-MCAMG is more scalable.

The over-correction results for all three test problems show that the automatic approach
yields performance improvements that are generally as good as those obtained with a fixed α
determined optimally via trial and error. This demonstrates the advantage of the automatic
approach, since the α parameter does not have to be tuned. However, varying α on different
levels as in the automatic approach does not seem to yield faster convergence compared to a
fixed α on all levels and cycles. This deserves further investigation in the future to determine
whether the automatic procedure can be improved. If not, then it may be sufficient to determine
α automatically at the top level only, and use the same value for α at coarser levels.

5. Concluding remarks

In this paper we discussed a number of ways in which the basic multilevel aggregation algorithm
for Markov chains of Horton and Leutenegger can be accelerated. As our main contribution
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Figure 4. Directed random planar graph. Total execution times of preconditioned Bi-
CGStab, preconditioned GMRES, OTF-MCAMG and OTF-OC-AGG (automatic) for n =
16384, 65536, 262144. The numbers in brackets are the slopes of the least-squares best fit lines, fitted

through the data points.

we presented an automatic over-correction mechanism for both additive and multiplicative
correction schemes for Markov chains. Numerical results demonstrated that the automatic
over-correction approach cheaply and effectively improved the convergence of pure multilevel
aggregation for Markov chains. Moreover, it was shown how further speedup was possible
by using over-correction in conjunction with the on-the-fly adaptive framework. Indeed, the
results showed that OC-AGG and OTF-OC-AGG are competitive with ILU-preconditioned Bi-
CGStab and GMRES in terms of their work-unit measures. A similar observation was made
for OTF-MCAMG, for which execution time scaling plots showed that it scaled better than
the rest of the methods presented, with near-optimal performance in some cases. We mention
that for the test problems considered, the conclusions regarding the relative merits of the
methods in general hold for smaller convergence tolerances. Similar findings were obtained
from numerical tests with convergence tolerances as small as τ = 10−12. While we did
not consider other multilevel methods for Markov chains, including smoothed aggregation
multigrid, recursively accelerated multilevel aggregation, and square and stretch multigrid, we
expect that these methods would benefit similarly from the on-the-fly adaptive framework,
and would be competitive with preconditioned Bi-CGStab and GMRES.
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36. Klaus Stüben. Algebraic multigrid (amg): an introduction with applications. Technical Report 70, GMD
- Forschungszentrum Informationstechnik GmbH 1999.
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