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A MULTILEVEL ITERATED SHRINKAGE APPROACH 
TO 𝑙1PENALIZED LEAST-SQUARES  

ABSTRACT. The area of sparse representation of signals is drawing tremendous attention in recent 

years. The sparse representation of a signal is often achieved by minimizing 𝑙1 penalized least 

squares functional. Our new method takes advantage of the typically sparse representation of the 

signal. At each iteration it adaptively creates and processes a hierarchy of lower-dimensional 

problems, based on non-zero sparsity patterns, employing well-known iterated shrinkage methods, 

and gradually ignoring irrelevant data from the over-complete dictionary. In addition, we examine 

another way of analyzing the dictionary, in order to improve performance and reduce the runtime 

complexity. This new approach may significantly enhance the performance of existing iterative 

shrinkage algorithms in cases where the dictionary is explicit matrix. 

A MULTILEVEL APPROACH FOR L1 PENALIZED LEAST-SQUARES MINIMIZATION 

A signal      can be approximated as a linear combination of a few columns (often called 

“atoms”) from an over-complete matrix (often called “dictionary”)       , where    , A is 

redundant. That is,      , where the representation vector       is sparse, containing few non-

zero elements. The signal   represented by only a few columns of   . 

One approach for applying such reconstructions uses the well-known 𝑙1, which has somewhat 

similar “sparsity properties”. 

One common approach features an 𝑙1 penalized least-squares minimization: 
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with     a scalar parameter that balances between sparsity and adherence to the data. 
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   . M is a symmetric matrix. 
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COORDINATE DESCENT (CD) 

In each iteration of CD, we update the elements of   one by one on some prescribed order. Updating 

the element    requires minimizing the following functional for the scalar variable  , which then 

replaces   : 
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Where    is the ith column of  , and    is the ith column of M. 
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Note: 
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In conclusion the following options are possible: 

1.   
  ̃     or, 

2.   
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We define a “shrinkage” function: 
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Therefore, we can write the solution as follows: 
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From these equations we get the following algorithm for Coordinate Descent (CD): 

                    

For each    do minimization in one variable: 
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And we can also solve the problem as suggested with different parameters, the algorithm is: 
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// Notice that   
     [ ], and therefore  ( ) accessing it. 
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We would like to use that algorithm when the calculation should take place many times, for 

example - for different signals (since we use the same dictionary). 



LINESEARCH 

We use line-search so that  (   1 
)   (    (   1    ))      is a line-search scalar. This 

way we accelerate the convergence to    [1]. 

MULTILEVEL ITERATED SHRINKAGE 

As was demonstrated earlier, the solution is sparse – most columns will not end up in the support. 

Therefore, we introduce a multilevel method for (1); we accelerate the convergence of simple 

iterative method for (1) using a nested hierarchy of smaller versions of the problem. At each 

iteration, called a “V-cycle”, our algorithm reduces the dimension of the problem and creates a 

multilevel hierarchy of smaller and smaller problems, low-level problems, involving a lower 

dimensional dictionary at each “level”. We take advantage of the typical sparsity of   and reduce the 

dimension of the problem (1) by ignoring ostensibly irrelevant columns from A. That is, each low-

level problem restricted to a specially chosen subset of the columns of A, resulting in a nested 

hierarchy of sub-dictionaries. It then performs shrinkage sweeps over each of the low dimensional 

problems in turn, that aim to activate the atoms which comprise the support of a true minimizer. 

We iteratively repeat these V-cycle until some convergence criterion is satisfied. Under suitable 

conditions our algorithm converges to a global minimizer of (1). 

Definition of the low-level problem 

We now define the reduced problem given its designated subset of atoms,          [1]. We 

define a zero-filling prolongation matrix      | |, such that       retains the values of    for 

the elements in  , and sets the other elements of   to zero. 

We get the new problem: 
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Where    is the reduced sub-dictionary of the upper-level dictionary  , with columns given by the 

columns of   corresponding to the indices in  . We can recursively extend this two-level 

framework to multi levels. 

And for the second approach for the problem: 
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Where    is the sub-matrix of  , and              
    corresponds to entry in   . 

Choosing the low-level variables 

Our low-level functional definition above suggests that we need to select a subset of low-level 

variables  , that is likely as possible to contain the support of the true minimizer [1]. 
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If |    ( )|  ⌈   ⌉, we add atoms corresponding to the largest values of in  

|  (    )|  |    |. We choose these atoms for the support because they contribute 

significantly to the solution and for the true minimizer    [1]. 

Multilevel V-cycle 

For solving the minimization problem, we repeat    1      𝑙 (        ) iteratively, until some 

convergence criterion is satisfied. The multilevel V-cycle procedure, along with its parameters, is 

defined in  𝑙        . The multilevel V-cycle procedure for the second approach with   

dictionary is defined in  𝑙        . 

The algorithms use CD iterated shrinkage methods as “relaxations”. 
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1) Choose low-level variables  . 
2) If       ( ) or | |        , 

a. Solve the lowest-level problem (4). 
Else        𝑙 (         ) 

3) Prolong solution:       
4) Apply   relaxations:     (       ) 
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NUMERICAL RESULTS 

The following graphs show the convergence to     ( ). In each graph we see the run time of CD of 

the two representations:   (     ) (the blue graph) and   (     ) (the black graph). In addition, 

the graphs of the V-cycle, for both representations, are:     𝑙 (     ) (the red graph) and 

    𝑙 (     ) (the pink graph). 

In all the experiments, the dictionary is     1                 . Stopping criterion: reaching 

accuracy of     . 

 

For ill conditioned dictionaries (in which converging to the minimum is harder task): 

 



In the results, we can see that   (     ) is faster than   (     ), and     𝑙 (     ) is faster 

than     𝑙 (     ). Moreover, Vcycle is faster than CD, and takes less iterations until convergence 

is reached. 

CONCLUSION 

A multilevel approach is introduced for the solution of (1) when the matrix A is given explicitly. The 

new method takes advantage of the typically sparse representation of the signal by gradually 

ignoring ostensibly irrelevant data from the over-complete dictionary. This approach accelerates 

the performance of iterated shrinkage methods. Using matrix       causes further acceleration. 

However, computing M is very expensive un term of runtime, so we would like to use this approach 

when the calculation should take place many times, for example - for different signals. 
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